Dietary Interventions and Oral Nutritional Supplementation in Inflammatory Bowel Disease: Current Evidence and Future Directions
Abstract
:1. Introduction
2. Dietary Interventions in IBD
2.1. Exclusive Enteral Nutrition
2.2. Partial Enteral Nutrition
2.3. Crohn’s Disease Exclusion Diet
2.4. Mediterranean Diet
2.5. Carbohydrates Modified Diet
2.6. Low-FODMAP Diet
2.7. Anti-Inflammatory Diet
2.8. Plant-Based Diet
2.9. Low-Sulfur Diet
2.10. Low-Emulsifier Diet
2.11. Tasty & Healthy Diet
2.12. Ketogenic Diet
2.13. Gluten-Free Diet
2.14. Low-Residue Diet
2.15. High-Fiber Diet
2.16. McMaster Elimination Diet for Crohn’s Disease
2.17. IgG-Based Diet
2.18. CD-TREAT Diet
2.19. Lactose-Based Dietary Interventions
2.20. Red and Processed Meats-Based Dietary Interventions
2.21. Low Microparticle Diet
2.22. Low Carrageenan Diet
2.23. Diet in Special Situations: Pouchitis Management
2.24. Diet in Special Situations: Perioperative Nutritional Management
2.25. Diet in Special Situations: Stenosis
3. Oral Nutritional Supplementation in IBD
4. Future Directions and Research Needs
4.1. Personalized Nutrition Approaches
4.2. Standardization of Research Methodologies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Le Berre, C.; Honap, S.; Peyrin-Biroulet, L. Ulcerative Colitis. Lancet Lond. Engl. 2023, 402, 571–584. [Google Scholar] [CrossRef] [PubMed]
- Dolinger, M.; Torres, J.; Vermeire, S. Crohn’s Disease. Lancet 2024, 403, 1177–1191. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental Risk Factors for Inflammatory Bowel Diseases: An Umbrella Review of Meta-Analyses. Gastroenterology 2019, 157, 647–659.e4. [Google Scholar] [CrossRef] [PubMed]
- Barberio, B.; Facchin, S.; Patuzzi, I.; Ford, A.C.; Massimi, D.; Valle, G.; Sattin, E.; Simionati, B.; Bertazzo, E.; Zingone, F.; et al. A Specific Microbiota Signature Is Associated to Various Degrees of Ulcerative Colitis as Assessed by a Machine Learning Approach. Gut Microbes 2022, 14, 2028366. [Google Scholar] [CrossRef]
- Jabłońska, B.; Mrowiec, S. Nutritional Status and Its Detection in Patients with Inflammatory Bowel Diseases. Nutrients 2023, 15, 1991. [Google Scholar] [CrossRef]
- Halmos, E.P.; Godny, L.; Vanderstappen, J.; Sarbagili-Shabat, C.; Svolos, V. Role of Diet in Prevention versus Treatment of Crohn’s Disease and Ulcerative Colitis. Frontline Gastroenterol. 2024, 15, 247–257. [Google Scholar] [CrossRef] [PubMed]
- Wood, J.A.; Halmos, E.P.; Taylor, K.M.; Gibson, P.R. The Role of Epidemiological Evidence from Prospective Population Studies in Shaping Dietary Approaches to Therapy in Crohn’s Disease. Mol. Nutr. Food Res. 2021, 65, e2000294. [Google Scholar] [CrossRef]
- Deng, M.; Dan, L.; Ye, S.; Chen, X.; Fu, T.; Wang, X.; Chen, J. Higher Dietary Fibre Intake Is Associated with Lower Risk of Inflammatory Bowel Disease: Prospective Cohort Study. Aliment. Pharmacol. Ther. 2023, 58, 516–525. [Google Scholar] [CrossRef]
- Jantchou, P.; Morois, S.; Clavel-Chapelon, F.; Boutron-Ruault, M.-C.; Carbonnel, F. Animal Protein Intake and Risk of Inflammatory Bowel Disease: The E3N Prospective Study. Am. J. Gastroenterol. 2010, 105, 2195–2201. [Google Scholar] [CrossRef]
- Khalili, H.; Håkansson, N.; Chan, S.S.; Chen, Y.; Lochhead, P.; Ludvigsson, J.F.; Chan, A.T.; Hart, A.R.; Olén, O.; Wolk, A. Adherence to a Mediterranean Diet Is Associated with a Lower Risk of Later-Onset Crohn’s Disease: Results from Two Large Prospective Cohort Studies. Gut 2020, 69, 1637–1644. [Google Scholar] [CrossRef]
- Narula, N.; Wong, E.C.L.; Dehghan, M.; Mente, A.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Rohatgi, P.; Lakshmi, P.V.M.; Varma, R.P.; et al. Association of Ultra-Processed Food Intake with Risk of Inflammatory Bowel Disease: Prospective Cohort Study. BMJ 2021, 374, n1554. [Google Scholar] [CrossRef] [PubMed]
- Racine, A.; Carbonnel, F.; Chan, S.S.M.; Hart, A.R.; Bueno-de-Mesquita, H.B.; Oldenburg, B.; van Schaik, F.D.M.; Tjønneland, A.; Olsen, A.; Dahm, C.C.; et al. Dietary Patterns and Risk of Inflammatory Bowel Disease in Europe: Results from the EPIC Study. Inflamm. Bowel Dis. 2016, 22, 345–354. [Google Scholar] [CrossRef]
- Guo, A.; Ludvigsson, J.; Brantsæter, A.L.; Klingberg, S.; Östensson, M.; Størdal, K.; Mårild, K. Early-Life Diet and Risk of Inflammatory Bowel Disease: A Pooled Study in Two Scandinavian Birth Cohorts. Gut 2024, 73, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Michels, K.B.; Schulze, M.B. Can Dietary Patterns Help Us Detect Diet-Disease Associations? Nutr. Res. Rev. 2005, 18, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Molendijk, M.; Molero, P.; Sánchez-Pedreño, F.O.; Van der Does, W.; Martínez-González, M.A. Diet Quality and Depression Risk: A Systematic Review and Dose-Response Meta-Analysis of Prospective Studies. J. Affect. Disord. 2018, 226, 346–354. [Google Scholar] [CrossRef]
- Vitale, M.; Costabile, G.; Testa, R.; D’Abbronzo, G.; Nettore, I.C.; Macchia, P.E.; Giacco, R. Ultra-Processed Foods and Human Health: A Systematic Review and Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2024, 15, 100121. [Google Scholar] [CrossRef]
- Yamamoto, T.; Lightner, A.L.; Spinelli, A.; Kotze, P.G. Perioperative Management of Ileocecal Crohn’s Disease in the Current Era. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 843–855. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Milte, C.; Bowe, S.J.; Duckham, R.L.; Ward, J.; Keske, M.A.; McEvoy, M.; Brayner, B.; Abbott, G. Associations Between Three Diet Quality Indices, Genetic Risk and Body Composition: A Prospective Cohort Study. Clin. Nutr. Edinb. Scotl. 2022, 41, 1942–1949. [Google Scholar] [CrossRef]
- Verdina, M.; Seibold, F.; Grandmaison, G.; Michetti, P.; Barras-Moret, A.-C.; Liu, K.; Vaucher, J.; Staudenmann, D. Survey of Dietary Beliefs and Habits of Inflammatory Bowel Disease Patients. Clin. Nutr. ESPEN 2023, 57, 624–629. [Google Scholar] [CrossRef]
- Godala, M.; Gaszyńska, E.; Durko, Ł.; Małecka-Wojciesko, E. Dietary Behaviors and Beliefs in Patients with Inflammatory Bowel Disease. J. Clin. Med. 2023, 12, 3455. [Google Scholar] [CrossRef]
- Day, A.S.; Yao, C.K.; Costello, S.P.; Andrews, J.M.; Bryant, R.V. Food Avoidance, Restrictive Eating Behaviour and Association with Quality of Life in Adults with Inflammatory Bowel Disease: A Systematic Scoping Review. Appetite 2021, 167, 105650. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Arienti, G.; Zuin, G.; Spini, L.; Calia, M.; Biondi, A.; Nacinovich, R.; Cavanna, A.E. Risk Factors for the Development of Eating Disorders in Adolescents with Early-Onset Inflammatory Bowel Diseases. Nutrients 2024, 16, 2675. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Ge, X.; Ouyang, C.; Wang, D.; Zhang, X.; Liang, J.; Zhu, W.; Cao, Q. Prevalence of Malnutrition, Its Risk Factors, and the Use of Nutrition Support in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2022, 28, S59–S66. [Google Scholar] [CrossRef] [PubMed]
