Dietary and Physical Activity Correlates of Muscle Mass in 60–65-Year-Old Seniors: A Gender-Specific Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diet
2.2. Body Composition
2.3. PA
2.4. Statistical Analysis
3. Results
- for protein per 1 kg of body weight [g/kg] p < 0.000001; F = 26.048,
- for whole model p < 0.000001; F = 2240.04,
- R2 = 0.16.
- for protein per 1 kg of body weight [g/kg] p = 0.000023; F = 19.276,
- for whole model p < 0.000001; F = 5049.60,
- R2 = 0.12.
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghoreishy, S.M.; Koujan, S.E.; Hashemi, R.; Heshmat, R.; Motlagh, A.D.; Esmaillzadeh, A. Relationship between healthy eating index and sarcopenia in elderly people. BMC Geriatr. 2023, 23, 25. [Google Scholar] [CrossRef] [PubMed]
- McKendry, J.; Coletta, G.; Nunes, E.A.; Lim, C.; Phillips, S.M. Mitigating disuse-induced skeletal muscle atrophy in ageing: Resistance exercise as a critical countermeasure. Exp. Physiol. 2024, 109, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
- Guimarães-Ferreira, L.; Cholewa, J.M.; Naimo, M.A.; Zhi, X.I.; Magagnin, D.; de Sá, R.B.; Streck, E.L.; da Silva Teixeira, T.; Zanchi, N.E. Synergistic effects of resistance training and protein intake: Practical aspects. Nutrition 2014, 30, 1097–1103. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Deer, R.R.; Volpi, E. Protein intake and muscle function in older adults. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 248–253. [Google Scholar] [CrossRef] [PubMed]
- Distefano, G.; Goodpaster, B.H. Effects of Exercise and Aging on Skeletal Muscle. Cold Spring Harb. Perspect. Med. 2018, 8, a029785. [Google Scholar] [CrossRef]
- Landi, F.; Marzetti, E.; Martone, A.M.; Bernabei, R.; Onder, G. Exercise as a remedy for sarcopenia. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 25–31. [Google Scholar] [CrossRef]
- Beaudart, C.; Dawson, A.; Shaw, S.C.; Harvey, N.C.; Kanis, J.A.; Binkley, N.; Reginster, J.Y.; Chapurlat, R.; Chan, D.C.; Bruyère, O.; et al. Nutrition and physical activity in the prevention and treatment of sarcopenia: Systematic review. Osteoporos. Int. 2017, 28, 1817–1833. [Google Scholar] [CrossRef]
- Pandey, A.; Pearlman, M.; Bonnes, S.L.; Nour, S.I. Can We Maintain Muscle Mass on a Plant-Based Diet? Curr. Nutr. Rep. 2025, 14, 16. [Google Scholar] [CrossRef]
- Hevia-Larraín, V.; Gualano, B.; Longobardi, I.; Gil, S.; Fernandes, A.L.; Costa, L.A.R.; Pereira, R.M.R.; Artioli, G.G.; Phillips, S.M.; Roschel, H. High-Protein Plant-Based Diet Versus a Protein-Matched Omnivorous Diet to Support Resistance Training Adaptations: A Comparison Between Habitual Vegans and Omnivores. Sports Med. 2021, 51, 1317–1330. [Google Scholar] [CrossRef]
- López-Moreno, M.; Kraselnik, A. The Impact of Plant-Based Proteins on Muscle Mass and Strength Performance: A Comprehensive Review. Curr. Nutr. Rep. 2025, 14, 37. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Tang, Y.; Yang, R.; Hu, Y.; Wang, J.; Li, S.; Yu, M.; Jiang, Y.; Liu, Z.; Wu, Y.; et al. Plant-based dietary pattern and low muscle mass: A nation-wide cohort analysis of Chinese older adults. BMC Geriatr. 2023, 23, 569. [Google Scholar] [CrossRef]
