Selenium and Skeletal Muscle Health in Sports Nutrition
Abstract
:1. Introduction
2. Selenoproteins in Skeletal Muscle Biology
2.1. SELENOW
2.2. SELENON
2.3. SELENOK
2.4. SELENOS
2.5. GPx
2.6. Txnrd
2.7. MsrB1
2.8. Other Selenoproteins
3. Mechanisms of Selenium in Muscle Health
3.1. Antioxidant Defense
3.2. Mitochondrial Function
3.3. Protein Metabolic Balance
3.4. Calcium Homeostasis and Muscle Contraction
4. Selenium Deficiency and Muscle Pathologies
5. Exercise and Skeletal Muscle Adaptation
5.1. Exercise-Induced Increased Selenium Consumption
5.2. Effect of Selenium Supplementation on Exercise Recovery
5.3. Dosage and Form of Selenium Supplement
6. Clinical Implications and Future Directions
6.1. Intervention Strategies Targeting Selenoproteins
6.2. Synergistic Effects of Selenium with Other Trace Elements
6.3. Gut-Muscle Axis and Regulation of Selenium
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Han, S.-J.; Lee, B.C.; Yim, S.H.; Gladyshev, V.N.; Lee, S.-R. Characterization of Mammalian Selenoprotein O: A Redox-Active Mitochondrial Protein. PLoS ONE 2014, 9, e95518. [Google Scholar] [CrossRef]
- Johansson, L.; Gafvelin, G.; Arnér, E.S.J. Selenocysteine in Proteins—Properties and Biotechnological Use. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2005, 1726, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. The Importance of Selenium to Human Health. Lancet 2000, 356, 233–241. [Google Scholar] [CrossRef]
- Köhrle, J. Selenium in Endocrinology-Selenoprotein-Related Diseases, Population Studies, and Epidemiological Evidence. Endocrinology 2021, 162, bqaa228. [Google Scholar] [CrossRef]
- Reeves, M.A.; Hoffmann, P.R. The Human Selenoproteome: Recent Insights into Functions and Regulation. Cell. Mol. Life Sci. 2009, 66, 2457–2478. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, P.A.; Santesmasses, D.; Lee, B.J.; Gladyshev, V.N.; Hatfield, D.L. Historical Roles of Selenium and Selenoproteins in Health and Development: The Good, the Bad and the Ugly. Int. J. Mol. Sci. 2022, 23, 5. [Google Scholar] [CrossRef] [PubMed]
- Bartholomew, A.; Latshaw, D.; Swayne, D.E. Changes in Blood Chemistry, Hematology, and Histology Caused by a Selenium/Vitamin E Deficiency and Recovery in Chicks. Biol. Trace Elem. Res. 1998, 62, 7–16. [Google Scholar] [CrossRef]
- Wu, H.; Xu, T.; Yang, N.; Zhang, J.; Xu, S. Low-Se Diet Increased Mitochondrial ROS to Suppress Myoblasts Proliferation and Promote Apoptosis in Broilers via miR-365-3p/SelT Signaling Axis. J. Agric. Food Chem. 2024, 72, 284–299. [Google Scholar] [CrossRef]
- Wu, H.; Shi, X.; Yang, N.; Xu, S. Low Selenium Diet Inhibited CaMKII Activation via miR-365-3p/SelT Signaling Axis, Resulting in Myoblast Differentiation Disorders and Skeletal Muscle Damage in Broilers. Biol. Trace Elem. Res. 2025. [Google Scholar] [CrossRef]
- Wang, S.; Zhao, X.; Liu, Q.; Wang, Y.; Li, S.; Xu, S. Selenoprotein K Protects Skeletal Muscle from Damage and Is Required for Satellite Cells-Mediated Myogenic Differentiation. Redox Biol. 2022, 50, 102255. [Google Scholar] [CrossRef]
- Dumont, N.A.; Bentzinger, C.F.; Sincennes, M.-C.; Rudnicki, M.A. Satellite Cells and Skeletal Muscle Regeneration. Compr. Physiol. 2015, 5, 1027–1059. [Google Scholar] [CrossRef] [PubMed]
- Jing, J.; He, Y.; Liu, Y.; Tang, J.; Wang, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; et al. Selenoproteins Synergistically Protect Porcine Skeletal Muscle from Oxidative Damage via Relieving Mitochondrial Dysfunction and Endoplasmic Reticulum Stress. J. Anim. Sci. Biotechnol. 2023, 14, 79. [Google Scholar] [CrossRef]
- Pedersen, N.D.; Whanger, P.D.; Weswig, P.H.; Muth, O.H. Selenium Binding Proteins in Tissues of Normal and Selenium Responsive Myopathic Lambs. Bioinorg. Chem. 1972, 2, 33–45. [Google Scholar] [CrossRef]
- Jeong, D.-W.; Kim, T.S.; Chung, Y.W.; Lee, B.J.; Kim, I.Y. Selenoprotein W Is a Glutathione-Dependent Antioxidant in Vivo. FEBS Lett. 2002, 517, 225–228. [Google Scholar] [CrossRef]
- Ko, K.Y.; Lee, J.H.; Jang, J.K.; Jin, Y.; Kang, H.; Kim, I.Y. S-Glutathionylation of Mouse Selenoprotein W Prevents Oxidative Stress-Induced Cell Death by Blocking the Formation of an Intramolecular Disulfide Bond. Free Radic. Biol. Med. 2019, 141, 362–371. [Google Scholar] [CrossRef]
- Hawkes, W.C.; Alkan, Z. Delayed Cell Cycle Progression in Selenoprotein W-Depleted Cells Is Regulated by a Mitogen-Activated Protein Kinase Kinase 4-P38/c-Jun NH2-Terminal Kinase-P53 Pathway. J. Biol. Chem. 2012, 287, 27371–27379. [Google Scholar] [CrossRef]
