Mediterranean Diet Patterns Are Positively Associated with Maximal Fat Oxidation and VO2max in Young Adults: The Mediating Role of Leptin
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Procedure
2.3.1. Evaluation of Adherence to the Mediterranean Diet (MedDiet)
2.3.2. Biochemical Analysis
2.3.3. Body Composition and Anthropometry
2.3.4. Basal Metabolism
2.3.5. Maximal Fat Oxidation (MFO) and Maximal Oxygen Consumption Test (VO2max)
2.4. Statistical Analysis
3. Results
3.1. Associations of Mediterranean Diet Adherence with Body Mass Index, Maximal Fat Oxidation, VO2max, and Leptin Concentration
3.2. Associations of Leptin Levels with Body Mass Index, Maximal Fat Oxidation, and VO2max
3.3. Mediation Analyses: Leptin Concentration and Mediterranean Dietary Pattern with Absolute MFO, MFO Body Mass, and VO2max
4. Discussion
4.1. Main Research Findings
4.2. Associations Between Adherence to the Mediterranean Diet and the Study Variables
4.3. Mediation Analysis: The Role of Leptin
4.4. Physiological and Practical Implications
4.5. Study Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kelley, D.E.; Goodpaster, B.; Wing, R.R.; Simoneau, J.-A. Skeletal muscle fatty acid metabolism in association with insulin resistance, obesity, and weight loss. Am. J. Physiol.-Endocrinol. Metab. 1999, 277, E1130–E1141. [Google Scholar] [CrossRef] [PubMed]
- Colberg, S.R.; Simoneau, J.A.; Thaete, F.L.; Kelley, D.E. Skeletal muscle utilization of free fatty acids in women with visceral obesity. J. Clin. Invest. 1995, 95, 1846–1853. [Google Scholar] [CrossRef] [PubMed]
- Ullah, H.; Rauf, A.; Daglia, M. (Eds.) Nutraceuticals; De Gruyter: Boston, MA, USA, 2024; Frontmatter; pp. I–IV. Available online: https://www.degruyter.com/document/doi/10.1515/9783111317601-fm/html (accessed on 4 April 2025)ISBN 978-3-11-131730-4.
- Galgani, J.E.; Moro, C.; Ravussin, E. Metabolic flexibility and insulin resistance. Am. J. Physiol.-Endocrinol. Metab. 2008, 295, E1009–E1017. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Sparks, L.M. Metabolic Flexibility in Health and Disease. Cell Metab. 2017, 25, 1027–1036. [Google Scholar] [CrossRef]
- Maunder, E.; Plews, D.J.; Kilding, A.E. Contextualising Maximal Fat Oxidation During Exercise: Determinants and Normative Values. Front. Physiol. 2018, 9, 599. [Google Scholar] [CrossRef] [PubMed]
- Smith, R.L.; Soeters, M.R.; Wüst, R.C.I.; Houtkooper, R.H. Metabolic Flexibility as an Adaptation to Energy Resources and Requirements in Health and Disease. Endocr. Rev. 2018, 39, 489–517. [Google Scholar] [CrossRef]
- Guasch-Ferré, M.; Willett, W.C. The Mediterranean diet and health: A comprehensive overview. J. Intern. Med. 2021, 290, 549–566. [Google Scholar] [CrossRef]