- Bezzio, C.; Brinch, D.; Ribaldone, D.G.; Cappello, M.; Ruzzon, N.; Vernero, M.; Scalvini, D.; Loy, L.; Donghi, S.; Ciminnisi, S.; et al. Prevalence, Risk Factors and Association with Clinical Outcomes of Malnutrition and Sarcopenia in Inflammatory Bowel Disease: A Prospective Study. Nutrients 2024, 16, 3983. [Google Scholar] [CrossRef]
- Shao, T.; Verma, H.K.; Pande, B.; Costanzo, V.; Ye, W.; Cai, Y.; Bhaskar, L.V.K.S. Physical Activity and Nutritional Influence on Immune Function: An Important Strategy to Improve Immunity and Health Status. Front. Physiol. 2021, 12, 751374. [Google Scholar] [CrossRef]
- Yerushalmy-Feler, A.; Ben-Tov, A.; Weintraub, Y.; Amir, A.; Galai, T.; Moran-Lev, H.; Cohen, S. High and Low Body Mass Index May Predict Severe Disease Course in Children with Inflammatory Bowel Disease. Scand. J. Gastroenterol. 2018, 53, 708–713. [Google Scholar] [CrossRef]
- Spooren, C.E.G.M.; Wintjens, D.S.J.; de Jong, M.J.; van der Meulen-de Jong, A.E.; Romberg-Camps, M.J.; Becx, M.C.; Maljaars, J.P.; van Bodegraven, A.A.; Mahmmod, N.; Markus, T.; et al. Risk of Impaired Nutritional Status and Flare Occurrence in IBD Outpatients. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2019, 51, 1265–1269. [Google Scholar] [CrossRef]
- Bancil, A.S.; Sandall, A.M.; Rossi, M.; Chassaing, B.; Lindsay, J.O.; Whelan, K. Food Additive Emulsifiers and Their Impact on Gut Microbiome, Permeability, and Inflammation: Mechanistic Insights in Inflammatory Bowel Disease. J. Crohns Colitis 2021, 15, 1068–1079. [Google Scholar] [CrossRef]
- Reznikov, E.A.; Suskind, D.L. Current Nutritional Therapies in Inflammatory Bowel Disease: Improving Clinical Remission Rates and Sustainability of Long-Term Dietary Therapies. Nutrients 2023, 15, 668. [Google Scholar] [CrossRef]
- Bertin, L.; Crepaldi, M.; Zanconato, M.; Lorenzon, G.; Maniero, D.; De Barba, C.; Bonazzi, E.; Facchin, S.; Scarpa, M.; Ruffolo, C.; et al. Refractory Crohn’s Disease: Perspectives, Unmet Needs and Innovations. Clin. Exp. Gastroenterol. 2024, 17, 261–315. [Google Scholar] [CrossRef]
- Mitrev, N.; Huang, H.; Hannah, B.; Kariyawasam, V.C. Review of Exclusive Enteral Therapy in Adult Crohn’s Disease. BMJ Open Gastroenterol. 2021, 8, e000745. [Google Scholar] [CrossRef] [PubMed]
- Di Caro, S.; Fragkos, K.C.; Keetarut, K.; Koo, H.F.; Sebepos-Rogers, G.; Saravanapavan, H.; Barragry, J.; Rogers, J.; Mehta, S.J.; Rahman, F. Enteral Nutrition in Adult Crohn’s Disease: Toward a Paradigm Shift. Nutrients 2019, 11, 2222. [Google Scholar] [CrossRef] [PubMed]
- Day, A.S.; Lopez, R.N. Exclusive Enteral Nutrition in Children with Crohn’s Disease. World J. Gastroenterol. WJG 2015, 21, 6809–6816. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.; Chen, K.-C.; Chen, J. Exclusive Enteral Nutrition versus Corticosteroids for Treatment of Pediatric Crohn’s Disease: A Meta-Analysis. World J. Pediatr. WJP 2019, 15, 26–36. [Google Scholar] [CrossRef]
- Tay, S.; Chan, P.W.W.; Wei, S.C.; Tan, M.; Hilmi, I.N.; Leong, J.W.H.; Tan, Y.Y.; Lim, C.T.; Ling, K.L.; Tey, T.T.; et al. P579 Dietary Beliefs, Barriers, and Acceptability of Diet in IBD Patients—A Multi-Centre Survey from the Asia-Pacific Region. J. Crohns Colitis 2024, 18, i1130. [Google Scholar] [CrossRef]
- Riordan, A.M.; Hunter, J.O.; Cowan, R.E.; Crampton, J.R.; Davidson, A.R.; Dickinson, R.J.; Dronfield, M.W.; Fellows, I.W.; Hishon, S.; Kerrigan, G.N. Treatment of Active Crohn’s Disease by Exclusion Diet: East Anglian Multicentre Controlled Trial. Lancet Lond. Engl. 1993, 342, 1131–1134. [Google Scholar] [CrossRef]
- Takagi, S.; Utsunomiya, K.; Kuriyama, S.; Yokoyama, H.; Takahashi, S.; Iwabuchi, M.; Takahashi, H.; Takahashi, S.; Kinouchi, Y.; Hiwatashi, N.; et al. Effectiveness of an ‘Half Elemental Diet’ as Maintenance Therapy for Crohn’s Disease: A Randomized-Controlled Trial. Aliment. Pharmacol. Ther. 2006, 24, 1333–1340. [Google Scholar] [CrossRef]
- Diao, N.; Liu, X.; Lin, M.; Yang, Q.; Li, B.; Tang, J.; Ding, N.; Gao, X.; Chao, K. Exclusive Enteral Nutrition Orchestrates Immunological Balances as Early as Week 4 in Adult Patients of Crohn’s Disease: A Pilot, Open-Lable Study. Nutrients 2023, 15, 5091. [Google Scholar] [CrossRef]
- Hanai, H.; Iida, T.; Takeuchi, K.; Arai, H.; Arai, O.; Abe, J.; Tanaka, T.; Maruyama, Y.; Ikeya, K.; Sugimoto, K.; et al. Nutritional Therapy versus 6-Mercaptopurine as Maintenance Therapy in Patients with Crohn’s Disease. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2012, 44, 649–654. [Google Scholar] [CrossRef]
- Hirai, F.; Ishida, T.; Takeshima, F.; Yamamoto, S.; Yoshikawa, I.; Ashizuka, S.; Inatsu, H.; Mitsuyama, K.; Sou, S.; Iwakiri, R.; et al. Effect of a Concomitant Elemental Diet with Maintenance Anti-Tumor Necrosis Factor-α Antibody Therapy in Patients with Crohn’s Disease: A Multicenter, Prospective Cohort Study. J. Gastroenterol. Hepatol. 2019, 34, 132–139. [Google Scholar] [CrossRef]
- Ramaswamy, P.K.; Gold Coast Inflammatory Bowel Diseases Research Group. Exclusive Enteral Nutrition with Oral Polymeric Diet Helps in Inducing Clinical and Biochemical Remission in Adults with Active Crohn’s Disease. JPEN J. Parenter. Enteral Nutr. 2022, 46, 423–432. [Google Scholar] [CrossRef] [PubMed]
- Limketkai, B.N.; Iheozor-Ejiofor, Z.; Gjuladin-Hellon, T.; Parian, A.; Matarese, L.E.; Bracewell, K.; MacDonald, J.K.; Gordon, M.; Mullin, G.E. Dietary Interventions for Induction and Maintenance of Remission in Inflammatory Bowel Disease. Cochrane Database Syst. Rev. 2019, 2, CD012839. [Google Scholar] [CrossRef] [PubMed]
- Sahu, P.; Kedia, S.; Vuyyuru, S.K.; Bajaj, A.; Markandey, M.; Singh, N.; Singh, M.; Kante, B.; Kumar, P.; Ranjan, M.; et al. Randomised Clinical Trial: Exclusive Enteral Nutrition versus Standard of Care for Acute Severe Ulcerative Colitis. Aliment. Pharmacol. Ther. 2021, 53, 568–576. [Google Scholar] [CrossRef]
- Gea Cabrera, A.; Sanz-Lorente, M.; Sanz-Valero, J.; López-Pintor, E. Compliance and Adherence to Enteral Nutrition Treatment in Adults: A Systematic Review. Nutrients 2019, 11, 2627. [Google Scholar] [CrossRef] [PubMed]
- Melton, S.L.; Taylor, K.M.; Gibson, P.R.; Halmos, E.P. Review Article: Mechanisms Underlying the Effectiveness of Exclusive Enteral Nutrition in Crohn’s Disease. Aliment. Pharmacol. Ther. 2023, 57, 932–947. [Google Scholar] [CrossRef]
- Geesala, R.; Gongloor, P.; Recharla, N.; Shi, X.-Z. Mechanisms of Action of Exclusive Enteral Nutrition and Other Nutritional Therapies in Crohn’s Disease. Nutrients 2024, 16, 3581. [Google Scholar] [CrossRef]
- Bai, S.H.; Chandnani, A.; Cao, S. Bile Acids in Inflammatory Bowel Disease: From Pathophysiology to Treatment. Biomedicines 2024, 12, 2910. [Google Scholar] [CrossRef]