- Noh, O.J.; Park, Y.H.; Chung, Y.W.; Kim, I.Y. Transcriptional Regulation of Selenoprotein W by MyoD during Early Skeletal Muscle Differentiation. J. Biol. Chem. 2010, 285, 40496–40507. [Google Scholar] [CrossRef] [PubMed]
- Jeon, Y.H.; Park, Y.H.; Lee, J.H.; Hong, J.-H.; Kim, I.Y. Selenoprotein W Enhances Skeletal Muscle Differentiation by Inhibiting TAZ Binding to 14-3-3 Protein. Biochim. Biophys. Acta 2014, 1843, 1356–1364. [Google Scholar] [CrossRef]
- Yang, J.-C.; Liu, M.; Huang, R.-H.; Zhao, L.; Niu, Q.-J.; Xu, Z.-J.; Wei, J.-T.; Lei, X.G.; Sun, L.-H. Loss of SELENOW Aggravates Muscle Loss with Regulation of Protein Synthesis and the Ubiquitin-Proteasome System. Sci. Adv. 2024, 10, eadj4122. [Google Scholar] [CrossRef]
- van Dronkelaar, C.; Fultinga, M.; Hummel, M.; Kruizenga, H.; Weijs, P.J.M.; Tieland, M. Minerals and Sarcopenia in Older Adults: An Updated Systematic Review. J. Am. Med. Dir. Assoc. 2023, 24, 1163–1172. [Google Scholar] [CrossRef]
- Pozzer, D.; Varone, E.; Chernorudskiy, A.; Schiarea, S.; Missiroli, S.; Giorgi, C.; Pinton, P.; Canato, M.; Germinario, E.; Nogara, L.; et al. A Maladaptive ER Stress Response Triggers Dysfunction in Highly Active Muscles of Mice with SELENON Loss. Redox Biol. 2019, 20, 354–366. [Google Scholar] [CrossRef] [PubMed]
- Varone, E.; Pozzer, D.; Di Modica, S.; Chernorudskiy, A.; Nogara, L.; Baraldo, M.; Cinquanta, M.; Fumagalli, S.; Villar-Quiles, R.N.; De Simoni, M.-G.; et al. SELENON (SEPN1) Protects Skeletal Muscle from Saturated Fatty Acid-Induced ER Stress and Insulin Resistance. Redox Biol. 2019, 24, 101176. [Google Scholar] [CrossRef] [PubMed]
- Jurynec, M.J.; Xia, R.; Mackrill, J.J.; Gunther, D.; Crawford, T.; Flanigan, K.M.; Abramson, J.J.; Howard, M.T.; Grunwald, D.J. Selenoprotein N Is Required for Ryanodine Receptor Calcium Release Channel Activity in Human and Zebrafish Muscle. Proc. Natl. Acad. Sci. USA 2008, 105, 12485–12490. [Google Scholar] [CrossRef] [PubMed]
- Fomenko, D.E.; Gladyshev, V.N. CxxS: Fold-Independent Redox Motif Revealed by Genome-Wide Searches for Thiol/Disulfide Oxidoreductase Function. Protein Sci. 2002, 11, 2285–2296. [Google Scholar] [CrossRef]
- Deniziak, M.; Thisse, C.; Rederstorff, M.; Hindelang, C.; Thisse, B.; Lescure, A. Loss of Selenoprotein N Function Causes Disruption of Muscle Architecture in the Zebrafish Embryo. Exp. Cell Res. 2007, 313, 156–167. [Google Scholar] [CrossRef] [PubMed]
- Fodor, J.; Al-Gaadi, D.; Czirják, T.; Oláh, T.; Dienes, B.; Csernoch, L.; Szentesi, P. Improved Calcium Homeostasis and Force by Selenium Treatment and Training in Aged Mouse Skeletal Muscle. Sci. Rep. 2020, 10, 1707. [Google Scholar] [CrossRef]
- Lescure, A.; Rederstorff, M.; Krol, A.; Guicheney, P.; Allamand, V. Selenoprotein Function and Muscle Disease. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2009, 1790, 1569–1574. [Google Scholar] [CrossRef]
- Yao, H.; Fan, R.; Zhao, X.; Zhao, W.; Liu, W.; Yang, J.; Sattar, H.; Zhao, J.; Zhang, Z.; Xu, S. Selenoprotein W Redox-Regulated Ca2+ Channels Correlate with Selenium Deficiency-Induced Muscles Ca2+ Leak. Oncotarget 2016, 7, 57618–57632. [Google Scholar] [CrossRef]
- Chen, X.-W.; Li, Y.; Fu, Y.-T.; Xu, W.-X.; Yang, J.; Wen, X.; Fan, R.-F. Down-Regulation of Selenoprotein K Impairs the Proliferation and Differentiation of Chicken Skeletal Muscle Satellite Cells by Inhibiting the Nrf2 Antioxidant Signaling Pathway. Free Radic. Res. 2025, 59, 215–225. [Google Scholar] [CrossRef]
- Rederstorff, M.; Krol, A.; Lescure, A. Understanding the Importance of Selenium and Selenoproteins in Muscle Function. Cell. Mol. Life Sci. 2006, 63, 52–59. [Google Scholar] [CrossRef]
- Kim, C.Y.; Kim, K.-H. Dexamethasone-Induced Selenoprotein S Degradation Is Required for Adipogenesis. J. Lipid Res. 2013, 54, 2069–2082. [Google Scholar] [CrossRef]
- Fradejas, N.; Serrano-Pérez, M.D.C.; Tranque, P.; Calvo, S. Selenoprotein S Expression in Reactive Astrocytes Following Brain Injury. Glia 2011, 59, 959–972. [Google Scholar] [CrossRef] [PubMed]
- Du, S.; Liu, H.; Huang, K. Influence of SelS Gene Silence on Beta-Mercaptoethanol-Mediated Endoplasmic Reticulum Stress and Cell Apoptosis in HepG2 Cells. Biochim. Biophys. Acta 2010, 1800, 511–517. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Wang, B.; Yao, Y.; Su, M.; Ma, H.; Jia, N. Protective Effects of the SEPS1 Gene on Lipopolysaccharide-Induced Sepsis. Mol. Med. Rep. 2014, 9, 1869–1876. [Google Scholar] [CrossRef] [PubMed]