- Sureda, A.; Bibiloni, M.; Julibert, A.; Bouzas, C.; Argelich, E.; Llompart, I.; Pons, A.; Tur, J. Adherence to the Mediterranean Diet and Inflammatory Markers. Nutrients 2018, 10, 62. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health: A Critical Review. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Román-Viñas, B.; Sanchez-Villegas, A.; Guasch-Ferré, M.; Corella, D.; La Vecchia, C. Benefits of the Mediterranean diet: Epidemiological and molecular aspects. Mol. Asp. Med. 2019, 67, 1–55. [Google Scholar] [CrossRef]
- Santi-Cano, M.J.; Novalbos-Ruiz, J.P.; Bernal-Jiménez, M.Á.; Bibiloni, M.D.M.; Tur, J.A.; Rodriguez Martin, A. Association of Adherence to Specific Mediterranean Diet Components and Cardiorespiratory Fitness in Young Adults. Nutrients 2020, 12, 776. [Google Scholar] [CrossRef]
- Limongelli, G.; Monda, E.; D’Aponte, A.; Caiazza, M.; Rubino, M.; Esposito, A.; Palmiero, G.; Moscarella, E.; Messina, G.; Calabro’, P.; et al. Combined Effect of Mediterranean Diet and Aerobic Exercise on Weight Loss and Clinical Status in Obese Symptomatic Patients with Hypertrophic Cardiomyopathy. Heart Fail. Clin. 2021, 17, 303–313. [Google Scholar] [CrossRef]
- Soldati, L.; Pivari, F.; Parodi, C.; Brasacchio, C.; Dogliotti, E.; De Simone, P.; Rossi, M.; Vezzoli, G.; Paoli, A. The benefits of nutritional counselling for improving sport performance. J. Sports Med. Phys. Fit. 2019, 59, 1878–1884. [Google Scholar] [CrossRef]
- Steinberg, G.R.; Parolin, M.L.; Heigenhauser, G.J.F.; Dyck, D.J. Leptin increases FA oxidation in lean but not obese human skeletal muscle: Evidence of peripheral leptin resistance. Am. J. Physiol.-Endocrinol. Metab. 2002, 283, E187–E192. [Google Scholar] [CrossRef]
- Bjornstad, P.; Cree-Green, M.; Baumgartner, A.; Coe, G.; Reyes, Y.G.; Schafer, M.; Pyle, L.; Regensteiner, J.G.; Reusch, J.E.B.; Nadeau, K.J. Leptin is associated with cardiopulmonary fitness independent of body-mass index and insulin sensitivity in adolescents with type 1 diabetes: A brief report from the EMERALD study. J. Diabetes Its Complicat. 2017, 31, 850–853. [Google Scholar] [CrossRef]
- Sáinz, N.; Barrenetxe, J.; Moreno-Aliaga, M.J.; Martínez, J.A. Leptin resistance and diet-induced obesity: Central and peripheral actions of leptin. Metabolism 2015, 64, 35–46. [Google Scholar] [CrossRef]
- Montes-de-Oca-García, A.; Perez-Bey, A.; Corral-Pérez, J.; Marín-Galindo, A.; Calderon-Dominguez, M.; Velázquez-Díaz, D.; Casals, C.; Ponce-Gonzalez, J.G. Influence of Gender on Plasma Leptin Levels, Fat Oxidation, and Insulin Sensitivity in Young Adults: The Mediating Role of Fitness and Fatness. Nutrients 2023, 15, 2628. [Google Scholar] [CrossRef]
- Montes-de-Oca-García, A.; Perez-Bey, A.; Corral-Pérez, J.; Velázquez-Díaz, D.; Opazo-Díaz, E.; Fernandez-Santos, J.R.; Rebollo-Ramos, M.; Amaro-Gahete, F.J.; Cuenca-García, M.; Ponce-González, J. Maximal fat oxidation capacity is associated with cardiometabolic risk factors in healthy young adults. Eur. J. Sport Sci. 2021, 21, 907–917. [Google Scholar] [CrossRef]