- Mutsekwa, R.N.; Edwards, J.T.; Angus, R.L. Exclusive Enteral Nutrition in the Management of Crohn’s Disease: A Qualitative Exploration of Experiences, Challenges and Enablers in Adult Patients. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2021, 34, 440–449. [Google Scholar] [CrossRef]
- Lunken, G.R.; Tsai, K.; Schick, A.; Lisko, D.J.; Cook, L.; Vallance, B.A.; Jacobson, K. Prebiotic Enriched Exclusive Enteral Nutrition Suppresses Colitis via Gut Microbiome Modulation and Expansion of Anti-Inflammatory T Cells in a Mouse Model of Colitis. Cell. Mol. Gastroenterol. Hepatol. 2021, 12, 1251–1266. [Google Scholar] [CrossRef]
- González-Torres, L.; Moreno-Álvarez, A.; Fernández-Lorenzo, A.E.; Leis, R.; Solar-Boga, A. The Role of Partial Enteral Nutrition for Induction of Remission in Crohn’s Disease: A Systematic Review of Controlled Trials. Nutrients 2022, 14, 5263. [Google Scholar] [CrossRef]
- Johnson, T.; Macdonald, S.; Hill, S.M.; Thomas, A.; Murphy, M.S. Treatment of Active Crohn’s Disease in Children Using Partial Enteral Nutrition with Liquid Formula: A Randomised Controlled Trial. Gut 2006, 55, 356–361. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Wine, E.; Assa, A.; Sigall Boneh, R.; Shaoul, R.; Kori, M.; Cohen, S.; Peleg, S.; Shamaly, H.; On, A.; et al. Crohn’s Disease Exclusion Diet Plus Partial Enteral Nutrition Induces Sustained Remission in a Randomized Controlled Trial. Gastroenterology 2019, 157, 440–450.e8. [Google Scholar] [CrossRef]
- Hisamatsu, T.; Kunisaki, R.; Nakamura, S.; Tsujikawa, T.; Hirai, F.; Nakase, H.; Watanabe, K.; Yokoyama, K.; Nagahori, M.; Kanai, T.; et al. Effect of Elemental Diet Combined with Infliximab Dose Escalation in Patients with Crohn’s Disease with Loss of Response to Infliximab: CERISIER Trial. Intest. Res. 2018, 16, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Wall, C.L.; Gearry, R.B.; Day, A.S. Treatment of Active Crohn’s Disease with Exclusive and Partial Enteral Nutrition: A Pilot Study in Adults. Inflamm. Intest. Dis. 2018, 2, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Feng, R.; Li, T.; Xu, S.; Hao, X.; Qiu, Y.; Chen, M. Systematic Review with Meta-Analysis of Partial Enteral Nutrition for the Maintenance of Remission in Crohn’s Disease. Nutr. Res. 2020, 81, 7–18. [Google Scholar] [CrossRef]
- Brückner, A.; Werkstetter, K.J.; Frivolt, K.; Shokry, E.; Ahmed, M.; Metwaly, A.; Marques, J.G.; Uhl, O.; Krohn, K.; Hajji, M.; et al. Partial Enteral Nutrition Has No Benefit on Bone Health but Improves Growth in Paediatric Patients with Quiescent or Mild Crohn’s Disease. Clin. Nutr. 2020, 39, 3786–3796. [Google Scholar] [CrossRef]
- Keetarut, K.; Kikuchi, H.; King, B.; Richards, N.; Lomer, M.; Fragkos, K.; Patel, P.S. Perceived Acceptability of Partial Enteral Nutrition (PEN) Using Oral Nutritional Supplement Drinks in Adolescent and Adult Crohn’s Disease Outpatients: A Feasibility Study. Clin. Nutr. ESPEN 2021, 46, 276–287. [Google Scholar] [CrossRef]
- Nardone, O.M.; Calabrese, G.; La Mantia, A.; Testa, A.; Rispo, A.; Alfonsi, L.; Pasanisi, F.; Castiglione, F. Effectiveness of Partial Enteral Nutrition as Add-On to Biologics in Patients with Refractory and Difficult-to-Treat Crohn’s Disease: A Pilot Study. Crohns Colitis 360 2024, 6, otae011. [Google Scholar] [CrossRef]
- Jatkowska, A.; White, B.; Gkikas, K.; Seenan, J.P.; MacDonald, J.; Gerasimidis, K. Partial Enteral Nutrition in the Management of Crohn’s Disease: A Systematic Review and Meta-Analysis. J. Crohns Colitis 2024, 19, jjae177. [Google Scholar] [CrossRef]
- Starz, E.; Wzorek, K.; Folwarski, M.; Kaźmierczak-Siedlecka, K.; Stachowska, L.; Przewłócka, K.; Stachowska, E.; Skonieczna-Żydecka, K. The Modification of the Gut Microbiota via Selected Specific Diets in Patients with Crohn’s Disease. Nutrients 2021, 13, 2125. [Google Scholar] [CrossRef]
- Fiorindi, C.; Russo, E.; Balocchini, L.; Amedei, A.; Giudici, F. Inflammatory Bowel Disease and Customized Nutritional Intervention Focusing on Gut Microbiome Balance. Nutrients 2022, 14, 4117. [Google Scholar] [CrossRef] [PubMed]
- Russell, E.E.; Day, A.S.; Dimitroff, C.; Trakman, G.L.; Silva, H.; Bryant, R.V.; Purcell, L.; Yao, C.K.; Landorf, E.; Fitzpatrick, J.A. Practical Application of the Crohn’s Disease Exclusion Diet as Therapy in an Adult Australian Population. J. Gastroenterol. Hepatol. 2024, 39, 446–456. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, S.C.; Bager, P.; Escher, J.; Forbes, A.; Hébuterne, X.; Hvas, C.L.; Joly, F.; Klek, S.; Krznaric, Z.; Ockenga, J.; et al. ESPEN Guideline on Clinical Nutrition in Inflammatory Bowel Disease. Clin. Nutr. 2023, 42, 352–379. [Google Scholar] [CrossRef] [PubMed]
- Yanai, H.; Levine, A.; Hirsch, A.; Boneh, R.S.; Kopylov, U.; Eran, H.B.; Cohen, N.A.; Ron, Y.; Goren, I.; Leibovitzh, H.; et al. The Crohn’s Disease Exclusion Diet for Induction and Maintenance of Remission in Adults with Mild-to-Moderate Crohn’s Disease (CDED-AD): An Open-Label, Pilot, Randomised Trial. Lancet Gastroenterol. Hepatol. 2022, 7, 49–59. [Google Scholar] [CrossRef]
- Pasta, A.; Formisano, E.; Calabrese, F.; Apollonio, M.; Demarzo, M.G.; Marabotto, E.; Furnari, M.; Giannini, E.G.; Pisciotta, L.; Bodini, G. The Use of the Crohn’s Disease Exclusion Diet (CDED) in Adults with Crohn’s Disease: A Randomized Controlled Trial. Eur. J. Clin. Investig. 2025, 55, e14389. [Google Scholar] [CrossRef]
- Núñez-Sánchez, M.A.; Melgar, S.; O’Donoghue, K.; Martínez-Sánchez, M.A.; Fernández-Ruiz, V.E.; Ferrer-Gómez, M.; Ruiz-Alcaraz, A.J.; Ramos-Molina, B. Crohn’s Disease, Host–Microbiota Interactions, and Immunonutrition: Dietary Strategies Targeting Gut Microbiome as Novel Therapeutic Approaches. Int. J. Mol. Sci. 2022, 23, 8361. [Google Scholar] [CrossRef]
- Van Limbergen, J.; Dunn, K.; Wine, E.; Sigall Boneh, R.; Bielawski, J.; Levine, A. OP22 Crohn’s Disease Exclusion Diet Reduces Bacterial Dysbiosis Towards Healthy Controls in Paediatric Crohn’s Disease. J. Crohns Colitis 2020, 14, S019–S020. [Google Scholar] [CrossRef]
- Sigall Boneh, R.; Park, S.; Soledad Arcucci, M.; Herrador-López, M.; Sarbagili-Shabat, C.; Kolonimos, N.; Wierdsma, N.; Chen, M.; Hershkovitz, E.; Wine, E.; et al. Cultural Perspectives on the Efficacy and Adoption of the Crohn’s Disease Exclusion Diet Across Diverse Ethnicities: A Case-Based Overview. Nutrients 2024, 16, 3184. [Google Scholar] [CrossRef]
- Saibeni, S.; Zanetti, M.; Bezzio, C.; Pironi, L.; Armuzzi, A.; Riso, S.; Caprioli, F.; Lezo, A.; Macaluso, F.S.; Pugliese, D.; et al. Nutritional Care at Centres Managing Patients with Inflammatory Bowel Disease: A Nationwide Survey in Italy. Dig. Liver Dis. Off. J. Ital. Soc. Gastroenterol. Ital. Assoc. Study Liver 2023, 55, 1028–1033. [Google Scholar] [CrossRef]
- Deleu, S.; Becherucci, G.; Godny, L.; Mentella, M.C.; Petito, V.; Scaldaferri, F. The Key Nutrients in the Mediterranean Diet and Their Effects in Inflammatory Bowel Disease: A Narrative Review. Nutrients 2024, 16, 4201. [Google Scholar] [CrossRef]