- Montiel-Rojas, D.; Santoro, A.; Nilsson, A.; Franceschi, C.; Capri, M.; Bazzocchi, A.; Battista, G.; de Groot, L.; Feskens, E.J.M.; Berendsen, A.A.M.; et al. Beneficial Role of Replacing Dietary Saturated Fatty Acids with Polyunsaturated Fatty Acids in the Prevention of Sarcopenia: Findings from the NU-AGE Cohort. Nutrients 2020, 12, 3079. [Google Scholar] [CrossRef]
- Montiel-Rojas, D.; Nilsson, A.; Santoro, A.; Franceschi, C.; Bazzocchi, A.; Battista, G.; de Groot, L.; Feskens, E.J.M.; Berendsen, A.; Pietruszka, B.; et al. Dietary Fibre May Mitigate Sarcopenia Risk: Findings from the NU-AGE Cohort of Older European Adults. Nutrients 2020, 12, 1075. [Google Scholar] [CrossRef] [PubMed]
- Domić, J.; Grootswagers, P.; van Loon, L.J.C.; de Groot, L. Perspective: Vegan Diets for Older Adults? A Perspective On the Potential Impact On Muscle Mass and Strength. Adv. Nutr. 2022, 13, 712–725. [Google Scholar] [CrossRef]
- Davis, J.A.; Mohebbi, M.; Collier, F.; Loughman, A.; Staudacher, H.; Shivappa, N.; Hébert, J.R.; Pasco, J.A.; Jacka, F.N. The role of diet quality and dietary patterns in predicting muscle mass and function in men over a 15-year period. Osteoporos. Int. 2021, 32, 2193–2203. [Google Scholar] [CrossRef]
- van Dronkelaar, C.; van Velzen, A.; Abdelrazek, M.; van der Steen, A.; Weijs, P.J.M.; Tieland, M. Minerals and Sarcopenia; The Role of Calcium, Iron, Magnesium, Phosphorus, Potassium, Selenium, Sodium, and Zinc on Muscle Mass, Muscle Strength, and Physical Performance in Older Adults: A Systematic Review. J. Am. Med. Dir. Assoc. 2018, 19, 6–11.e3. [Google Scholar] [CrossRef]
- Scott, D.; Blizzard, L.; Fell, J.; Giles, G.; Jones, G. Associations between dietary nutrient intake and muscle mass and strength in community-dwelling older adults: The Tasmanian Older Adult Cohort Study. J. Am. Geriatr. Soc. 2010, 58, 2129–2134. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Chen, C.; Liu, W.; Zhou, T.; Xun, P.; He, K.; Chen, P. The effect of magnesium supplementation on muscle fitness: A meta-analysis and systematic review. Magnes. Res. 2017, 30, 120–132. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Barbagallo, M.; Lauretani, F.; Bandinelli, S.; Bos, A.; Corsi, A.M.; Simonsick, E.M.; Ferrucci, L. Magnesium and muscle performance in older persons: The InCHIANTI study. Am. J. Clin. Nutr. 2006, 84, 419–426. [Google Scholar] [CrossRef]
- Welch, A.A.; Kelaiditi, E.; Jennings, A.; Steves, C.J.; Spector, T.D.; MacGregor, A. Dietary Magnesium Is Positively Associated With Skeletal Muscle Power and Indices of Muscle Mass and May Attenuate the Association Between Circulating C-Reactive Protein and Muscle Mass in Women. J. Bone Miner. Res. 2016, 31, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, A.; Montiel Rojas, D.; Kadi, F. Impact of Meeting Different Guidelines for Protein Intake on Muscle Mass and Physical Function in Physically Active Older Women. Nutrients 2018, 10, 1156. [Google Scholar] [CrossRef]