- Montes-de-Oca-García, A.; Perez-Bey, A.; Velázquez-Díaz, D.; Corral-Pérez, J.; Opazo-Díaz, E.; Rebollo-Ramos, M.; Gómez-Gallego, F.; Cuenca-García, M.; Casals, C.; Ponce-González, J.G. Influence of ACE Gene I/D Polymorphism on Cardiometabolic Risk, Maximal Fat Oxidation, Cardiorespiratory Fitness, Diet and Physical Activity in Young Adults. Int. J. Environ. Res. Public Health 2021, 18, 3443. [Google Scholar] [CrossRef] [PubMed]
- Rebollo-Ramos, M.; Velázquez-Díaz, D.; Corral-Pérez, J.; Barany-Ruiz, A.; Pérez-Bey, A.; Fernández-Ponce, C.; García-Cózar, F.J.; Ponce-González, J.G.; Cuenca-García, M. Capacidad aeróbica, dieta mediterránea y riesgo cardiometabólico en adultos. Endocrinol. Diabetes Nutr. 2020, 67, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Montes-de-Oca-García, A.; Corral-Pérez, J.; Velázquez-Díaz, D.; Perez-Bey, A.; Rebollo-Ramos, M.; Marín-Galindo, A.; Gómez-Gallego, F.; Calderon-Dominguez, M.; Casals, C.; Ponce-González, J.G. Influence of Peroxisome Proliferator-Activated Receptor (PPAR)-gamma Coactivator (PGC)-1 alpha gene rs8192678 polymorphism by gender on different health-related parameters in healthy young adults. Front. Physiol. 2022, 13, 885185. [Google Scholar] [CrossRef]
- Besnier, F.; Lenclume, V.; Gérardin, P.; Fianu, A.; Martinez, J.; Naty, N.; Porcherat, S.; Boussaid, K.; Schneebeli, S.; Jarlet, E.; et al. Individualized Exercise Training at Maximal Fat Oxidation Combined with Fruit and Vegetable-Rich Diet in Overweight or Obese Women: The LIPOXmax-Réunion Randomized Controlled Trial. PLoS ONE 2015, 10, e0139246. [Google Scholar] [CrossRef]
- Achten, J.; Gleeson, M.; Jeukendrup, A.E. Determination of the exercise intensity that elicits maximal fat oxidation. Med. Sci. Sports Exerc. 2002, 34, 92–97. [Google Scholar] [CrossRef]
- García-Conesa, M.-T.; Philippou, E.; Pafilas, C.; Massaro, M.; Quarta, S.; Andrade, V.; Jorge, R.; Chervenkov, M.; Ivanova, T.; Dimitrova, D.; et al. Exploring the Validity of the 14-Item Mediterranean Diet Adherence Screener (MEDAS): A Cross-National Study in Seven European Countries around the Mediterranean Region. Nutrients 2020, 12, 2960. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Fernández-Jarne, E.; Serrano-Martínez, M.; Wright, M.; Gomez-Gracia, E. Development of a short dietary intake questionnaire for the quantitative estimation of adherence to a cardioprotective Mediterranean diet. Eur. J. Clin. Nutr. 2004, 58, 1550–1552. [Google Scholar] [CrossRef]
- Ara, I.; Larsen, S.; Stallknecht, B.; Guerra, B.; Morales-Alamo, D.; Andersen, J.L.; Ponce-González, J.G.; Guadalupe-Grau, A.; Galbo, H.; Calbet, J.A.L.; et al. Normal mitochondrial function and increased fat oxidation capacity in leg and arm muscles in obese humans. Int. J. Obes. 2011, 35, 99–108. [Google Scholar] [CrossRef]