- Dominguez, L.J.; Di Bella, G.; Veronese, N.; Barbagallo, M. Impact of Mediterranean Diet on Chronic Non-Communicable Diseases and Longevity. Nutrients 2021, 13, 2028. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef]
- Kiani, A.K.; Medori, M.C.; Bonetti, G.; Aquilanti, B.; Velluti, V.; Matera, G.; Iaconelli, A.; Stuppia, L.; Connelly, S.T.; Herbst, K.L.; et al. Modern Vision of the Mediterranean Diet. J. Prev. Med. Hyg. 2022, 63, E36–E43. [Google Scholar] [CrossRef] [PubMed]
- Mentella, M.C.; Scaldaferri, F.; Ricci, C.; Gasbarrini, A.; Miggiano, G.A.D. Cancer and Mediterranean Diet: A Review. Nutrients 2019, 11, 2059. [Google Scholar] [CrossRef] [PubMed]
- Marlow, G.; Ellett, S.; Ferguson, I.R.; Zhu, S.; Karunasinghe, N.; Jesuthasan, A.C.; Han, D.Y.; Fraser, A.G.; Ferguson, L.R. Transcriptomics to Study the Effect of a Mediterranean-Inspired Diet on Inflammation in Crohn’s Disease Patients. Hum. Genomics 2013, 7, 24. [Google Scholar] [CrossRef]
- Godny, L.; Elial-Fatal, S.; Arrouasse, J.; Sharar Fischler, T.; Reshef, L.; Kutukov, Y.; Cohen, S.; Pfeffer-Gik, T.; Barkan, R.; Shakhman, S.; et al. Mechanistic Implications of the Mediterranean Diet in Patients With Newly Diagnosed Crohn’s Disease: Multi-Omic Results from a Prospective Cohort. Gastroenterology 2025, 168, 952–964.e2. [Google Scholar] [CrossRef]
- Chicco, F.; Magrì, S.; Cingolani, A.; Paduano, D.; Pesenti, M.; Zara, F.; Tumbarello, F.; Urru, E.; Melis, A.; Casula, L.; et al. Multidimensional Impact of Mediterranean Diet on IBD Patients. Inflamm. Bowel Dis. 2021, 27, 1–9. [Google Scholar] [CrossRef]
- Marsh, A.; Chachay, V.; Banks, M.; Okano, S.; Hartel, G.; Radford-Smith, G. A Pilot Randomized Controlled Trial Investigating the Effects of an Anti-Inflammatory Dietary Pattern on Disease Activity, Symptoms and Microbiota Profile in Adults with Inflammatory Bowel Disease. Eur. J. Clin. Nutr. 2024, 78, 1072–1081. [Google Scholar] [CrossRef]
- Lewis, J.D.; Sandler, R.S.; Brotherton, C.; Brensinger, C.; Li, H.; Kappelman, M.D.; Daniel, S.G.; Bittinger, K.; Albenberg, L.; Valentine, J.F.; et al. A Randomized Trial Comparing the Specific Carbohydrate Diet to a Mediterranean Diet in Adults with Crohn’s Disease. Gastroenterology 2021, 161, 837–852.e9. [Google Scholar] [CrossRef]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Gea, A.; Ruiz-Canela, M. The Mediterranean Diet and Cardiovascular Health. Circ. Res. 2019, 124, 779–798. [Google Scholar] [CrossRef] [PubMed]
- Schicho, R.; Marsche, G.; Storr, M. Cardiovascular Complications in Inflammatory Bowel Disease. Curr. Drug Targets 2015, 16, 181–188. [Google Scholar] [CrossRef]
- Hashash, J.G.; Elkins, J.; Lewis, J.D.; Binion, D.G. AGA Clinical Practice Update on Diet and Nutritional Therapies in Patients With Inflammatory Bowel Disease: Expert Review. Gastroenterology 2024, 166, 521–532. [Google Scholar] [CrossRef]
- Haas, S.V.; Haas, M.P. The Treatment of Celiac Disease with the Specific Carbohydrate Diet; Report on 191 Additional Cases. Am. J. Gastroenterol. 1955, 23, 344–360. [Google Scholar]
- Dixon, L.J.; Kabi, A.; Nickerson, K.P.; McDonald, C. Combinatorial Effects of Diet and Genetics on Inflammatory Bowel Disease Pathogenesis. Inflamm. Bowel Dis. 2015, 21, 912–922. [Google Scholar] [CrossRef]
- Suskind, D.L.; Wahbeh, G.; Gregory, N.; Vendettuoli, H.; Christie, D. Nutritional Therapy in Pediatric Crohn Disease: The Specific Carbohydrate Diet. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Obih, C.; Wahbeh, G.; Lee, D.; Braly, K.; Giefer, M.; Shaffer, M.L.; Nielson, H.; Suskind, D.L. Specific Carbohydrate Diet for Pediatric Inflammatory Bowel Disease in Clinical Practice Within an Academic IBD Center. Nutrition 2016, 32, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Kakodkar, S.; Farooqui, A.J.; Mikolaitis, S.L.; Mutlu, E.A. The Specific Carbohydrate Diet for Inflammatory Bowel Disease: A Case Series. J. Acad. Nutr. Diet. 2015, 115, 1226–1232. [Google Scholar] [CrossRef]
- Suskind, D.L.; Cohen, S.A.; Brittnacher, M.J.; Wahbeh, G.; Lee, D.; Shaffer, M.L.; Braly, K.; Hayden, H.S.; Klein, J.; Gold, B.; et al. Clinical and Fecal Microbial Changes with Diet Therapy in Active Inflammatory Bowel Disease. J. Clin. Gastroenterol. 2018, 52, 155–163. [Google Scholar] [CrossRef]
- Kaplan, H.C.; Opipari-Arrigan, L.; Yang, J.; Schmid, C.H.; Schuler, C.L.; Saeed, S.A.; Braly, K.L.; Chang, F.; Murphy, L.; Dodds, C.M.; et al. Personalized Research on Diet in Ulcerative Colitis and Crohn’s Disease: A Series of N-of-1 Diet Trials. Am. J. Gastroenterol. 2022, 117, 902–917. [Google Scholar] [CrossRef]
- Suskind, D.L.; Wahbeh, G.; Cohen, S.A.; Damman, C.J.; Klein, J.; Braly, K.; Shaffer, M.; Lee, D. Patients Perceive Clinical Benefit with the Specific Carbohydrate Diet for Inflammatory Bowel Disease. Dig. Dis. Sci. 2016, 61, 3255–3260. [Google Scholar] [CrossRef] [PubMed]
- Lorenz-Meyer, H.; Bauer, P.; Nicolay, C.; Schulz, B.; Purrmann, J.; Fleig, W.E.; Scheurlen, C.; Koop, I.; Pudel, V.; Carr, L. Omega-3 Fatty Acids and Low Carbohydrate Diet for Maintenance of Remission in Crohn’s Disease: A Randomized Controlled Multicenter Trial. Scand. J. Gastroenterol. 1996, 31, 778–785. [Google Scholar] [CrossRef]
- Ritchie, J.K.; Wadsworth, J.; Lennard-Jones, J.E.; Rogers, E. Controlled Multicentre Therapeutic Trial of an Unrefined Carbohydrate, Fibre Rich Diet in Crohn’s Disease. Br. Med. J. Clin. Res. Ed. 1987, 295, 517–520. [Google Scholar] [CrossRef] [PubMed]
- Kakodkar, S.; Mikolaitis, S.; Engen, P.; Mutlu, E. The Bacterial Microbiome of IBD Patients on the Specific Carbohydrate Diet (SCD): 1828. Off. J. Am. Coll. Gastroenterol. ACG 2013, 108, S552. [Google Scholar] [CrossRef]
- Gibson, P.R.; Yao, C.K.; Halmos, E.P. Review Article: Evidence-Based Dietary Management of Inflammatory Bowel Disease. Aliment. Pharmacol. Ther. 2024, 60, 1215–1233. [Google Scholar] [CrossRef]
- Braly, K.; Williamson, N.; Shaffer, M.L.; Lee, D.; Wahbeh, G.; Klein, J.; Giefer, M.; Suskind, D.L. Nutritional Adequacy of the Specific Carbohydrate Diet in Pediatric Inflammatory Bowel Disease. J. Pediatr. Gastroenterol. Nutr. 2017, 65, 533–538. [Google Scholar] [CrossRef]
- Wellens, J.; Sabino, J.; Vanuytsel, T.; Tack, J.; Vermeire, S. Recent Advances in Clinical Practice: Mastering the Challenge-Managing IBS Symptoms in IBD. Gut 2025, 74, 312–321. [Google Scholar] [CrossRef]
- Oka, P.; Parr, H.; Barberio, B.; Black, C.J.; Savarino, E.V.; Ford, A.C. Global Prevalence of Irritable Bowel Syndrome According to Rome III or IV Criteria: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 908–917. [Google Scholar] [CrossRef]
- Fairbrass, K.M.; Costantino, S.J.; Gracie, D.J.; Ford, A.C. Prevalence of Irritable Bowel Syndrome-Type Symptoms in Patients with Inflammatory Bowel Disease in Remission: A Systematic Review and Meta-Analysis. Lancet Gastroenterol. Hepatol. 2020, 5, 1053–1062. [Google Scholar] [CrossRef]