- Kim, J.; Lee, Y.; Kye, S.; Chung, Y.S.; Kim, K.M. Association between healthy diet and exercise and greater muscle mass in older adults. J. Am. Geriatr. Soc. 2015, 63, 886–892. [Google Scholar] [CrossRef]
- Hunter, G.R.; McCarthy, J.P.; Bamman, M.M. Effects of resistance training on older adults. Sports Med. 2004, 34, 329–348. [Google Scholar] [CrossRef]
- Pearson, A.M. Muscle growth and exercise. Crit. Rev. Food Sci. Nutr. 1990, 29, 167–196. [Google Scholar] [CrossRef]
- Maltais, M.L.; Desroches, J.; Dionne, I.J. Changes in muscle mass and strength after menopause. J. Musculoskelet. Neuronal Interact. 2009, 9, 186–197. [Google Scholar]
- Gharahdaghi, N.; Rudrappa, S.; Brook, M.S.; Idris, I.; Crossland, H.; Hamrock, C.; Abdul Aziz, M.H.; Kadi, F.; Tarum, J.; Greenhaff, P.L.; et al. Testosterone therapy induces molecular programming augmenting physiological adaptations to resistance exercise in older men. J. Cachexia Sarcopenia Muscle 2019, 10, 1276–1294. [Google Scholar] [CrossRef] [PubMed]
- Kopiec, T.; Stańczyk, K.; Burzyńska, M. Assessment of Lodz Province Residents Opinions on the Needs For the Social Activation of Seniors. Acta Univ. Lodz. Folia Oeconomica 2022, 6, 4–23. [Google Scholar] [CrossRef]
- Karolczak, K.; Guligowska, A.; Kostanek, J.; Soltysik, B.; Kostka, T.; Watala, C. The amino acid content in the daily diet of seniors negatively correlates with the degree of platelet aggregation in a sex- and agonist-specific manner. Aging 2022, 14, 7240–7262. [Google Scholar] [CrossRef]
- Fife, E.; Kostka, J.; Kroc, Ł.; Guligowska, A.; Pigłowska, M.; Sołtysik, B.; Kaufman-Szymczyk, A.; Fabianowska-Majewska, K.; Kostka, T. Relationship of muscle function to circulating myostatin, follistatin and GDF11 in older women and men. BMC Geriatr. 2018, 18, 200. [Google Scholar] [CrossRef]
- Sipers, W.; Dorge, J.; Schols, J.; Verdijk, L.B.; van Loon, L.J.C. Multifrequency bioelectrical impedance analysis may represent a reproducible and practical tool to assess skeletal muscle mass in euvolemic acutely ill hospitalized geriatric patients. Eur. Geriatr. Med. 2020, 11, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Gijsen, M.; Simons, E.; De Cock, P.; Malbrain, M.L.N.G.; Wauters, J.; Spriet, I. Reproducibility of fluid status measured by bioelectrical impedance analysis in healthy volunteers: A key requirement to monitor fluid status in the intensive care unit. Anaesthesiol. Intensive Ther. 2021, 53, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Bonnefoy, M.; Normand, S.; Pachiaudi, C.; Lacour, J.R.; Laville, M.; Kostka, T. Simultaneous validation of ten physical activity questionnaires in older men: A doubly labeled water study. J. Am. Geriatr. Soc. 2001, 49, 28–35. [Google Scholar] [CrossRef]