- Shvartz, E.; Reibold, R.C. Aerobic fitness norms for males and females aged 6 to 75 years: A review. Aviat. Space Environ. Med. 1990, 61, 3–11. [Google Scholar]
- World Health Organization. Obesity—Preventing and Managing the Global Epidemic: Report on a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; ISBN 978-92-4-120894-9. [Google Scholar]
- Bircher, S.; Knechtle, B. Relationship between Fat Oxidation and Lactate Threshold in Athletes and Obese Women and Men. J. Sports Sci. Med. 2004, 3, 174–181. [Google Scholar]
- Frayn, K.N. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef]
- Achten, J.; Jeukendrup, A.E. Optimizing fat oxidation through exercise and diet. Nutrition 2004, 20, 716–727. [Google Scholar] [CrossRef]
- Hayes, A.F. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Bolin, J.H. Hayes, Andrew F. (2013). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York, NY: The Guilford Press. J. Educ. Meas. 2014, 51, 335–337. [Google Scholar] [CrossRef]
- Preacher, K.J.; Hayes, A.F. SPSS and SAS procedures for estimating indirect effects in simple mediation models. Behav. Res. Methods Instrum. Comput. 2004, 36, 717–731. [Google Scholar] [CrossRef]
- Papadaki, A.; Nolen-Doerr, E.; Mantzoros, C.S. The Effect of the Mediterranean Diet on Metabolic Health: A Systematic Review and Meta-Analysis of Controlled Trials in Adults. Nutrients 2020, 12, 3342. [Google Scholar] [CrossRef]
- Grosso, G.; Marventano, S.; Yang, J.; Micek, A.; Pajak, A.; Scalfi, L.; Galvano, F.; Kales, S.N. A comprehensive meta-analysis on evidence of Mediterranean diet and cardiovascular disease: Are individual components equal? Crit. Rev. Food Sci. Nutr. 2017, 57, 3218–3232. [Google Scholar] [CrossRef]
- Schwingshackl, L.; Missbach, B.; König, J.; Hoffmann, G. Adherence to a Mediterranean diet and risk of diabetes: A systematic review and meta-analysis. Public Health Nutr. 2015, 18, 1292–1299. [Google Scholar] [CrossRef]
- Esposito, K.; Kastorini, C.-M.; Panagiotakos, D.B.; Giugliano, D. Mediterranean Diet and Weight Loss: Meta-Analysis of Randomized Controlled Trials. Metab. Syndr. Relat. Disord. 2011, 9, 1–12. [Google Scholar] [CrossRef]
- Jurado-Fasoli, L.; Amaro-Gahete, F.J.; Merchan-Ramirez, E.; Labayen, I.; Ruiz, J.R. Relationships between diet and basal fat oxidation and maximal fat oxidation during exercise in sedentary adults. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1087–1101. [Google Scholar] [CrossRef]
- Fletcher, G.; Eves, F.F.; Glover, E.I.; Robinson, S.L.; Vernooij, C.A.; Thompson, J.L.; Wallis, G.A. Dietary intake is independently associated with the maximal capacity for fat oxidation during exercise. Am. J. Clin. Nutr. 2017, 105, 864–872. [Google Scholar] [CrossRef]
- Sears, B.; Perry, M. The role of fatty acids in insulin resistance. Lipids Health Dis. 2015, 14, 121. [Google Scholar] [CrossRef]