- Bertin, L.; Zanconato, M.; Crepaldi, M.; Marasco, G.; Cremon, C.; Barbara, G.; Barberio, B.; Zingone, F.; Savarino, E.V. The Role of the FODMAP Diet in IBS. Nutrients 2024, 16, 370. [Google Scholar] [CrossRef]
- Singh, P.; Chey, S.W.; Nee, J.; Eswaran, S.; Dietary Therapy in IBS Working Group; Lembo, A.; Chey, W.D. Is a Simplified, Less Restrictive Low FODMAP Diet Possible? Results from a Double-Blind, Pilot Randomized Controlled Trial. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2025, 23, 362–364.e2. [Google Scholar] [CrossRef] [PubMed]
- Bodini, G.; Zanella, C.; Crespi, M.; Lo Pumo, S.; Demarzo, M.G.; Savarino, E.; Savarino, V.; Giannini, E.G. A Randomized, 6-Wk Trial of a Low FODMAP Diet in Patients with Inflammatory Bowel Disease. Nutrition 2019, 67–68, 110542. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, N.; Ankersen, D.V.; Felding, M.; Wachmann, H.; Végh, Z.; Molzen, L.; Burisch, J.; Andersen, J.R.; Munkholm, P. Low-FODMAP Diet Reduces Irritable Bowel Symptoms in Patients with Inflammatory Bowel Disease. World J. Gastroenterol. 2017, 23, 3356–3366. [Google Scholar] [CrossRef]
- Peng, Z.; Yi, J.; Liu, X. A Low-FODMAP Diet Provides Benefits for Functional Gastrointestinal Symptoms but Not for Improving Stool Consistency and Mucosal Inflammation in IBD: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 2072. [Google Scholar] [CrossRef]
- Cox, S.R.; Lindsay, J.O.; Fromentin, S.; Stagg, A.J.; McCarthy, N.E.; Galleron, N.; Ibraim, S.B.; Roume, H.; Levenez, F.; Pons, N.; et al. Effects of Low FODMAP Diet on Symptoms, Fecal Microbiome, and Markers of Inflammation in Patients with Quiescent Inflammatory Bowel Disease in a Randomized Trial. Gastroenterology 2020, 158, 176–188.e7. [Google Scholar] [CrossRef]
- Uno, Y. Why a Low FODMAP Diet Was Ineffective for IBS Symptoms in Quiescent Crohn’s Disease. Gastroenterology 2020, 159, 399. [Google Scholar] [CrossRef] [PubMed]
- Halmos, E.P. A Low FODMAP Diet in Patients with Crohn’s Disease. J. Gastroenterol. Hepatol. 2016, 31, 14–15. [Google Scholar] [CrossRef]
- Halmos, E.P.; Christophersen, C.T.; Bird, A.R.; Shepherd, S.J.; Muir, J.G.; Gibson, P.R. Consistent Prebiotic Effect on Gut Microbiota With Altered FODMAP Intake in Patients with Crohn’s Disease: A Randomised, Controlled Cross-Over Trial of Well-Defined Diets. Clin. Transl. Gastroenterol. 2016, 7, e164. [Google Scholar] [CrossRef]
- Zhan, Y.; Zhan, Y.-A.; Dai, S.-X. Is a Low FODMAP Diet Beneficial for Patients with Inflammatory Bowel Disease? A Meta-Analysis and Systematic Review. Clin. Nutr. Edinb. Scotl. 2018, 37, 123–129. [Google Scholar] [CrossRef]
- Elhusseiny, M.H.; Amine, A.K.; Salem, O.E.; Tayel, D.I.; Elsayed, E.A. Low FODMAP Diet in Egyptian Patients with Crohn’s Disease in Remission Phase with Functional Gastrointestinal Symptoms. JGH Open Open Access J. Gastroenterol. Hepatol. 2018, 2, 15–20. [Google Scholar] [CrossRef]
- Moreau, L.A.; Ford, A.C.; Brookes, M.J.; Graca, S.; Guthrie, E.; Hartley, S.; Houghton, L.; Kemp, K.; Kennedy, N.A.; McKenzie, Y.; et al. Management of Diarrhoea in Patients with Stable Ulcerative Colitis with Low FODMAP Diet, Amitriptyline, Ondansetron or Loperamide: The MODULATE RCT. Health Technol. Assess. Winch. Engl. 2025, 12, 1–30. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Whelan, K. The Low FODMAP Diet: Recent Advances in Understanding Its Mechanisms and Efficacy in IBS. Gut 2017, 66, 1517–1527. [Google Scholar] [CrossRef] [PubMed]
- Pessarelli, T.; Sorge, A.; Elli, L.; Costantino, A. The Low-FODMAP Diet and the Gluten-Free Diet in the Management of Functional Abdominal Bloating and Distension. Front. Nutr. 2022, 9, 1007716. [Google Scholar] [CrossRef]
- Vandeputte, D.; Joossens, M. Effects of Low and High FODMAP Diets on Human Gastrointestinal Microbiota Composition in Adults with Intestinal Diseases: A Systematic Review. Microorganisms 2020, 8, 1638. [Google Scholar] [CrossRef]
- So, D.; Loughman, A.; Staudacher, H.M. Effects of a Low FODMAP Diet on the Colonic Microbiome in Irritable Bowel Syndrome: A Systematic Review with Meta-Analysis. Am. J. Clin. Nutr. 2022, 116, 943–952. [Google Scholar] [CrossRef]
- Gwioździk, W.; Krupa-Kotara, K.; Całyniuk, B.; Helisz, P.; Grajek, M.; Głogowska-Ligus, J. Traditional, Vegetarian, or Low FODMAP Diets and Their Relation to Symptoms of Eating Disorders: A Cross-Sectional Study Among Young Women in Poland. Nutrients 2022, 14, 4125. [Google Scholar] [CrossRef] [PubMed]
- Staudacher, H.M.; Ralph, F.S.E.; Irving, P.M.; Whelan, K.; Lomer, M.C.E. Nutrient Intake, Diet Quality, and Diet Diversity in Irritable Bowel Syndrome and the Impact of the Low FODMAP Diet. J. Acad. Nutr. Diet. 2020, 120, 535–547. [Google Scholar] [CrossRef]
- Singh, P.; Tuck, C.; Gibson, P.R.; Chey, W.D. The Role of Food in the Treatment of Bowel Disorders: Focus on Irritable Bowel Syndrome and Functional Constipation. Am. J. Gastroenterol. 2022, 117, 947–957. [Google Scholar] [CrossRef]
- Black, C.J.; Staudacher, H.M.; Ford, A.C. Efficacy of a Low FODMAP Diet in Irritable Bowel Syndrome: Systematic Review and Network Meta-Analysis. Gut 2022, 71, 1117–1126. [Google Scholar] [CrossRef]
- Olendzki, B.C.; Silverstein, T.D.; Persuitte, G.M.; Ma, Y.; Baldwin, K.R.; Cave, D. An Anti-Inflammatory Diet as Treatment for Inflammatory Bowel Disease: A Case Series Report. Nutr. J. 2014, 13, 5. [Google Scholar] [CrossRef]
- Keshteli, A.H.; Valcheva, R.; Nickurak, C.; Park, H.; Mandal, R.; van Diepen, K.; Kroeker, K.I.; van Zanten, S.V.; Halloran, B.; Wishart, D.S.; et al. Anti-Inflammatory Diet Prevents Subclinical Colonic Inflammation and Alters Metabolomic Profile of Ulcerative Colitis Patients in Clinical Remission. Nutrients 2022, 14, 3294. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, N.H.; Manaf, Z.A.; Mokhtar, N.M.; Raja Ali, R.A. Anti-Inflammatory Diet and Inflammatory Bowel Disease: What Clinicians and Patients Should Know? Intest. Res. 2021, 19, 171–185. [Google Scholar] [CrossRef] [PubMed]
- Fackelmann, G.; Manghi, P.; Carlino, N.; Heidrich, V.; Piccinno, G.; Ricci, L.; Piperni, E.; Arrè, A.; Bakker, E.; Creedon, A.C.; et al. Gut Microbiome Signatures of Vegan, Vegetarian and Omnivore Diets and Associated Health Outcomes across 21,561 Individuals. Nat. Microbiol. 2025, 10, 41–52. [Google Scholar] [CrossRef] [PubMed]
- Sidhu, S.R.K.; Kok, C.W.; Kunasegaran, T.; Ramadas, A. Effect of Plant-Based Diets on Gut Microbiota: A Systematic Review of Interventional Studies. Nutrients 2023, 15, 1510. [Google Scholar] [CrossRef]
- Ross, F.C.; Patangia, D.; Grimaud, G.; Lavelle, A.; Dempsey, E.M.; Ross, R.P.; Stanton, C. The Interplay Between Diet and the Gut Microbiome: Implications for Health and Disease. Nat. Rev. Microbiol. 2024, 22, 671–686. [Google Scholar] [CrossRef]