- Allamand, V.; Richard, P.; Lescure, A.; Ledeuil, C.; Desjardin, D.; Petit, N.; Gartioux, C.; Ferreiro, A.; Krol, A.; Pellegrini, N.; et al. A Single Homozygous Point Mutation in a 3′untranslated Region Motif of Selenoprotein N mRNA Causes SEPN1-Related Myopathy. EMBO Rep. 2006, 7, 450–454. [Google Scholar] [CrossRef]
- Wright, C.R.; Allsopp, G.L.; Addinsall, A.B.; McRae, N.L.; Andrikopoulos, S.; Stupka, N. A Reduction in Selenoprotein S Amplifies the Inflammatory Profile of Fast-Twitch Skeletal Muscle in the Mdx Dystrophic Mouse. Mediat. Inflamm. 2017, 2017, 7043429. [Google Scholar] [CrossRef]
- Powers, S.K.; Lennon, S.L. Analysis of Cellular Responses to Free Radicals: Focus on Exercise and Skeletal Muscle. Proc. Nutr. Soc. 1999, 58, 1025–1033. [Google Scholar] [CrossRef]
- Tessier, F.; Hida, H.; Favier, A.; Marconnet, P. Muscle GSH-Px Activity after Prolonged Exercise, Training, and Selenium Supplementation. Biol. Trace Elem. Res. 1995, 47, 279–285. [Google Scholar] [CrossRef]
- Czyżowska, A.; Brown, J.; Xu, H.; Sataranatarajan, K.; Kinter, M.; Tyrell, V.J.; O’Donnell, V.B.; Van Remmen, H. Elevated Phospholipid Hydroperoxide Glutathione Peroxidase (GPX4) Expression Modulates Oxylipin Formation and Inhibits Age-Related Skeletal Muscle Atrophy and Weakness. Redox Biol. 2023, 64, 102761. [Google Scholar] [CrossRef]
- Schnurr, K.; Belkner, J.; Ursini, F.; Schewe, T.; Kühn, H. The Selenoenzyme Phospholipid Hydroperoxide Glutathione Peroxidase Controls the Activity of the 15-Lipoxygenase with Complex Substrates and Preserves the Specificity of the Oxygenation Products. J. Biol. Chem. 1996, 271, 4653–4658. [Google Scholar] [CrossRef]
- Patterson, A.D.; Carlson, B.A.; Li, F.; Bonzo, J.A.; Yoo, M.-H.; Krausz, K.W.; Conrad, M.; Chen, C.; Gonzalez, F.J.; Hatfield, D.L. Disruption of Thioredoxin Reductase 1 Protects Mice from Acute Acetaminophen-Induced Hepatotoxicity through Enhanced NRF2 Activity. Chem. Res. Toxicol. 2013, 26, 1088–1096. [Google Scholar] [CrossRef] [PubMed]
- Blottner, D.; Moriggi, M.; Trautmann, G.; Furlan, S.; Block, K.; Gutsmann, M.; Torretta, E.; Barbacini, P.; Capitanio, D.; Rittweger, J.; et al. Nitrosative Stress in Astronaut Skeletal Muscle in Spaceflight. Antioxidants 2024, 13, 432. [Google Scholar] [CrossRef] [PubMed]
- Kiermayer, C.; Michalke, B.; Schmidt, J.; Brielmeier, M. Effect of Selenium on Thioredoxin Reductase Activity in Txnrd1 or Txnrd2 Hemizygous Mice. Biol. Chem. 2007, 388, 1091–1097. [Google Scholar] [CrossRef]
- Zhong, Y.; Liu, J.; Cheng, X.; Zhang, H.; Zhang, C.; Xia, Z.; Wu, Z.; Zhang, L.; Zheng, Y.; Gao, Z.; et al. Design, Synthesis and Biological Evaluations of Diverse Michael Acceptor-Based Phenazine Hybrid Molecules as TrxR1 Inhibitors. Bioorg. Chem. 2021, 109, 104736. [Google Scholar] [CrossRef]
- Fu, Y.; Wang, Y.; Bu, Q.; Guo, M. Selenium Deficiency Caused Fibrosis as an Oxidative Stress-Induced Inflammatory Injury in the Lungs of Mice. Biol. Trace Elem. Res. 2022, 201, 1286–1300. [Google Scholar] [CrossRef]
- Kaya, A.; Lee, B.C.; Gladyshev, V.N. Regulation of Protein Function by Reversible Methionine Oxidation and the Role of Selenoprotein MsrB1. Antioxid. Redox Signal. 2015, 23, 814–822. [Google Scholar] [CrossRef] [PubMed]
- Fomenko, D.E.; Novoselov, S.V.; Natarajan, S.K.; Lee, B.C.; Koc, A.; Carlson, B.A.; Lee, T.-H.; Kim, H.-Y.; Hatfield, D.L.; Gladyshev, V.N. MsrB1 (Methionine-R-Sulfoxide Reductase 1) Knock-out Mice. J. Biol. Chem. 2009, 284, 5986–5993. [Google Scholar] [CrossRef]
- Ren, B.; Liu, M.; Ni, J.; Tian, J. Role of Selenoprotein F in Protein Folding and Secretion: Potential Involvement in Human Disease. Nutrients 2018, 10, 1619. [Google Scholar] [CrossRef]
- Jia, S.-Z.; Xu, X.-W.; Zhang, Z.-H.; Chen, C.; Chen, Y.-B.; Huang, S.-L.; Liu, Q.; Hoffmann, P.R.; Song, G.-L. Selenoprotein K Deficiency-Induced Apoptosis: A Role for Calpain and the ERS Pathway. Redox Biol. 2021, 47, 102154. [Google Scholar] [CrossRef]
- Du, S.; Zhou, J.; Jia, Y.; Huang, K. SelK Is a Novel ER Stress-Regulated Protein and Protects HepG2 Cells from ER Stress Agent-Induced Apoptosis. Arch. Biochem. Biophys. 2010, 502, 137–143. [Google Scholar] [CrossRef]
- Gong, T.; Hashimoto, A.C.; Sasuclark, A.R.; Khadka, V.S.; Gurary, A.; Pitts, M.W. Selenoprotein M Promotes Hypothalamic Leptin Signaling and Thioredoxin Antioxidant Activity. Antioxid. Redox Signal. 2021, 35, 775–787. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Bao, D.; Lei, C.-T.; Tang, H.; Zhang, C.-Y.; Su, H.; Zhang, C. Selenoprotein T Protects against Cisplatin-Induced Acute Kidney Injury through Suppression of Oxidative Stress and Apoptosis. FASEB J. 2020, 34, 11983–11996. [Google Scholar] [CrossRef] [PubMed]