- Watanabe, N.; Komiya, Y.; Sato, Y.; Watanabe, Y.; Suzuki, T.; Arihara, K. Oleic acid up-regulates myosin heavy chain (MyHC) 1 expression and increases mitochondrial mass and maximum respiration in C2C12 myoblasts. Biochem. Biophys. Res. Commun. 2020, 525, 406–411. [Google Scholar] [CrossRef]
- Calder, P.C. Omega-3 fatty acids and inflammatory processes: From molecules to man. Biochem. Soc. Trans. 2017, 45, 1105–1115. [Google Scholar] [CrossRef]
- Pollicino, F.; Veronese, N.; Dominguez, L.J.; Barbagallo, M. Mediterranean diet and mitochondria: New findings. Exp. Gerontol. 2023, 176, 112165. [Google Scholar] [CrossRef]
- Deledda, A.; Annunziata, G.; Tenore, G.C.; Palmas, V.; Manzin, A.; Velluzzi, F. Diet-Derived Antioxidants and Their Role in Inflammation, Obesity and Gut Microbiota Modulation. Antioxidants 2021, 10, 708. [Google Scholar] [CrossRef]
- Serrano, J.; Cassanye, A.; Martín-Gari, M.; Granado-Serrano, A.; Portero-Otín, M. Effect of Dietary Bioactive Compounds on Mitochondrial and Metabolic Flexibility. Diseases 2016, 4, 14. [Google Scholar] [CrossRef]
- Pannacciulli, N.; Bunt, J.C.; Koska, J.; Bogardus, C.; Krakoff, J. Higher fasting plasma concentrations of glucagon-like peptide 1 are associated with higher resting energy expenditure and fat oxidation rates in humans. Am. J. Clin. Nutr. 2006, 84, 556–560. [Google Scholar] [CrossRef]
- Dinu, M.; Colombini, B.; Pagliai, G.; Cesari, F.; Gori, A.; Giusti, B.; Marcucci, R.; Sofi, F. Effects of a dietary intervention with Mediterranean and vegetarian diets on hormones that influence energy balance: Results from the CARDIVEG study. Int. J. Food Sci. Nutr. 2020, 71, 362–369. [Google Scholar] [CrossRef]
- Myers, M.G.; Leibel, R.L.; Seeley, R.J.; Schwartz, M.W. Obesity and leptin resistance: Distinguishing cause from effect. Trends Endocrinol. Metab. 2010, 21, 643–651. [Google Scholar] [CrossRef]
- Dayi, T.; Ozgoren, M. Effects of the mediterranean diet on the components of metabolic syndrome. J. Prev. Med. Hyg. 2022, 63, E56. [Google Scholar] [CrossRef]
- Rodríguez-García, C.; Sánchez-Quesada, C.; Algarra, I.; Gaforio, J.J. Differential Immunometabolic Effects of High-Fat Diets Containing Coconut, Sunflower, and Extra Virgin Olive Oils in Female Mice. Mol. Nutr. Food Res. 2022, 66, 2200082. [Google Scholar] [CrossRef]
- Yang, L.; Guo, Z.; Qi, S.; Fang, T.; Zhu, H.; Santos, H.O.; Khani, V.; Wong, C.H.; Qiu, Z. Walnut intake may increase circulating adiponectin and leptin levels but does not improve glycemic biomarkers: A systematic review and meta-analysis of randomized clinical trials. Complement. Ther. Med. 2020, 52, 102505. [Google Scholar] [CrossRef]
- Rausch, J.; Gillespie, S.; Orchard, T.; Tan, A.; McDaniel, J.C. Systematic review of marine-derived omega-3 fatty acid supplementation effects on leptin, adiponectin, and the leptin-to-adiponectin ratio. Nutr. Res. 2021, 85, 135–152. [Google Scholar] [CrossRef]