- Sołtysik, B.K.; Karolczak, K.; Kostka, T.; Stephenson, S.S.; Watala, C.; Kostka, J. Contribution of Physical Activity to the Oxidative and Antioxidant Potential in 60–65-Year-Old Seniors. Antioxidants 2023, 12, 1200. [Google Scholar] [CrossRef]
- Khaing, I.K.; Tahara, Y.; Chimed-Ochir, O.; Shibata, S.; Kubo, T. Effect of breakfast protein intake on muscle mass and strength in adults: A scoping review. Nutr. Rev. 2025, 83, 175–199. [Google Scholar] [CrossRef]
- Lim, M.T.; Pan, B.J.; Toh, D.W.K.; Sutanto, C.N.; Kim, J.E. Animal Protein versus Plant Protein in Supporting Lean Mass and Muscle Strength: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2021, 13, 661. [Google Scholar] [CrossRef]
- Capitão, C.; Coutinho, D.; Neves, P.M.; Capelas, M.L.; Pimenta, N.M.; Santos, T.; Mäkitie, A.; Ravasco, P. Protein intake and muscle mass maintenance in patients with cancer types with high prevalence of sarcopenia: A systematic review. Support. Care Cancer 2022, 30, 3007–3015. [Google Scholar] [CrossRef] [PubMed]
- Wolfe, R.R.; Cifelli, A.M.; Kostas, G.; Kim, I.Y. Optimizing Protein Intake in Adults: Interpretation and Application of the Recommended Dietary Allowance Compared with the Acceptable Macronutrient Distribution Range. Adv. Nutr. 2017, 8, 266–275. [Google Scholar] [CrossRef]
- Morais, J.A.; Chevalier, S.; Gougeon, R. Protein turnover and requirements in the healthy and frail elderly. J. Nutr. Health Aging 2006, 10, 272–283. [Google Scholar]
- Baum, J.I.; Kim, I.Y.; Wolfe, R.R. Protein Consumption and the Elderly: What Is the Optimal Level of Intake? Nutrients 2016, 8, 359. [Google Scholar] [CrossRef]
- Phillips, N.; Gray, S.R.; Combet, E.; Witard, O.C. Long-chain n-3 polyunsaturated fatty acids for the management of age- and disease-related declines in skeletal muscle mass, strength and physical function. Curr. Opin. Clin. Nutr. Metab. Care 2024, 27, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Isanejad, M.; Tajik, B.; McArdle, A.; Tuppurainen, M.; Sirola, J.; Kröger, H.; Rikkonen, T.; Erkkilä, A. Dietary omega-3 polyunsaturated fatty acid and alpha-linolenic acid are associated with physical capacity measure but not muscle mass in older women 65–72 years. Eur. J. Nutr. 2022, 61, 1813–1821. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.H.; Chiu, W.C.; Hsu, Y.P.; Lo, Y.L.; Wang, Y.H. Effects of Omega-3 Fatty Acids on Muscle Mass, Muscle Strength and Muscle Performance among the Elderly: A Meta-Analysis. Nutrients 2020, 12, 3739. [Google Scholar] [CrossRef]
- Smith, G.I.; Julliand, S.; Reeds, D.N.; Sinacore, D.R.; Klein, S.; Mittendorfer, B. Fish oil-derived n-3 PUFA therapy increases muscle mass and function in healthy older adults. Am. J. Clin. Nutr. 2015, 102, 115–122. [Google Scholar] [CrossRef]
- Therdyothin, A.; Phiphopthatsanee, N.; Isanejad, M. The Effect of Omega-3 Fatty Acids on Sarcopenia: Mechanism of Action and Potential Efficacy. Mar. Drugs 2023, 21, 399. [Google Scholar] [CrossRef] [PubMed]