- Abid, H.; Cartier, D.; Hamieh, A.; François-Bellan, A.-M.; Bucharles, C.; Pothion, H.; Manecka, D.-L.; Leprince, J.; Adriouch, S.; Boyer, O.; et al. AMPK Activation of PGC-1α/NRF-1-Dependent SELENOT Gene Transcription Promotes PACAP-Induced Neuroendocrine Cell Differentiation Through Tolerance to Oxidative Stress. Mol. Neurobiol. 2019, 56, 4086–4101. [Google Scholar] [CrossRef] [PubMed]
- Rocca, C.; De Bartolo, A.; Granieri, M.C.; Rago, V.; Amelio, D.; Falbo, F.; Malivindi, R.; Mazza, R.; Cerra, M.C.; Boukhzar, L.; et al. The Antioxidant Selenoprotein T Mimetic, PSELT, Induces Preconditioning-like Myocardial Protection by Relieving Endoplasmic-Reticulum Stress. Antioxidants 2022, 11, 571. [Google Scholar] [CrossRef]
- Grumolato, L.; Ghzili, H.; Montero-Hadjadje, M.; Gasman, S.; Lesage, J.; Tanguy, Y.; Galas, L.; Ait-Ali, D.; Leprince, J.; Guérineau, N.C.; et al. Selenoprotein T Is a PACAP-Regulated Gene Involved in Intracellular Ca2+ Mobilization and Neuroendocrine Secretion. FASEB J. 2008, 22, 1756–1768. [Google Scholar] [CrossRef]
- Guo, Q.; Li, Z.-F.; Hu, D.-Y.; Li, P.-J.; Wu, K.-N.; Fan, H.-H.; Deng, J.; Wu, H.-M.; Zhang, X.; Zhu, J.-H. The Selenocysteine-Containing Protein SELENOT Maintains Dopamine Signaling in the Midbrain to Protect Mice from Hyperactivity Disorder. EMBO J. 2025, 44, 2906–2927. [Google Scholar] [CrossRef]
- Wesolowski, L.T.; Semanchik, P.L.; White-Springer, S.H. Beyond Antioxidants: Selenium and Skeletal Muscle Mitochondria. Front. Vet. Sci. 2022, 9, 1011159. [Google Scholar] [CrossRef]
- Bouman, K.; Groothuis, J.T.; Doorduin, J.; van Alfen, N.; Udink Ten Cate, F.E.A.; van den Heuvel, F.M.A.; Nijveldt, R.; Kamsteeg, E.-J.; Dittrich, A.T.M.; Draaisma, J.M.T.; et al. SELENON-Related Myopathy Across the Life Span, a Cross-Sectional Study for Preparing Trial Readiness. J. Neuromuscul. Dis. 2023, 10, 1055–1074. [Google Scholar] [CrossRef]
- Castets, P.; Lescure, A.; Guicheney, P.; Allamand, V. Selenoprotein N in Skeletal Muscle: From Diseases to Function. J. Mol. Med. 2012, 90, 1095–1107. [Google Scholar] [CrossRef]
- Chernorudskiy, A.; Varone, E.; Colombo, S.F.; Fumagalli, S.; Cagnotto, A.; Cattaneo, A.; Briens, M.; Baltzinger, M.; Kuhn, L.; Bachi, A.; et al. Selenoprotein N Is an Endoplasmic Reticulum Calcium Sensor That Links Luminal Calcium Levels to a Redox Activity. Proc. Natl. Acad. Sci. USA 2020, 117, 21288–21298. [Google Scholar] [CrossRef]
- Misu, H.; Takayama, H.; Saito, Y.; Mita, Y.; Kikuchi, A.; Ishii, K.; Chikamoto, K.; Kanamori, T.; Tajima, N.; Lan, F.; et al. Deficiency of the Hepatokine Selenoprotein P Increases Responsiveness to Exercise in Mice through Upregulation of Reactive Oxygen Species and AMP-Activated Protein Kinase in Muscle. Nat. Med. 2017, 23, 508–516. [Google Scholar] [CrossRef] [PubMed]
- Saito, Y. Selenium Transport Mechanism via Selenoprotein P-Its Physiological Role and Related Diseases. Front. Nutr. 2021, 8, 685517. [Google Scholar] [CrossRef]
- Lee, J.H.; Kwon, J.H.; Jeon, Y.H.; Ko, K.Y.; Lee, S.-R.; Kim, I.Y. Pro178 and Pro183 of Selenoprotein S Are Essential Residues for Interaction with P97(VCP) during Endoplasmic Reticulum-Associated Degradation. J. Biol. Chem. 2014, 289, 13758–13768. [Google Scholar] [CrossRef]
- Sun, S.; Shi, G.; Han, X.; Francisco, A.B.; Ji, Y.; Mendonça, N.; Liu, X.; Locasale, J.W.; Simpson, K.W.; Duhamel, G.E.; et al. Sel1L Is Indispensable for Mammalian Endoplasmic Reticulum-Associated Degradation, Endoplasmic Reticulum Homeostasis, and Survival. Proc. Natl. Acad. Sci. USA 2014, 111, E582–E591. [Google Scholar] [CrossRef]
- Shi, Z.; Han, Z.; Chen, J.; Zhou, J.-C. Endoplasmic Reticulum-Resident Selenoproteins and Their Roles in Glucose and Lipid Metabolic Disorders. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2024, 1870, 167246. [Google Scholar] [CrossRef]
- Wang, S.; Tian, B.; Hu, Y.; Li, T.; Cui, X.; Zhang, L.; Luo, X. Research Progress on the Biological Regulatory Mechanisms of Selenium on Skeletal Muscle in Broilers. Poult. Sci. 2024, 103, 103646. [Google Scholar] [CrossRef]
- Handy, D.E.; Loscalzo, J. The Role of Glutathione Peroxidase-1 in Health and Disease. Free Radic. Biol. Med. 2022, 188, 146–161. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Kang, R.; Klionsky, D.J.; Tang, D. GPX4 in Cell Death, Autophagy, and Disease. Autophagy 2023, 19, 2621–2638. [Google Scholar] [CrossRef] [PubMed]