- García-Carrizo, F.; Nozhenko, Y.; Palou, A.; Rodríguez, A.M. Leptin Effect on Acetylation and Phosphorylation of Pgc1α in Muscle Cells Associated With Ampk and Akt Activation in High-Glucose Medium. J. Cell. Physiol. 2016, 231, 641–649. [Google Scholar] [CrossRef]
- Minokoshi, Y.; Kim, Y.-B.; Peroni, O.D.; Fryer, L.G.D.; Müller, C.; Carling, D.; Kahn, B.B. Leptin stimulates fatty-acid oxidation by activating AMP-activated protein kinase. Nature 2002, 415, 339–343. [Google Scholar] [CrossRef]
- Frandsen, J.; Hansen, I.M.D.; Wismann, J.F.; Olsen, M.H.; Brage-Andersen, M.R.; Sahl, R.E.; Hansen, M.; Ingersen, A.; Modvig, J.L.; Schmücker, M.; et al. Maximal Fat Oxidation Rate Is Higher in Fit Women and Unfit Women with Obesity, Compared to Normal-weight Unfit Women. J. Clin. Endocrinol. Metab. 2021, 106, E4389–E4399. [Google Scholar] [CrossRef]
- Minokoshi, Y.; Toda, C.; Okamoto, S. Regulatory role of leptin in glucose and lipid metabolism in skeletal muscle. Indian J. Endocr. Metab. 2012, 16, 562. [Google Scholar] [CrossRef]
- Miller, G.D.; Frost, R.; Olive, J. Relation of plasma leptin concentrations to sex, body fat, dietary intake, and peak oxygen uptake in young adult women and men. Nutrition 2001, 17, 105–111. [Google Scholar] [CrossRef]
- Adamsson, V.; Reumark, A.; Cederholm, T.; Vessby, B.; Risérus, U.; Johansson, G. What is a healthy Nordic diet? Foods and nutrients in the NORDIET study. Food Nutr. Res. 2012, 56, 18189. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. New Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef]
- Willcox, D.C.; Willcox, B.J.; Todoriki, H.; Suzuki, M. The Okinawan Diet: Health Implications of a Low-Calorie, Nutrient-Dense, Antioxidant-Rich Dietary Pattern Low in Glycemic Load. J. Am. Coll. Nutr. 2009, 28, 500S–516S. [Google Scholar] [CrossRef]
- Krznarić, Ž.; Karas, I.; Ljubas Kelečić, D.; Vranešić Bender, D. The Mediterranean and Nordic Diet: A Review of Differences and Similarities of Two Sustainable, Health-Promoting Dietary Patterns. Front. Nutr. 2021, 8, 683678. [Google Scholar] [CrossRef]
- Willcox, D.C.; Scapagnini, G.; Willcox, B.J. Healthy aging diets other than the Mediterranean: A focus on the Okinawan diet. Mech. Ageing Dev. 2014, 136–137, 148–162. [Google Scholar] [CrossRef]
- Damigou, E.; Kosti, R.I.; Downs, S.M.; Naumovski, N.; Panagiotakos, D. Comparing The Mediterranean and The Japanese Dietary Pattern in Relation to Longevity—A Narrative Review. Endocr. Metab. Immune Disord.-Drug Targets 2024, 24, 1746–1755. [Google Scholar] [CrossRef]
- Manoharan, L.; Roth, B.; Bang, C.; Stenlund, H.; Ohlsson, B. An Okinawan-Based Nordic Diet Leads to Profound Effects on Gut Microbiota and Plasma Metabolites Linked to Glucose and Lipid Metabolism. Nutrients 2023, 15, 3273. [Google Scholar] [CrossRef]