- Troesch, B.; Eggersdorfer, M.; Laviano, A.; Rolland, Y.; Smith, A.D.; Warnke, I.; Weimann, A.; Calder, P.C. Expert Opinion on Benefits of Long-Chain Omega-3 Fatty Acids (DHA and EPA) in Aging and Clinical Nutrition. Nutrients 2020, 12, 2555. [Google Scholar] [CrossRef]
- Bo, Y.; Liu, C.; Ji, Z.; Yang, R.; An, Q.; Zhang, X.; You, J.; Duan, D.; Sun, Y.; Zhu, Y.; et al. A high whey protein, vitamin D and E supplement preserves muscle mass, strength, and quality of life in sarcopenic older adults: A double-blind randomized controlled trial. Clin. Nutr. 2019, 38, 159–164. [Google Scholar] [CrossRef]
- Bollen, S.E.; Bass, J.J.; Fujita, S.; Wilkinson, D.; Hewison, M.; Atherton, P.J. The Vitamin D/Vitamin D receptor (VDR) axis in muscle atrophy and sarcopenia. Cell Signal 2022, 96, 110355. [Google Scholar] [CrossRef]
- Ma, Y.; Liu, Y.; Zheng, J.; Zheng, Z.; Li, J. Clinical significance of serum irisin, 25(OH)D3 and albumin in older adults with chronic disease and sarcopenia. Aging Clin. Exp. Res. 2025, 37, 153. [Google Scholar] [CrossRef]
- Bellavia, D.; Costa, V.; De Luca, A.; Maglio, M.; Pagani, S.; Fini, M.; Giavaresi, G. Vitamin D Level Between Calcium-Phosphorus Homeostasis and Immune System: New Perspective in Osteoporosis. Curr. Osteoporos. Rep. 2024, 22, 599–610. [Google Scholar] [CrossRef]
- Byrne, F.N.; Gillman, B.; Kiely, M.; Bowles, M.; Connolly, P.; Earlie, J.; Murphy, J.; Rennick, T.; Reilly, E.O.; Shiely, F.; et al. Revising Dietary Phosphorus Advice in Chronic Kidney Disease G3-5D. J. Ren. Nutr. 2021, 31, 132–143. [Google Scholar] [CrossRef] [PubMed]
- Choi, M.K.; Bae, Y.J. Dietary calcium, phosphorus, and osteosarcopenic adiposity in Korean adults aged 50 years and older. Arch. Osteoporos. 2021, 16, 89. [Google Scholar] [CrossRef] [PubMed]
- Carnauba, R.A.; Baptistella, A.B.; Paschoal, V.; Hübscher, G.H. Diet-Induced Low-Grade Metabolic Acidosis and Clinical Outcomes: A Review. Nutrients 2017, 9, 538. [Google Scholar] [CrossRef]
- van Dronkelaar, C.; Fultinga, M.; Hummel, M.; Kruizenga, H.; Weijs, P.J.M.; Tieland, M. Minerals and Sarcopenia in Older Adults: An Updated Systematic Review. J. Am. Med. Dir. Assoc. 2023, 24, 1163–1172. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Si, K.; Xing, X.; Ye, X.; Liu, Z.; Chen, J.; Tang, X. Association between dietary magnesium intake and muscle mass among hypertensive population: Evidence from the National Health and Nutrition Examination Survey. Nutr. J. 2024, 23, 37. [Google Scholar] [CrossRef]
- Hayhoe, R.P.G.; Lentjes, M.A.H.; Mulligan, A.A.; Luben, R.N.; Khaw, K.T.; Welch, A.A. Cross-sectional associations of dietary and circulating magnesium with skeletal muscle mass in the EPIC-Norfolk cohort. Clin. Nutr. 2019, 38, 317–323. [Google Scholar] [CrossRef]
- El Assar, M.; Álvarez-Bustos, A.; Sosa, P.; Angulo, J.; Rodríguez-Mañas, L. Effect of Physical Activity/Exercise on Oxidative Stress and Inflammation in Muscle and Vascular Aging. Int. J. Mol. Sci. 2022, 23, 8713. [Google Scholar] [CrossRef]