- Barage, S.H.; Deobagkar, D.D.; Baladhye, V.B. Characterization of Structural and Functional Role of Selenocysteine in Selenoprotein H and Its Impact on DNA Binding. Amino Acids 2018, 50, 593–607. [Google Scholar] [CrossRef]
- Salvatore, D.; Simonides, W.S.; Dentice, M.; Zavacki, A.M.; Larsen, P.R. Thyroid Hormones and Skeletal Muscle--New Insights and Potential Implications. Nat. Rev. Endocrinol. 2014, 10, 206–214. [Google Scholar] [CrossRef]
- Carmody, C.; Ogawa-Wong, A.N.; Martin, C.; Luongo, C.; Zuidwijk, M.; Sager, B.; Petersen, T.; Roginski Guetter, A.; Janssen, R.; Wu, E.Y.; et al. A Global Loss of Dio2 Leads to Unexpected Changes in Function and Fiber Types of Slow Skeletal Muscle in Male Mice. Endocrinology 2019, 160, 1205–1222. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Chen, C.; Ouyang, P.; Cai, Z.; Liu, X.; Abdurahman, A.; Peng, J.; Li, Y.; Zhang, Z.; Song, G.-L. SELENOM Knockout Induces Synaptic Deficits and Cognitive Dysfunction by Influencing Brain Glucose Metabolism. J. Agric. Food Chem. 2023, 71, 1607–1619. [Google Scholar] [CrossRef] [PubMed]
- Dayal, A.; Schrötter, K.; Pan, Y.; Föhr, K.; Melzer, W.; Grabner, M. The Ca2+ Influx through the Mammalian Skeletal Muscle Dihydropyridine Receptor Is Irrelevant for Muscle Performance. Nat. Commun. 2017, 8, 475. [Google Scholar] [CrossRef] [PubMed]
- Oliver, S.R.; Anderson, K.J.; Hunstiger, M.M.; Andrews, M.T. Turning down the Heat: Down-Regulation of Sarcolipin in a Hibernating Mammal. Neurosci. Lett. 2019, 696, 13–19. [Google Scholar] [CrossRef]
- Kumar, A.; Davuluri, G.; Welch, N.; Kim, A.; Gangadhariah, M.; Allawy, A.; Priyadarshini, A.; McMullen, M.R.; Sandlers, Y.; Willard, B.; et al. Oxidative Stress Mediates Ethanol-Induced Skeletal Muscle Mitochondrial Dysfunction and Dysregulated Protein Synthesis and Autophagy. Free. Radic. Biol. Med. 2019, 145, 284–299. [Google Scholar] [CrossRef]
- Shenoy, P.S.; Sen, U.; Kapoor, S.; Ranade, A.V.; Chowdhury, C.R.; Bose, B. Sodium Fluoride Induced Skeletal Muscle Changes: Degradation of Proteins and Signaling Mechanism. Environ. Pollut. 2019, 244, 534–548. [Google Scholar] [CrossRef]
- Savory, L.A.; Kerr, C.J.; Whiting, P.; Finer, N.; McEneny, J.; Ashton, T. Selenium Supplementation and Exercise: Effect on Oxidant Stress in Overweight Adults. Obesity 2012, 20, 794–801. [Google Scholar] [CrossRef]
- Carafoli, E.; Gamble, R.L.; Lehninger, A.L. K+-Dependent Rebounds and Oscillations in Respiration-Linked Movements of Ca++ and H+ in Rat Liver Mitochondria. Biochem. Biophys. Res. Commun. 1965, 21, 488–493. [Google Scholar] [CrossRef]
- Sogl, B.; Gellissen, G.; Wiesner, R.J. Biogenesis of Giant Mitochondria during Insect Flight Muscle Development in the Locust, Locusta migratoria (L.). Eur. J. Biochem. 2000, 267, 11–17. [Google Scholar] [CrossRef]
- Wang, J.; Chen, M.; You, Y.; Guo, J.; Cai, F.; Pi, F.; Ma, L.; Chen, T. Selenium Electrophilic Center Shuttles Active Electrons to Boost Mitochondrial Electron Leakage. Cell Biomater. 2025, 1, 100010. [Google Scholar] [CrossRef]
- Wang, L.; Yin, J.-J.; Zhang, F.; Yu, H.-D.; Chen, F.-F.; Zhang, Z.-Y.; Zhang, X.-Z. Selenium Status Affects Hypertrophic Growth of Skeletal Muscle in Growing Zebrafish by Mediating Protein Turnover. J. Nutr. 2021, 151, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Bilodeau, P.A.; Coyne, E.S.; Wing, S.S. The Ubiquitin Proteasome System in Atrophying Skeletal Muscle: Roles and Regulation. Am. J. Physiol. Cell Physiol. 2016, 311, C392–C403. [Google Scholar] [CrossRef] [PubMed]
- Milan, G.; Romanello, V.; Pescatore, F.; Armani, A.; Paik, J.-H.; Frasson, L.; Seydel, A.; Zhao, J.; Abraham, R.; Goldberg, A.L.; et al. Regulation of Autophagy and the Ubiquitin-Proteasome System by the FoxO Transcriptional Network during Muscle Atrophy. Nat. Commun. 2015, 6, 6670. [Google Scholar] [CrossRef]
- Lu, J.; McKinsey, T.A.; Zhang, C.-L.; Olson, E.N. Regulation of Skeletal Myogenesis by Association of the MEF2 Transcription Factor with Class II Histone Deacetylases. Mol. Cell 2000, 6, 233–244. [Google Scholar] [CrossRef]
- Taylor, M.V.; Hughes, S.M. Mef2 and the Skeletal Muscle Differentiation Program. Semin. Cell Dev. Biol. 2017, 72, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Bennett, A.M.; Tonks, N.K. Regulation of Distinct Stages of Skeletal Muscle Differentiation by Mitogen-Activated Protein Kinases. Science 1997, 278, 1288–1291. [Google Scholar] [CrossRef]