- Liu, G.X.H.; Day, A.S. Plant-Based Diets for Inflammatory Bowel Disease: What Is the Evidence? Inflamm. Bowel Dis. 2024, 30, 1865–1876. [Google Scholar] [CrossRef]
- Chiba, M.; Abe, T.; Tsuda, H.; Sugawara, T.; Tsuda, S.; Tozawa, H.; Fujiwara, K.; Imai, H. Lifestyle-Related Disease in Crohn’s Disease: Relapse Prevention by a Semi-Vegetarian Diet. World J. Gastroenterol. WJG 2010, 16, 2484–2495. [Google Scholar] [CrossRef]
- Chen, J.; Sun, Y.; Dan, L.; Wellens, J.; Yuan, S.; Yang, H.; Tong, T.Y.N.; Cross, A.J.; Papadimitriou, N.; Meyer, A.; et al. Composition of Plant-Based Diets and the Incidence and Prognosis of Inflammatory Bowel Disease: A Multinational Retrospective Cohort Study. Lancet Reg. Health—Eur. 2025, 52, 101264. [Google Scholar] [CrossRef]
- Ahrens, A.P.; Culpepper, T.; Saldivar, B.; Anton, S.; Stoll, S.; Handberg, E.M.; Xu, K.; Pepine, C.; Triplett, E.W.; Aggarwal, M. A Six-Day, Lifestyle-Based Immersion Program Mitigates Cardiovascular Risk Factors and Induces Shifts in Gut Microbiota, Specifically Lachnospiraceae, Ruminococcaceae, Faecalibacterium Prausnitzii: A Pilot Study. Nutrients 2021, 13, 3459. [Google Scholar] [CrossRef]
- Malhotra, A.; Lakade, A. Analytical Review on Nutritional Deficiencies in Vegan Diets: Risks, Prevention, and Optimal Strategies. J. Am. Nutr. Assoc. 2025, 1–11. [Google Scholar] [CrossRef]
- Teigen, L.M.; Geng, Z.; Sadowsky, M.J.; Vaughn, B.P.; Hamilton, M.J.; Khoruts, A. Dietary Factors in Sulfur Metabolism and Pathogenesis of Ulcerative Colitis. Nutrients 2019, 11, 931. [Google Scholar] [CrossRef] [PubMed]
- Stummer, N.; Feichtinger, R.G.; Weghuber, D.; Kofler, B.; Schneider, A.M. Role of Hydrogen Sulfide in Inflammatory Bowel Disease. Antioxidants 2023, 12, 1570. [Google Scholar] [CrossRef] [PubMed]
- Rowan, F.E.; Docherty, N.G.; Coffey, J.C.; O’Connell, P.R. Sulphate-Reducing Bacteria and Hydrogen Sulphide in the Aetiology of Ulcerative Colitis. Br. J. Surg. 2009, 96, 151–158. [Google Scholar] [CrossRef]
- Day, A.S.; Yao, C.K.; Costello, S.P.; Ruszkiewicz, A.; Andrews, J.M.; Gibson, P.R.; Bryant, R.V. Therapeutic Potential of the 4 Strategies to SUlfide-REduction (4-SURE) Diet in Adults with Mild to Moderately Active Ulcerative Colitis: An Open-Label Feasibility Study. J. Nutr. 2022, 152, 1690–1701. [Google Scholar] [CrossRef] [PubMed]
- Sarbagili-Shabat, C.; Albenberg, L.; Van Limbergen, J.; Pressman, N.; Otley, A.; Yaakov, M.; Wine, E.; Weiner, D.; Levine, A. A Novel UC Exclusion Diet and Antibiotics for Treatment of Mild to Moderate Pediatric Ulcerative Colitis: A Prospective Open-Label Pilot Study. Nutrients 2021, 13, 3736. [Google Scholar] [CrossRef]
- Leibovitzh, H.; Sarbagili Shabat, C.; Hirsch, A.; Zittan, E.; Mentella, M.C.; Petito, V.; Cohen, N.A.; Ron, Y.; Fliss Isakov, N.; Pfeffer, J.; et al. Faecal Transplantation for Ulcerative Colitis from Diet Conditioned Donors Followed by Dietary Intervention Results in Favourable Gut Microbial Profile Compared to Faecal Transplantation Alone. J. Crohns Colitis 2024, 18, 1606–1614. [Google Scholar] [CrossRef]
- Khalil, N.A.; Walton, G.E.; Gibson, G.R.; Tuohy, K.M.; Andrews, S.C. In Vitro Batch Cultures of Gut Microbiota from Healthy and Ulcerative Colitis (UC) Subjects Suggest That Sulphate-Reducing Bacteria Levels Are Raised in UC and by a Protein-Rich Diet. Int. J. Food Sci. Nutr. 2014, 65, 79–88. [Google Scholar] [CrossRef]
- Sandall, A.M.; Cox, S.R.; Lindsay, J.O.; Gewirtz, A.T.; Chassaing, B.; Rossi, M.; Whelan, K. Emulsifiers Impact Colonic Length in Mice and Emulsifier Restriction Is Feasible in People with Crohn’s Disease. Nutrients 2020, 12, 2827. [Google Scholar] [CrossRef]
- Fitzpatrick, J.A.; Gibson, P.R.; Taylor, K.M.; Anderson, E.J.; Friedman, A.B.; Ardalan, Z.S.; Smith, R.L.; Halmos, E.P. Clinical Trial: The Effects of Emulsifiers in the Food Supply on Disease Activity in Crohn’s Disease: An Exploratory Double-Blinded Randomised Feeding Trial. Aliment. Pharmacol. Ther. 2025, 61, 1276–1289. [Google Scholar] [CrossRef] [PubMed]
- Bancil, A.; Rossi, M.; Sandall, A.; Cox, S.; Dalrymple, K.; Kelaiditis, C.; Buckley, A.; Burke, S.; Xu, Y.; Smith, L.; et al. DOP097 Emulsifier Restriction Is an Effective Therapy for Active Crohn’s Disease: The ADDapt Trial—A Multi-Centre, Randomised, Double-Blind, Placebo-Controlled, Re-Supplementation Trial in 154 Patients. J. Crohns Colitis 2025, 19, i262. [Google Scholar] [CrossRef]
- Aharoni Frutkoff, Y.; Plotkin, L.; Shavit, Z.; Focht, G.; Livovsky, J.; Lev-Zion, R.; Ledder, O.; Assa, A.; Yogev, D.; Orlanski-Meyer, E.; et al. OP02 Tasty & Healthy Flexible Diet Induces Clinical and Biological Remission in Children and Young Adults with Mild-Moderate Crohn’s Disease Similar to EEN: Results from the “TASTI-MM” Randomized, Physician-Blinded, Controlled Trial. J. Crohns Colitis 2025, 19, i4. [Google Scholar] [CrossRef]
- O’Neill, B.; Raggi, P. The Ketogenic Diet: Pros and Cons. Atherosclerosis 2020, 292, 119–126. [Google Scholar] [CrossRef]
- Sampaio, L.P.d.B. Ketogenic Diet for Epilepsy Treatment. Arq. Neuropsiquiatr. 2016, 74, 842–848. [Google Scholar] [CrossRef] [PubMed]
- Dyńka, D.; Kowalcze, K.; Paziewska, A. The Role of Ketogenic Diet in the Treatment of Neurological Diseases. Nutrients 2022, 14, 5003. [Google Scholar] [CrossRef]
- Li, S.; Zhuge, A.; Wang, K.; Lv, L.; Bian, X.; Yang, L.; Xia, J.; Jiang, X.; Wu, W.; Wang, S.; et al. Ketogenic Diet Aggravates Colitis, Impairs Intestinal Barrier and Alters Gut Microbiota and Metabolism in DSS-Induced Mice. Food Funct. 2021, 12, 10210–10225. [Google Scholar] [CrossRef]
- Kong, C.; Yan, X.; Liu, Y.; Huang, L.; Zhu, Y.; He, J.; Gao, R.; Kalady, M.F.; Goel, A.; Qin, H.; et al. Ketogenic Diet Alleviates Colitis by Reduction of Colonic Group 3 Innate Lymphoid Cells through Altering Gut Microbiome. Signal Transduct. Target. Ther. 2021, 6, 154. [Google Scholar] [CrossRef]
- Norwitz, N.G.; Soto-Mota, A. Case Report: Carnivore-Ketogenic Diet for the Treatment of Inflammatory Bowel Disease: A Case Series of 10 Patients. Front. Nutr. 2024, 11, 1467475. [Google Scholar] [CrossRef]
- Rew, L.; Harris, M.D.; Goldie, J. The Ketogenic Diet: Its Impact on Human Gut Microbiota and Potential Consequent Health Outcomes: A Systematic Literature Review. Gastroenterol. Hepatol. Bed Bench 2022, 15, 326–342. [Google Scholar] [CrossRef] [PubMed]
- Popiolek-Kalisz, J. Ketogenic Diet and Cardiovascular Risk—State of the Art Review. Curr. Probl. Cardiol. 2024, 49, 102402. [Google Scholar] [CrossRef]
- Zingone, F.; Zanini, A. Chapter 12—Gluten Free Diet, Assessment of Its Adherence, and Quality of Life. In Pediatric and Adult Celiac Disease; Corazza, G.R., Troncone, R., Lenti, M.V., Silano, M., Eds.; Academic Press: Cambridge, MA, USA, 2024; pp. 189–198. ISBN 978-0-443-13359-6. [Google Scholar]