- Goossens, G.H.; Jocken, J.W.E.; Blaak, E.E. Sexual dimorphism in cardiometabolic health: The role of adipose tissue, muscle and liver. Nat. Rev. Endocrinol. 2021, 17, 47–66. [Google Scholar] [CrossRef]
All | NW | OW/OB | d BMI | p BMI | Low MD | High MD | d MD | p MD | |
---|---|---|---|---|---|---|---|---|---|
Sex (Men/Women) | 42/23 | 30/16 | 12/7 | 22/15 | 20/8 | ||||
Age (years) | 22.35 ± 4.30 | 20.70 ± 2.15 | 26.37 ± 5.49 | −1.644 | <0.001 | 22.95 ± 5.16 | 21.57 ± 2.69 | 0.321 | 0.204 |
BMI (kg/m2) | 24.78 ± 4.29 | 22.39 ± 1.54 | 30.54 ± 3.13 | −3.843 | <0.001 | 25.68 ± 5.15 | 23.59 ± 2.38 | 0.499 | 0.049 |
Absolute MFO (mg/min) | 385.6 ± 159.9 | 411.9 ± 155.4 | 322.0 ± 156.2 | 0.578 | 0.038 | 354.0 ± 168.2 | 427.4 ± 140.3 | −0.468 | 0.066 |
MFO body mass (mg/kg/min) | 5.37 ± 2.31 | 6.11 ± 2.09 | 3.58 ± 1.80 | 1.262 | <0.001 | 4.82 ± 2.48 | 6.10 ± 1.86 | −0.571 | 0.026 |
MFO total muscle (mg/kg muscle/min) | 7.23 ± 2.93 | 7.97 ± 2.76 | 5.43 ± 2.59 | 0.935 | <0.001 | 6.66 ± 3.18 | 7.97 ± 2.42 | −0.455 | 0.074 |
VO2max (mL/kg/min) | 42.63 ± 10.93 | 47.12 ± 8.40 | 31.74 ± 8.47 | 1.826 | <0.001 | 39.10 ± 11.47 | 47.29 ± 8.25 | −0.802 | 0.002 |
Leptin (pg/mL) | 3473.0 ± 3902.9 | 2100.3 ± 2745.7 | 6796.6 ± 4340.3 | −1.431 | <0.001 | 4221.5 ± 4191.3 | 2484.1 ± 3301.9 | 0.453 | 0.075 |
Log leptin (pg/mL) | 3.22 ± 0.59 | 3.01 ± 0.54 | 3.71 ± 0.37 | −1.408 | <0.001 | 3.33 ± 0.59 | 3.06 ± 0.57 | 0.476 | 0.062 |
MedDiet adherence score | 6.98 ± 1.68 | 7.30 ± 1.46 | 6.21 ± 1.96 | 0.676 | 0.016 | 5.78 ± 1.13 | 8.57 ± 0.63 | −2.927 | <0.001 |
Mediterranean Diet | ||||
---|---|---|---|---|
BMI (kg/m2) | ||||
B | β | R2 | p | |
Model 0 | −0.864 | −0.339 | 0.115 | 0.006 |
Model 1 | −0.871 | −0.342 | 0.116 | 0.006 |
Model 2 | −0.473 | −0.186 | 0.374 | 0.082 |
Model 3 | −0.483 | −0.189 | 0.376 | 0.079 |
Absolute MFO (mg/min) | ||||
B | β | R2 | p | |
Model 0 | 0.032 | 0.338 | 0.114 | 0.006 |
Model 1 | 0.030 | 0.319 | 0.157 | 0.008 |
Model 2 | 0.026 | 0.271 | 0.163 | 0.029 |
Model 3 | 0.024 | 0.255 | 0.203 | 0.037 |
MFO-BM (mg/kg/min) | ||||
B | β | R2 | p | |
Model 0 | 0.542 | 0.395 | 0.156 | 0.001 |
Model 1 | 0.537 | 0.392 | 0.158 | 0.001 |
Model 2 | 0.401 | 0.292 | 0.273 | 0.012 |
Model 3 | 0.398 | 0.290 | 0.274 | 0.014 |
MFO-MM (mg/kg/min) | ||||
B | β | R2 | p | |
Model 0 | 0.614 | 0.352 | 0.124 | 0.004 |
Model 1 | 0.629 | 0.361 | 0.134 | 0.003 |
Model 2 | 0.460 | 0.264 | 0.209 | 0.029 |
Model 3 | 0.475 | 0.273 | 0.221 | 0.025 |
VO2max (mL/kg/min) | ||||
B | β | R2 | p | |
Model 0 | 3.000 | 0.462 | 0.213 | <0.001 |
Model 1 | 2.772 | 0.426 | 0.365 | <0.001 |
Model 2 | 2.151 | 0.331 | 0.400 | 0.002 |
Model 3 | 1.957 | 0.301 | 0.541 | 0.002 |
Log Leptin (pg/mL) | ||||
B | β | R2 | p | |
Model 0 | −0.100 | −0.284 | 0.081 | 0.022 |
Model 1 | −0.081 | −0.230 | 0.447 | 0.018 |
Model 2 | −0.079 | −0.223 | 0.077 | 0.122 |
Model 3 | −0.062 | −0.176 | 0.480 | 0.074 |