- Zetser, A.; Frank, D.; Bengal, E. MAP Kinase Converts MyoD into an Instructive Muscle Differentiation Factor in Xenopus. Dev. Biol. 2001, 240, 168–181. [Google Scholar] [CrossRef]
- Agell, N.; Bachs, O.; Rocamora, N.; Villalonga, P. Modulation of the Ras/Raf/MEK/ERK Pathway by Ca2+, and Calmodulin. Cell. Signal. 2002, 14, 649–654. [Google Scholar] [CrossRef]
- Zhou, J.; Dhakal, K.; Yi, J. Mitochondrial Ca2+ Uptake in Skeletal Muscle Health and Disease. Sci. China Life Sci. 2016, 59, 770–776. [Google Scholar] [CrossRef]
- Rezaee, N.; Rahmani-Nia, F.; Delfan, M.; Ghahremani, R. Exercise Training and Probiotic Supplementation Effects on Skeletal Muscle Apoptosis Prevention in Type-Ι Diabetic Rats. Life Sci. 2021, 285, 119973. [Google Scholar] [CrossRef]
- Nihashi, Y.; Umezawa, K.; Shinji, S.; Hamaguchi, Y.; Kobayashi, H.; Kono, T.; Ono, T.; Kagami, H.; Takaya, T. Distinct Cell Proliferation, Myogenic Differentiation, and Gene Expression in Skeletal Muscle Myoblasts of Layer and Broiler Chickens. Sci. Rep. 2019, 9, 16527. [Google Scholar] [CrossRef]
- Bao, B.; Kang, Z.; Zhang, Y.; Li, K.; Xu, R.; Guo, M. Selenium Deficiency Leads to Reduced Skeletal Muscle Cell Differentiation by Oxidative Stress in Mice. Biol. Trace Elem. Res. 2023, 201, 1878–1887. [Google Scholar] [CrossRef] [PubMed]
- Chariot, P.; Bignani, O. Skeletal Muscle Disorders Associated with Selenium Deficiency in Humans. Muscle Nerve 2003, 27, 662–668. [Google Scholar] [CrossRef] [PubMed]
- Wangdi, J.T.; O’Leary, M.F.; Kelly, V.G.; Jackman, S.R.; Tang, J.C.Y.; Dutton, J.; Bowtell, J.L. Tart Cherry Supplement Enhances Skeletal Muscle Glutathione Peroxidase Expression and Functional Recovery after Muscle Damage. Med. Sci. Sports Exerc. 2022, 54, 609–621. [Google Scholar] [CrossRef]
- McClean, C.; Davison, G.W. Circadian Clocks, Redox Homeostasis, and Exercise: Time to Connect the Dots? Antioxidants 2022, 11, 256. [Google Scholar] [CrossRef]
- Clemente-Suárez, V.J.; Bustamante-Sanchez, Á.; Mielgo-Ayuso, J.; Martínez-Guardado, I.; Martín-Rodríguez, A.; Tornero-Aguilera, J.F. Antioxidants and Sports Performance. Nutrients 2023, 15, 2371. [Google Scholar] [CrossRef] [PubMed]
- Margaritis, I.; Tessier, F.; Prou, E.; Marconnet, P.; Marini, J.-F. Effects of Endurance Training on Skeletal Muscle Oxidative Capacities with and without Selenium Supplementation. J. Trace Elem. Med. Biol. 1997, 11, 37–43. [Google Scholar] [CrossRef]
- Neek, L.S.; Gaeini, A.A.; Choobineh, S. Effect of Zinc and Selenium Supplementation on Serum Testosterone and Plasma Lactate in Cyclist After an Exhaustive Exercise Bout. Biol. Trace Elem. Res. 2011, 144, 454–462. [Google Scholar] [CrossRef]
- Martínez, P.; Martínez, S.; Mingorance, J.A.; Riera-Sampol, A.; Aguiló, A.; Tauler, P. Gastrointestinal Symptoms and Nutritional Intake among Participants in a Non-Professional Cycling Event. Eur. J. Appl. Physiol. 2024, 125, 37–48. [Google Scholar] [CrossRef]
- Yang, Y.-K. The Effect of Dietary Vitamin E and Selenium on Endurance Exercise Performance and Cell Membrane Damage Index. Korean J. Sports Med. 2008, 17, 1551–1560. [Google Scholar]
- Yang, Y.-K. The Influence of Simultaneous Administration of Selenium and Vitamin E on Antioxidant Enzyme Activity and Lipid Peroxidation. Phys. Act. Nutr. 2008, 12, 157–162. [Google Scholar]
- Yang, Y.-K.; Lee, G.-C.; Wook, C.S. The Effect of Selenium Administration for 3 Weeks on Cardiorespiratory function and Antioxidant Enzyme Activity. Korean J. Sports Med. 2008, 17, 789–798. [Google Scholar]
- Jeong, S.-W.; Choi, C.; ChoiSungKeun; Seok, S.; Yang, Y.-K. The Effect of Vitamin E and Selenium Administration on Antioxidant Enzyme Activity and Blood Fatigue Factor. Korean J. Sports Med. 2010, 19, 1127–1138. [Google Scholar]
- Amirdizaj, V.D.; Mocheshi, S.S. Muscle Injury and Oxidative Stress Following the Use of Selenium Supplements and Exhaustive Aerobic Exercise in Young Physically-Active Females. J. Kermanshah Univ. Med. Sci. 2016, 20, e69743. [Google Scholar]
- Rayman, M.P. Selenium and Human Health. Lancet 2012, 379, 1256–1268. [Google Scholar] [CrossRef]
- Tang, J.; Cao, L.; Jia, G.; Liu, G.; Chen, X.; Tian, G.; Cai, J.; Shang, H.; Zhao, H. The Protective Effect of Selenium from Heat Stress-Induced Porcine Small Intestinal Epithelial Cell Line (IPEC-J2) Injury Is Associated with Regulation Expression of Selenoproteins. Br. J. Nutr. 2019, 122, 1081–1090. [Google Scholar] [CrossRef]
- EFSA Panel on Nutrition, N.F. and F.A. (NDA); Turck, D.; Bohn, T.; Castenmiller, J.; de Henauw, S.; Hirsch-Ernst, K.-I.; Knutsen, H.K.; Maciuk, A.; Mangelsdorf, I.; McArdle, H.J.; et al. Scientific Opinion on the Tolerable Upper Intake Level for Selenium. EFSA J. 2023, 21, e07704. [Google Scholar] [CrossRef]