- Marsilio, I.; Canova, C.; D’Odorico, A.; Ghisa, M.; Zingone, L.; Lorenzon, G.; Savarino, E.V.; Zingone, F. Quality-of-Life Evaluation in Coeliac Patients on a Gluten-Free Diet. Nutrients 2020, 12, 2981. [Google Scholar] [CrossRef]
- Schiepatti, A.; Maimaris, S.; Randazzo, S.; Maniero, D.; Biti, R.; Caio, G.; Lungaro, L.; Carroccio, A.; Seidita, A.; Scalvini, D.; et al. Resilience in Adult Coeliac Patients on a Gluten-Free Diet: A Cross-Sectional Multicentre Italian Study. Nutrients 2024, 16, 2595. [Google Scholar] [CrossRef] [PubMed]
- Zingone, F.; Bartalini, C.; Siniscalchi, M.; Ruotolo, M.; Bucci, C.; Morra, I.; Iovino, P.; Ciacci, C. Alterations in Diets of Patients with Nonceliac Gluten Sensitivity Compared With Healthy Individuals. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2017, 15, 63–68.e2. [Google Scholar] [CrossRef]
- Catassi, C.; Alaedini, A.; Bojarski, C.; Bonaz, B.; Bouma, G.; Carroccio, A.; Castillejo, G.; De Magistris, L.; Dieterich, W.; Di Liberto, D.; et al. The Overlapping Area of Non-Celiac Gluten Sensitivity (NCGS) and Wheat-Sensitive Irritable Bowel Syndrome (IBS): An Update. Nutrients 2017, 9, 1268. [Google Scholar] [CrossRef] [PubMed]
- Herfarth, H.H.; Martin, C.F.; Sandler, R.S.; Kappelman, M.D.; Long, M.D. Prevalence of a Gluten-Free Diet and Improvement of Clinical Symptoms in Patients with Inflammatory Bowel Diseases. Inflamm. Bowel Dis. 2014, 20, 1194–1197. [Google Scholar] [CrossRef]
- Zingone, F.; Bertin, L.; Maniero, D.; Palo, M.; Lorenzon, G.; Barberio, B.; Ciacci, C.; Savarino, E.V. Myths and Facts about Food Intolerance: A Narrative Review. Nutrients 2023, 15, 4969. [Google Scholar] [CrossRef]
- Haskey, N.; Gibson, D.L. An Examination of Diet for the Maintenance of Remission in Inflammatory Bowel Disease. Nutrients 2017, 9, 259. [Google Scholar] [CrossRef]
- Charlebois, A.; Rosenfeld, G.; Bressler, B. The Impact of Dietary Interventions on the Symptoms of Inflammatory Bowel Disease: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2016, 56, 1370–1378. [Google Scholar] [CrossRef] [PubMed]
- Levenstein, S.; Prantera, C.; Luzi, C.; D’Ubaldi, A. Low Residue or Normal Diet in Crohn’s Disease: A Prospective Controlled Study in Italian Patients. Gut 1985, 26, 989–993. [Google Scholar] [CrossRef]
- Woolner, J.; Parker, T.; Kirby, G.; Hunter, J. The Development and Evaluation of a Diet for Maintaining Remission in Crohn’s Disease. J. Hum. Nutr. Diet. 1998, 11, 1–11. [Google Scholar] [CrossRef]
- Vanhauwaert, E.; Matthys, C.; Verdonck, L.; De Preter, V. Low-Residue and Low-Fiber Diets in Gastrointestinal Disease Management. Adv. Nutr. 2015, 6, 820–827. [Google Scholar] [CrossRef]
- Wedlake, L.; Slack, N.; Andreyev, H.J.N.; Whelan, K. Fiber in the Treatment and Maintenance of Inflammatory Bowel Disease: A Systematic Review of Randomized Controlled Trials. Inflamm. Bowel Dis. 2014, 20, 576–586. [Google Scholar] [CrossRef]
- Makki, K.; Deehan, E.C.; Walter, J.; Bäckhed, F. The Impact of Dietary Fiber on Gut Microbiota in Host Health and Disease. Cell Host Microbe 2018, 23, 705–715. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, E.D.; Sonnenburg, J.L. Starving Our Microbial Self: The Deleterious Consequences of a Diet Deficient in Microbiota-Accessible Carbohydrates. Cell Metab. 2014, 20, 779–786. [Google Scholar] [CrossRef] [PubMed]
- Ferenc, K.; Jarmakiewicz-Czaja, S.; Filip, R. Components of the Fiber Diet in the Prevention and Treatment of IBD-An Update. Nutrients 2022, 15, 162. [Google Scholar] [CrossRef]
- Hallert, C.; Björck, I.; Nyman, M.; Pousette, A.; Grännö, C.; Svensson, H. Increasing Fecal Butyrate in Ulcerative Colitis Patients by Diet: Controlled Pilot Study. Inflamm. Bowel Dis. 2003, 9, 116–121. [Google Scholar] [CrossRef] [PubMed]
- James, S.L.; Christophersen, C.T.; Bird, A.R.; Conlon, M.A.; Rosella, O.; Gibson, P.R.; Muir, J.G. Abnormal Fibre Usage in UC in Remission. Gut 2015, 64, 562–570. [Google Scholar] [CrossRef]
- Fritsch, J.; Garces, L.; Quintero, M.A.; Pignac-Kobinger, J.; Santander, A.M.; Fernández, I.; Ban, Y.J.; Kwon, D.; Phillips, M.C.; Knight, K.; et al. Low-Fat, High-Fiber Diet Reduces Markers of Inflammation and Dysbiosis and Improves Quality of Life in Patients with Ulcerative Colitis. Clin. Gastroenterol. Hepatol. 2021, 19, 1189–1199.e30. [Google Scholar] [CrossRef]
- Brotherton, C.S.; Taylor, A.G.; Bourguignon, C.; Anderson, J.G. A High-Fiber Diet May Improve Bowel Function and Health-Related Quality of Life in Patients with Crohn Disease. Gastroenterol. Nurs. Off. J. Soc. Gastroenterol. Nurses Assoc. 2014, 37, 206–216. [Google Scholar] [CrossRef]
- Brotherton, C.S.; Martin, C.A.; Long, M.D.; Kappelman, M.D.; Sandler, R.S. Avoidance of Fiber Is Associated with Greater Risk of Crohn’s Disease Flare in a 6-Month Period. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2016, 14, 1130–1136. [Google Scholar] [CrossRef]
- Serrano Fernandez, V.; Seldas Palomino, M.; Laredo-Aguilera, J.A.; Pozuelo-Carrascosa, D.P.; Carmona-Torres, J.M. High-Fiber Diet and Crohn’s Disease: Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3114. [Google Scholar] [CrossRef]
- Narula, N.; Wong, E.C.L.; Moayyedi, P.; Reinisch, W.; Marshall, J.K. Pilot Study of an Elimination Diet in Adults with Mild to Moderate Crohn’s Disease. Eur. J. Gastroenterol. Hepatol. 2022, 34, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Bentz, S.; Hausmann, M.; Piberger, H.; Kellermeier, S.; Paul, S.; Held, L.; Falk, W.; Obermeier, F.; Fried, M.; Schölmerich, J.; et al. Clinical Relevance of IgG Antibodies against Food Antigens in Crohn’s Disease: A Double-Blind Cross-Over Diet Intervention Study. Digestion 2010, 81, 252–264. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, N.; Kumar, D. Food-Specific IgG4-Guided Exclusion Diets Improve Symptoms in Crohn’s Disease: A Pilot Study. Colorectal Dis. 2011, 13, 1009–1013. [Google Scholar] [CrossRef]
- Aydinlar, E.I.; Dikmen, P.Y.; Tiftikci, A.; Saruc, M.; Aksu, M.; Gunsoy, H.G.; Tozun, N. IgG-Based Elimination Diet in Migraine plus Irritable Bowel Syndrome. Headache 2013, 53, 514–525. [Google Scholar] [CrossRef]
- Zar, S.; Mincher, L.; Benson, M.J.; Kumar, D. Food-Specific IgG4 Antibody-Guided Exclusion Diet Improves Symptoms and Rectal Compliance in Irritable Bowel Syndrome. Scand. J. Gastroenterol. 2005, 40, 800–807. [Google Scholar] [CrossRef]
- Atkinson, W.; Sheldon, T.A.; Shaath, N.; Whorwell, P.J. Food Elimination Based on IgG Antibodies in Irritable Bowel Syndrome: A Randomised Controlled Trial. Gut 2004, 53, 1459–1464. [Google Scholar] [CrossRef] [PubMed]
- Ostrowska, L.; Wasiluk, D.; Lieners, C.F.J.; Gałęcka, M.; Bartnicka, A.; Tveiten, D. Igg Food Antibody Guided Elimination-Rotation Diet Was More Effective than FODMAP Diet and Control Diet in the Treatment of Women with Mixed IBS—Results from an Open Label Study. J. Clin. Med. 2021, 10, 4317. [Google Scholar] [CrossRef]