- Wilkinson, D.J.; Piasecki, M.; Atherton, P.J. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 2018, 47, 123–132. [Google Scholar] [CrossRef]
- Kim, B.; Osuka, Y.; Okubo, Y.; Zhao, X.; Kim, G.M.; Oh, S. The Physical Activity Paradox in Low Muscle Mass in Middle-Aged and Older Adults. Am. J. Prev. Med. 2025, 68, 348–356. [Google Scholar] [CrossRef]
- Tipton, K.D.; Wolfe, R.R. Exercise, protein metabolism, and muscle growth. Int. J. Sport. Nutr. Exerc. Metab. 2001, 11, 109–132. [Google Scholar] [CrossRef]
- Nuzzo, J.L. Narrative Review of Sex Differences in Muscle Strength, Endurance, Activation, Size, Fiber Type, and Strength Training Participation Rates, Preferences, Motivations, Injuries, and Neuromuscular Adaptations. J. Strength Cond. Res. 2023, 37, 494–536. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.J.; Ko, P.S.; Lee, M.C.; Su, S.L.; Yu, S. Gender difference in appendicular muscle strength: Determinant of the quality of life in the older Taiwanese. Aging 2022, 14, 7517–7526. [Google Scholar] [CrossRef] [PubMed]
Variable | Women N = 134 | Men N = 138 | p | ||
---|---|---|---|---|---|
Mean ± SD | Median (Lower-Upper Quartile) | Mean ± SD | Median (Lower-Upper Quartile) | ||
Age [years] | 62.39 ± 1.58 | 62 (61–64) | 62.92 ± 1.71 | 63 (61–64) | 0.008 |
BMI [kg/m2] | 28.00 ± 4.58 | 27.51 (24.79–30.79) | 28.14 ± 4.47 | 27.71 (25.08–30.53) | 0.81 |
Muscle mass [% of body mass] | 26.51 ± 2.50 | 26.48 (24.81–28.37) | 36.11 ± 2.49 | 35.88 (34.79–37.85) | <0.001 |
Total protein [g] | 66.65 ± 24.83 | 65.88 (49.30–81.36) | 83.53 ± 32.12 | 78.73 (61.23–97.62) | <0.001 |
Protein per 1 kg of body weight [g/kg] | 0.96 ± 0.40 | 0.91 (0.67–1.22) | 1.01 ± 0.46 | 0.93 (0.73–1.21) | 0.9 |
Plant protein [g] | 22.39 ± 8.49 | 21.45 (15.92–27.60) | 28.18 ± 12.70 | 25.60 (20.09–33.36) | <0.001 |
Total carbohydrates [g] | 213.83 ± 83.44 | 198.71 (151.31–268.65) | 275.43 ± 110.34 | 253.28 (196.00–328.58) | <0.001 |
Dietary fiber [g] | 19.71 ± 7.91 | 17.98 (14.54–24.65) | 22.00 ± 10.05 | 19.20 (15.04–27.27) | 0.25 |
Long-chain polyunsaturated fatty acids [g] | 0.26 ± 0.78 | 0.03(0.01–0.11) | 0.33 ± 0.92 | 0.04 (0.0–0.11) | 0.49 |
Digestible carbohydrates [g] | 194.18 ± 79.57 | 179.23(135.09–243.36) | 253.51 ± 103.70 | 230.45 (177.15–306.56) | <0.001 |
Phosphorus [mg] | 1122.80 ± 403.70 | 1113.69 (864.77–1382.86) | 1341.27 ± 501.92 | 1247.15 (976.12–1635.72) | 0.001 |
Magnesium [mg] | 294.23 ± 106.12 | 268.42 (223.32–352.62) | 335.79 ± 129.60 | 311.02 (240.09–383.03) | 0.007 |
Zinc [mg] | 9.11 ± 3.25 | 8.67 (6.96–10.83) | 11.42 ± 4.55 | 10.44 (8.71–13.63) | <0.001 |
Copper [mg] | 1.17 ± 0.44 | 1.10 (0.83–1.45) | 1.29 ± 0.57 | 1.12 (0.90–1.54) | 0.21 |
Manganese [mg] | 5.07 ± 2.08 | 4.83(3.59–6.19) | 5.66 ± 2.78 | 5.01 (3.74–7.18) | 0.26 |
Thiamine [mg] | 1.11 ± 0.54 | 0.98 (0.72–1.36) | 1.45 ± 0.66 | 1.30 (0.96–1.84) | <0.001 |