- Fernández-Lázaro, D.; Fernandez-Lazaro, C.I.; Mielgo-Ayuso, J.; Navascués, L.J.; Córdova Martínez, A.; Seco-Calvo, J. The Role of Selenium Mineral Trace Element in Exercise: Antioxidant Defense System, Muscle Performance, Hormone Response, and Athletic Performance. A Systematic Review. Nutrients 2020, 12, 1790. [Google Scholar] [CrossRef]
- Wen, Y.; Zhang, L.; Li, S.; Wang, T.; Jiang, K.; Zhao, L.; Zhu, Y.; Zhao, W.; Lei, X.; Sharma, M.; et al. Effect of Dietary Selenium Intake on CVD: A Retrospective Cohort Study Based on China Health and Nutrition Survey (CHNS) Data. Public Health Nutr. 2024, 27, e122. [Google Scholar] [CrossRef]
- Effect of Selenium Enriched Eggs on Reducing Oxidative Stress in Sports Women.-All Databases. Available online: https://informaticsjournals.co.in/index.php/ijnd/article/view/4777 (accessed on 23 May 2025).
- Akil, M.; Gurbuz, U.; Bicer, M.; Sivrikaya, A.; Mogulkoc, R.; Baltaci, A.K. Effect of Selenium Supplementation on Lipid Peroxidation, Antioxidant Enzymes, and Lactate Levels in Rats Immediately After Acute Swimming Exercise. Biol. Trace Elem. Res. 2011, 142, 651–659. [Google Scholar] [CrossRef]
- Selenium Supplementation Prevents Lipid Peroxidation Caused by Arduous Exercise in Rat Brain Tissue—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/21692404/ (accessed on 23 May 2025).
- Romero-Herrera, I.; Nogales, F.; Gallego-López, M.D.C.; Díaz-Castro, J.; Carreras, O.; Ojeda, M.L. Selenium Supplementation via Modulation of Selenoproteins Ameliorates Binge Drinking-Induced Oxidative, Energetic, Metabolic, and Endocrine Imbalance in Adolescent Rats’ Skeletal Muscle. Food Funct. 2024, 15, 7988–8007. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zhang, J.; Li, H.; Liu, W.; Xi, Y.; Liu, X. A Comprehensive Comparison of Different Selenium Supplements: Mitigation of Heat Stress and Exercise Fatigue-Induced Liver Injury. Front. Nutr. 2022, 9, 917349. [Google Scholar] [CrossRef] [PubMed]
- Prigol, M.; Luchese, C.; Nogueira, C.W. Antioxidant Effect of Diphenyl Diselenide on Oxidative Stress Caused by Acute Physical Exercise in Skeletal Muscle and Lungs of Mice. Cell Biochem. Funct. 2009, 27, 216–222. [Google Scholar] [CrossRef]
- Kojouri, G.A.; Sharifi, S. Preventing Effects of Nano-Selenium Particles on Serum Concentration of Blood Urea Nitrogen, Creatinine, and Total Protein During Intense Exercise in Donkey. J. Equine Vet. Sci. 2013, 33, 597–600. [Google Scholar] [CrossRef]
- He, G.; Liu, L.; Ahmed, A. Nanoselenium on Aerobic Endurance Exercise Adaptation. J. Nanomater. 2022, 2022, 2533440. [Google Scholar] [CrossRef]
- Hackler, J.; Demircan, K.; Chillon, T.S.; Sun, Q.; Geisler, N.; Schupp, M.; Renko, K.; Schomburg, L. High Throughput Drug Screening Identifies Resveratrol as Suppressor of Hepatic SELENOP Expression. Redox Biol. 2023, 59, 102592. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, B.; Tang, Y.; Shen, A.; Lin, Y.; Zhao, X.; Li, J.; Monteiro, M.J.; Gu, W. Bone Targeted Nano-Drug and Nano-Delivery. Bone Res. 2024, 12, 51. [Google Scholar] [CrossRef]
- Hill, K.E.; Motley, A.K.; Li, X.; May, J.M.; Burk, R.F. Combined Selenium and Vitamin E Deficiency Causes Fatal Myopathy in Guinea Pigs. J. Nutr. 2001, 131, 1798–1802. [Google Scholar] [CrossRef]
- Hidiroglou, M.; Carson, R.B.; Brossard, G.A. Problems Associated with Selenium Deficiency in Beef Calves. Can. J. Physiol. Pharmacol. 1968, 46, 853–858. [Google Scholar] [CrossRef]
- Dennis, N.; Vazquez-Prada, M.; Xue, F.; Freeman, L.M.; Karamalegos, A.; Kudzminkaite, B.; Brown, I.; Ezcurra, M. A Gut-Microbiota-Muscle Axis That Protects against Age-Related Motor Decline by Regulating Mitochondrial Fission in C. elegans. bioRxiv 2024. [Google Scholar] [CrossRef]
Selenoprotein | Main Function | Regulatory Pathways/Molecular Mechanisms | Pathological Association | Subcellular Localization | References |
---|---|---|---|---|---|
SELENOW | Regulates calcium homeostasis, inhibits ubiquitin-proteasome degradation, and promotes muscle tube fusion Protects proliferating myoblasts from the influence of oxidative stress | RAC1-mTOR | Selenium deficiency myopathy and muscular dystrophy | Cytoplasmic | [19,27] |
SELENOT | Maintains the redox balance of ER, inhibits apoptosis and autophagy | CHOP/ATF/SERCA2/NRF1/PGC-1α PACAP | Muscle aplasia, sports injuries | ER | [53,54,55,56,57] |