Log Leptin | ||||
---|---|---|---|---|
BMI (kg/m2) | ||||
B | β | R2 | p | |
Model 0 | 3.979 | 0.550 | 0.302 | <0.001 |
Model 1 | 6.563 | 0.906 | 0.498 | <0.001 |
Model 2 | 3.040 | 0.420 | 0.505 | <0.001 |
Model 3 | 5.396 | 0.745 | 0.648 | <0.001 |
Absolute MFO (mg/min) | ||||
B | β | R2 | p | |
Model 0 | −11.998 | −0.650 | 0.422 | <0.001 |
Model 1 | −11.577 | −0.627 | 0.423 | <0.001 |
Model 2 | −9.963 | −0.540 | 0.569 | <0.001 |
Model 3 | −8.567 | −0.464 | 0.577 | <0.001 |
MFO-BM (mg/kg/min) | ||||
B | B | R2 | p | |
Model 0 | −1.176 | −0.302 | 0.091 | 0.014 |
Model 1 | −1.639 | −0.421 | 0.113 | 0.008 |
Model 2 | −0.758 | −0.195 | 0.230 | 0.098 |
Model 3 | −1.065 | −0.273 | 0.238 | 0.075 |
MFO-MM (mg/kg/min) | ||||
B | β | R2 | p | |
Model 0 | −0.589 | −0.119 | 0.014 | 0.345 |
Model 1 | −1.309 | −0.264 | 0.047 | 0.102 |
Model 2 | −0.073 | −0.015 | 0.146 | 0.905 |
Model 3 | −0.610 | −0.123 | 0.162 | 0.439 |
VO2max (mL/kg/min) | ||||
B | β | R2 | p | |
Model 0 | −0.063 | −0.233 | 0.054 | 0.061 |
Model 1 | −0.037 | −0.139 | 0.068 | 0.383 |
Model 2 | −0.043 | −0.160 | 0.119 | 0.202 |
Model 3 | −0.006 | −0.024 | 0.144 | 0.883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santiago-Arriaza, P.; Corral-Pérez, J.; Velázquez-Díaz, D.; Pérez-Bey, A.; Rebollo-Ramos, M.; Marín-Galindo, A.; Montes-de-Oca-García, A.; Rosety-Rodríguez, M.Á.; Casals, C.; Ponce-González, J.G. Mediterranean Diet Patterns Are Positively Associated with Maximal Fat Oxidation and VO2max in Young Adults: The Mediating Role of Leptin. Nutrients 2025, 17, 1901. https://doi.org/10.3390/nu17111901
Santiago-Arriaza P, Corral-Pérez J, Velázquez-Díaz D, Pérez-Bey A, Rebollo-Ramos M, Marín-Galindo A, Montes-de-Oca-García A, Rosety-Rodríguez MÁ, Casals C, Ponce-González JG. Mediterranean Diet Patterns Are Positively Associated with Maximal Fat Oxidation and VO2max in Young Adults: The Mediating Role of Leptin. Nutrients. 2025; 17(11):1901. https://doi.org/10.3390/nu17111901
Chicago/Turabian StyleSantiago-Arriaza, Pablo, Juan Corral-Pérez, Daniel Velázquez-Díaz, Alejandro Pérez-Bey, María Rebollo-Ramos, Alberto Marín-Galindo, Adrián Montes-de-Oca-García, Miguel Ángel Rosety-Rodríguez, Cristina Casals, and Jesús G. Ponce-González. 2025. "Mediterranean Diet Patterns Are Positively Associated with Maximal Fat Oxidation and VO2max in Young Adults: The Mediating Role of Leptin" Nutrients 17, no. 11: 1901. https://doi.org/10.3390/nu17111901
APA StyleSantiago-Arriaza, P., Corral-Pérez, J., Velázquez-Díaz, D., Pérez-Bey, A., Rebollo-Ramos, M., Marín-Galindo, A., Montes-de-Oca-García, A., Rosety-Rodríguez, M. Á., Casals, C., & Ponce-González, J. G. (2025). Mediterranean Diet Patterns Are Positively Associated with Maximal Fat Oxidation and VO2max in Young Adults: The Mediating Role of Leptin. Nutrients, 17(11), 1901. https://doi.org/10.3390/nu17111901