Vitamin D [µg] | 2.84 ± 5.08 | 1.70 (0.85–2.52) | 3.52 ± 3.98 | 2.23 (1.24–3.66) | 0.001 |
Vitamin B12 µg] | 4.65 ± 10.80 | 2.53 (1.62–3.56) | 5.41 ± 14.84 | 2.89 (1.73–4.01) | 0.11 |
Erucic acid [C22:1. g] | 0.20 ± 0.47 | 0.03 (0.00–0.17) | 0.21 ± 0.42 | 0.04 (0.00–0.23) | 0.86 |
Total monounsaturated fatty acids [g] | 20.69 ± 14.87 | 18.24 (12.03–25.31) | 29.32 ± 16.04 | 26.70 (17.07–37.97) | <0.001 |
Stearidonic acid [C18:4. g] | 0.02 ± 0.06 | 0 (0–0) | 0.02 ± 0.08 | 0 (0–0) | 0.96 |
Eicosapentaenoic acid (EPA) [C20:5. g] | 0.08 ± 0.24 | 0 (0–0.02) | 0.10 ± 0.30 | 0 (0–0.02) | 0.52 |
Docosapentaenoic acid (DPA) [C22:5. g] | 0.03 ± 0.09 | 0 (0–0.01) | 0.03 ± 0.07 | 0 (0–0.02) | 0.28 |
Docosahexaenoic acid [DHA. C22:6. g] | 0.15 ± 0.47 | 0.02 (0.01–0.08) | 0.20 ± 0.56 | 0.03 (0.00–0.09) | 0.56 |
Total polyunsaturated fatty acids [g] | 8.93 ± 7.03 | 7.55 (4.90–10.74) | 11.50 ± 8.29 | 9.80 (5.83–14.12) | 0.001 |
Saturated fatty acids: total [SFA. g] | 21.70 ± 17.71 | 19.86 (12.77–27.02) | 31.59 ± 20.88 | 26.49 (19.02–39.90) | <0.001 |
Physical activity–health related behaviors moderate (PA-HRBI) | 2.86 ± 1.63 | 3 (2–4) | 2.71 ± 1.69 | 3 (1–4) | 0.41 |
Physical activity–health related behaviors hard (PA-HRBII) | 0.26 ± 0.71 | 0 (0–0) | 0.25 ± 0.69 | 0 (0–0) | 0.98 |
Physical activity–energy expenditure (PA-EE) [kcal/kg/day] | 45.74 ± 7.09 | 44.55 (39.92–50.50) | 44.51 ± 8.09 | 42.04 (37.71–50.25) | 0.07 |
Variable | Women N = 134 | Men N = 138 | p | |
---|---|---|---|---|
Marital status | Married | 71 (52.9%) | 113 (81.8%) | 0.001 |
Divorced | 25 (18.6%) | 17 (12.32%) | ||
Widowed | 28 (20.9%) | 4 (2.9%) | ||
Single | 10 (7.5%) | 4 (2.9%) | ||
Place of residence | Urban | 126 (94.0) | 126 (91.3%) | 0.38 |
Rural | 8 (5.9%) | 12 (8.7%) | ||
Occupation | White collar | 45 (33.6%) | 45 (32.6%) | 0.82 |
Physical | 41(30.6%) | 47 (34.0%) | ||
Unemployed | 48 (35.8%) | 36 (33.4%) | ||
Diseases | Arterial hypertension | 61 (45.5%) | 82 (59.4%) | 0.02 |
Hypercholesterolemia | 95 (70.9%) | 87 (63.0%) | 0.16 | |
Diabetes mellitus | 15 (11.1%) | 18 (13.0%) | 0.64 | |
Coronary artery disease | 13 (9.7%) | 21 (15.22%) | 0.16 | |
Myocardial infarction | 2 (1.5%) | 11 (7.9%) | 0.01 | |
Heart failure | 20 14.9%) | 13 (9.42%) | 0.16 | |
Stroke | 6 (4.48%) | 5 (3.62%) | 0.71 | |
Chronic lung disease | 22 (16.4%) | 14 (10.1%) | 0.12 | |
Osteoarthritis | 68 (51.1%) | 61 (44.2%) | 0.25 | |
Osteoporosis | 24 (17.9%) | 3 (2.2%) | <0.001 | |
Gastrointestinal disorders | 54 (40.3%) | 39 (28.3%) | 0.03 | |
Depression | 30 (22.4%) | 12 (8.7%) | 0.01 | |
Urinary incontinence | 31 (23.1%) | 23 (16.7%) | 0.18 | |
Medications | Anticoagulants | 24 (17.9%) | 20 (14.5%) | 0.74 |
Beta-adrenolitics | 39 (29.1%) | 37 (26.8%) | 0.67 | |
Calcium channel blockers | 10 (7.5%) | 20 (14.5%) | 0.06 | |
Angiotensin-converting enzyme inhibitors | 30 (22.4%) | 35 (25.4%) | 0.56 | |
Angiotensin II receptors blockers | 16 (11.9%) | 7 (5.0%) | 0.04 | |