SELENON | ER redox and calcium homeostasis | RyR1/SERCA | Congenital myopathy (multiple microaxonopathy) | ER | [21,26,27,58,59,60] |
SELENOK | Participates in repair after skeletal muscle injury | Promote satellite cells-mediated myogenic differentiation; Prevents intracellular antioxidant dysfunction, apoptosis and autophagy by regulating the level of ER stress | Inhibition of skeletal muscle regeneration after injury | ER, plasma membrane | [10] |
SELENOP | Selenium transporters maintain systemic selenium homeostasis and enhance antioxidant defense | ApoER2/LRP1 receptor-mediated selenium uptake | Selenium deficiency leads to muscle atrophy and age-related muscle loss | Secreted, cytoplasmic | [12,61,62] |
SELENOS | Regulates endoplasmic reticulum-associated degradation (ERAD) to improve insulin sensitivity | SEL1L-HRD1 compound | Skeletal muscle injury and growth retardation due to ER stress | ER | [12,63,64,65] |
GPx1 | Removes cytoplasmic hydrogen peroxide (H2O2) to protect cell membrane integrity | Nrf2/HO-1; Inhibit oxidative stress and apoptosis; Correct insulin resistance; Regulate fatty acid metabolism; | Oxidative injury after exercise, chronic inflammation | Cytoplasmic | [27,66,67] |
GPx4 | Specifically inhibits lipid peroxidation and prevents iron death | Lipid peroxidation/ACSL4 | Iron death muscle fiber necrosis | Cytoplasmic | [39,68] |
SELENOH | Promotes DNA repair and maintains genomic stability | Unknown (possibly related to oxidative damage repair) | DNA damage and muscle fiber degeneration caused by selenium deficiency | Nuclear | [69] |
DIO2 | Catalyzes the conversion of T4 to T3, regulates thyroid hormone metabolism and energy balance | Thyroid hormone signaling pathway | Metabolic disorders after exercise, muscle fatigue | Membrane-associated | [70,71] |
TXNRD1 | Reduction-oxidized thioredoxin, repairs oxidation-damaged protein | Trx/ASK1 | Chronic oxidative stress, muscle fibrosis | Cytoplasmic, nuclear | [41,42,43,44,45] |
SELENOM | Maintenance of ER homeostasis; regulates glucose metabolism and insulin signal, affects muscle cell energy homeostasis | PI3K-Akt/mTOR | Skeletal muscle injury and growth retardation due to ER stress. | ER | [12,51,72] |
Forms of Se | Dose | Intervention Duration | Sample Size | Outcome | References |
---|---|---|---|---|---|
selenomethionine | 180 μg/d | 10 weeks | 24 | No effect on the adaptation induced by endurance training | [97] |
selenomethionine | 240 μg/d | 10 weeks | 24 | Increased the muscle GPx of subjects during acute exercise | [38] |
sodium selenite | 200 μg/d (Zinc 30 mg/d) | 4 weeks | 32 | Simultaneous and individual supplementation of selenium and zinc had no significant effect on the resting testosterone and lactic acid levels | [98] |
sodium selenite | 200 μg/d | 3 weeks | 20 | Reduced blood levels of lipid hydroperoxide postexercise in overweight adults | [77] |
sodium selenite | 17.5 μg/d (Vitamin E 400 IU) | 3 weeks | 8 | Significantly improved endurance exercise performance (VO2max, AT, and endurance performance time), but decreased lactate dehydrogenase (LDH) | [100] |
sodium selenite | 17.5 μg/d (Vitamin E 400 IU) | 3 weeks | 9 | SOD and GPx were significantly increased and MDA was decreased | [101] |
sodium selenite | 17.5 μg/d (Vitamin E 400 IU) | 3 weeks | 10 | SOD and GPx were significantly increased, MDA was decreased. Cardiopulmonary endurance (VO2max, AT) was significantly increased | [102] |
sodium selenite | 17.5 μg/d (Vitamin E 400 IU) | 3 weeks | 10 | SOD and GPX were significantly increased, but MDA was decreased. Vitamin E and selenium significantly reduced blood fatigue factors (NH3, LDH and phosphorus) | [103] |
selenium tablets(Not mentioned) | 200 μg/d | 2 weeks | 20 | Reduced oxidative stress caused by physical exercise | [104] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Q.; Huang, J.; Zhu, K.; Zuo, W. Selenium and Skeletal Muscle Health in Sports Nutrition. Nutrients 2025, 17, 1902. https://doi.org/10.3390/nu17111902
Wang Q, Huang J, Zhu K, Zuo W. Selenium and Skeletal Muscle Health in Sports Nutrition. Nutrients. 2025; 17(11):1902. https://doi.org/10.3390/nu17111902
Chicago/Turabian StyleWang, Qi, Jiaqiang Huang, Kongdi Zhu, and Wei Zuo. 2025. "Selenium and Skeletal Muscle Health in Sports Nutrition" Nutrients 17, no. 11: 1902. https://doi.org/10.3390/nu17111902
APA StyleWang, Q., Huang, J., Zhu, K., & Zuo, W. (2025). Selenium and Skeletal Muscle Health in Sports Nutrition. Nutrients, 17(11), 1902. https://doi.org/10.3390/nu17111902