Diuretics | 27 (20.1%) | 24 (17.4%) | 0.56 | |
Statins | 24 (17.9% | 37 (26.85) | 0.07 |
Variable | Women N = 134 | Men N = 138 | ||
---|---|---|---|---|
Muscle Mass [%] | p | Muscle Mass [%] | p | |
Total protein [g] | 0.08 | ns | 0.04 | ns |
Protein per 1 kg of body weight [g/kg] | 0.41 | <0.001 | 0.35 | <0.001 |
Plant protein [g] | 0.25 | <0.01 | 0.08 | ns |
Total carbohydrates [g] | 0.26 | <0.01 | 0.10 | ns |
Dietary fiber [g] | 0.18 | <0.05 | 0.00 | ns |
Long-chain polyunsaturated fatty acids [g] | −0.24 | <0.01 | 0.00 | ns |
Digestible carbohydrates [g] | 0.25 | <0.01 | 0.10 | ns |
Phosphorus [mg] | 0.21 | <0.01 | 0.01 | ns |
Magnesium [mg] | 0.30 | <0.001 | 0.00 | ns |
Zinc [mg] | 0.22 | <0.01 | 0.02 | ns |
Copper [mg] | 0.20 | <0.01 | 0.01 | ns |
Manganese [mg] | 0.20 | <0.05 | 0.08 | ns |
Thiamine [mg] | 0.17 | <0.05 | 0.02 | ns |
Vitamin D [µg] | −0.24 | <0.01 | −0.09 | ns |
Erucic acid [C22:1. g] | −0.20 | <0.05 | −0.07 | ns |
Total monounsaturated fatty acids [MUFA. g] | −0.01 | ns | 0.04 | ns |
Stearidonic acid [C18:4. g] | −0.23 | <0.01 | −0.07 | ns |
Eicosapentaenoic acid (EPA) [C20:5. g] | −0.21 | <0.05 | −0.05 | ns |
Docosapentaenoic acid (DPA) [C22:5. g] | −0.22 | <0.05 | −0.01 | ns |
Docosahexaenoic acid [DHA. C22:6. g] | −0.24 | <0.05 | −0.04 | ns |
Total polyunsaturated fatty acids [PUFA. g] | −0.03 | ns | −0.05 | ns |
Saturated fatty acids: total [SFA. g] | −0.02 | ns | 0.07 | ns |
Physical activity–health related behaviors moderate (PA-HRBI) | 0.23 | 0.01 | 0.14 | ns |
Physical activity–health related behaviors hard (PA-HRBII) | 0.19 | <0.05 | 0.20 | <0.05 |
Physical activity–energy expenditure (PA-EE) [kcal/kg/day] | −0.01 | ns | 0.07 | ns |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sołtysik, B.K.; Balicki, P.; Kowalczyk, K.; Lutostańska, A.; Dmuchowska, J.; Pigłowska, M.; Kostka, T. Dietary and Physical Activity Correlates of Muscle Mass in 60–65-Year-Old Seniors: A Gender-Specific Analysis. Nutrients 2025, 17, 1930. https://doi.org/10.3390/nu17111930
Sołtysik BK, Balicki P, Kowalczyk K, Lutostańska A, Dmuchowska J, Pigłowska M, Kostka T. Dietary and Physical Activity Correlates of Muscle Mass in 60–65-Year-Old Seniors: A Gender-Specific Analysis. Nutrients. 2025; 17(11):1930. https://doi.org/10.3390/nu17111930
Chicago/Turabian StyleSołtysik, Bartłomiej K., Paweł Balicki, Klaudia Kowalczyk, Aleksandra Lutostańska, Julia Dmuchowska, Małgorzata Pigłowska, and Tomasz Kostka. 2025. "Dietary and Physical Activity Correlates of Muscle Mass in 60–65-Year-Old Seniors: A Gender-Specific Analysis" Nutrients 17, no. 11: 1930. https://doi.org/10.3390/nu17111930
APA StyleSołtysik, B. K., Balicki, P., Kowalczyk, K., Lutostańska, A., Dmuchowska, J., Pigłowska, M., & Kostka, T. (2025). Dietary and Physical Activity Correlates of Muscle Mass in 60–65-Year-Old Seniors: A Gender-Specific Analysis. Nutrients, 17(11), 1930. https://doi.org/10.3390/nu17111930