- Singh, P.; Chey, W.D.; Takakura, W.; Cash, B.D.; Lacy, B.E.; Quigley, E.M.M.; Randall, C.W.; Lembo, A. A Novel, IBS-Specific IgG ELISA-Based Elimination Diet in Irritable Bowel Syndrome: A Randomized, Sham-Controlled Trial. Gastroenterology 2025, 168, 1128–1136.e4. [Google Scholar] [CrossRef]
- Svolos, V.; Hansen, R.; Nichols, B.; Quince, C.; Ijaz, U.Z.; Papadopoulou, R.T.; Edwards, C.A.; Watson, D.; Alghamdi, A.; Brejnrod, A.; et al. Treatment of Active Crohn’s Disease With an Ordinary Food-Based Diet That Replicates Exclusive Enteral Nutrition. Gastroenterology 2019, 156, 1354–1367.e6. [Google Scholar] [CrossRef]
- Wright, R.; Truelove, S.C. A Controlled Therapeutic Trial of Various Diets in Ulcerative Colitis. Br. Med. J. 1965, 2, 138–141. [Google Scholar] [CrossRef]
- Strisciuglio, C.; Giannetti, E.; Martinelli, M.; Sciorio, E.; Staiano, A.; Miele, E. Does Cow’s Milk Protein Elimination Diet Have a Role on Induction and Maintenance of Remission in Children with Ulcerative Colitis? Acta Paediatr. 2013, 102, e273–e278. [Google Scholar] [CrossRef]
- Albenberg, L.; Brensinger, C.M.; Wu, Q.; Gilroy, E.; Kappelman, M.D.; Sandler, R.S.; Lewis, J.D. A Diet Low in Red and Processed Meat Does Not Reduce Rate of Crohn’s Disease Flares. Gastroenterology 2019, 157, 128–136.e5. [Google Scholar] [CrossRef]
- Lomer, M.C.; Harvey, R.S.; Evans, S.M.; Thompson, R.P.; Powell, J.J. Efficacy and Tolerability of a Low Microparticle Diet in a Double Blind, Randomized, Pilot Study in Crohn’s Disease. Eur. J. Gastroenterol. Hepatol. 2001, 13, 101–106. [Google Scholar] [CrossRef]
- Lomer, M.C.E.; Grainger, S.L.; Ede, R.; Catterall, A.P.; Greenfield, S.M.; Cowan, R.E.; Vicary, F.R.; Jenkins, A.P.; Fidler, H.; Harvey, R.S.; et al. Lack of Efficacy of a Reduced Microparticle Diet in a Multi-Centred Trial of Patients with Active Crohn’s Disease. Eur. J. Gastroenterol. Hepatol. 2005, 17, 377–384. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Shumard, T.; Xie, H.; Dodda, A.; Varady, K.A.; Feferman, L.; Halline, A.G.; Goldstein, J.L.; Hanauer, S.B.; Tobacman, J.K. A Randomized Trial of the Effects of the No-Carrageenan Diet on Ulcerative Colitis Disease Activity. Nutr. Healthy Aging 2017, 4, 181–192. [Google Scholar] [CrossRef]
- Sun, V.; Grant, M.; Wendel, C.S.; McMullen, C.K.; Bulkley, J.E.; Altschuler, A.; Ramirez, M.; Baldwin, C.M.; Herrinton, L.J.; Hornbrook, M.C.; et al. Dietary and Behavioral Adjustments to Manage Bowel Dysfunction After Surgery in Long-Term Colorectal Cancer Survviors. Ann. Surg. Oncol. 2015, 22, 4317–4324. [Google Scholar] [CrossRef]
- Croagh, C.; Shepherd, S.J.; Berryman, M.; Muir, J.G.; Gibson, P.R. Pilot Study on the Effect of Reducing Dietary FODMAP Intake on Bowel Function in Patients without a Colon. Inflamm. Bowel Dis. 2007, 13, 1522–1528. [Google Scholar] [CrossRef]
- Ardalan, Z.S.; Yao, C.K.; Green, K.; Probert, C.; Gill, P.A.; Rosella, S.; Muir, J.G.; Sparrow, M.P.; Gibson, P.R. A Novel Monash Pouch Diet in Patients with an Ileoanal Pouch Is Tolerable and Has Favorable Metabolic Luminal Effects. JGH Open Open Access J. Gastroenterol. Hepatol. 2023, 7, 942–952. [Google Scholar] [CrossRef]
- Shen, B. Pouchitis: Pathophysiology and Management. Nat. Rev. Gastroenterol. Hepatol. 2024, 21, 463–476. [Google Scholar] [CrossRef] [PubMed]
- Bertin, L.; Nasrallah, M.; Redavid, C.; Bonazzi, E.; Maniero, D.; Lorenzon, G.; De Barba, C.; Facchin, S.; Scarpa, M.; Ruffolo, C.; et al. Risk Factors and Postoperative Outcomes in Pouchitis Following Restorative Proctocolectomy: An 18-Year Single-Center Study. Gastroenterol. Insights 2024, 15, 1075–1092. [Google Scholar] [CrossRef]
- Ianco, O.; Tulchinsky, H.; Lusthaus, M.; Ofer, A.; Santo, E.; Vaisman, N.; Dotan, I. Diet of Patients after Pouch Surgery May Affect Pouch Inflammation. World J. Gastroenterol. WJG 2013, 19, 6458–6464. [Google Scholar] [CrossRef]
- Godny, L.; Maharshak, N.; Reshef, L.; Goren, I.; Yahav, L.; Fliss-Isakov, N.; Gophna, U.; Tulchinsky, H.; Dotan, I. Fruit Consumption Is Associated with Alterations in Microbial Composition and Lower Rates of Pouchitis. J. Crohns Colitis 2019, 13, 1265–1272. [Google Scholar] [CrossRef]
- Godny, L.; Reshef, L.; Pfeffer-Gik, T.; Goren, I.; Yanai, H.; Tulchinsky, H.; Gophna, U.; Dotan, I. Adherence to the Mediterranean Diet Is Associated with Decreased Fecal Calprotectin in Patients with Ulcerative Colitis after Pouch Surgery. Eur. J. Nutr. 2020, 59, 3183–3190. [Google Scholar] [CrossRef]
- Ardalan, Z.S.; Livingstone, K.M.; Polzella, L.; Avakian, J.; Rohani, F.; Sparrow, M.P.; Gibson, P.R.; Yao, C.K. Perceived Dietary Intolerances, Habitual Intake and Diet Quality of Patients with an Ileoanal Pouch: Associations with Pouch Phenotype (and Behaviour). Clin. Nutr. Edinb. Scotl. 2023, 42, 2095–2108. [Google Scholar] [CrossRef]
- McLaughlin, S.D.; Culkin, A.; Cole, J.; Clark, S.K.; Tekkis, P.P.; Ciclitira, P.J.; Nicholls, R.J.; Whelan, K. Exclusive Elemental Diet Impacts on the Gastrointestinal Microbiota and Improves Symptoms in Patients with Chronic Pouchitis. J. Crohns Colitis 2013, 7, 460–466. [Google Scholar] [CrossRef]
- Fliss Isakov, N.; Kornblum, J.; Zemel, M.; Cohen, N.A.; Hirsch, A.; Maharshak, N. The Effect of the Crohn’s Disease Exclusion Diet on Patients with Pouch Inflammation: An Interventional Pilot Study. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2023, 21, 1654–1656.e3. [Google Scholar] [CrossRef]
- Adamina, M.; Minozzi, S.; Warusavitarne, J.; Buskens, C.; Chaparro, M.; Verstockt, B.; Kopylov, U.; Agrawal, M.; Allocca, M.; Atreya, R.; et al. ECCO Guidelines on Therapeutics in Crohn’s Disease: Surgical Treatment. J. Crohns Colitis 2024, 18, 1556–1582. [Google Scholar] [CrossRef]
- Rocha, R.; de J Santos, G.; Santana, G. Influence of Nutritional Status in the Postoperative Period of Patients with Inflammatory Bowel Disease. World J. Gastrointest. Pharmacol. Ther. 2021, 12, 90–99. [Google Scholar] [CrossRef]
- Adamina, M.; Gerasimidis, K.; Sigall-Boneh, R.; Zmora, O.; de Buck van Overstraeten, A.; Campmans-Kuijpers, M.; Ellul, P.; Katsanos, K.; Kotze, P.G.; Noor, N.; et al. Perioperative Dietary Therapy in Inflammatory Bowel Disease. J. Crohns Colitis 2020, 14, 431–444. [Google Scholar] [CrossRef]
- Kehlet, H.; Wilmore, D.W. Multimodal Strategies to Improve Surgical Outcome. Am. J. Surg. 2002, 183, 630–641. [Google Scholar] [CrossRef] [PubMed]
- Tidadini, F.; Bonne, A.; Trilling, B.; Quesada, J.-L.; Sage, P.-Y.; Foote, A.; Arvieux, C.; Faucheron, J.-L. Effect of Implementation of Enhanced Recovery after Surgery (ERAS) Protocol and Risk Factors on 3-Year Survival after Colorectal Surgery for Cancer-a Retrospective Cohort of 1001 Patients. Int. J. Color. Dis. 2022, 37, 1151–1159. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Jia, D.; Chen, Y.; Wang, L.; Suo, J. Is the Enhanced Recovery After Surgery (ERAS) Program Effective and Safe in Laparoscopic Colorectal Cancer Surgery? A Meta-Analysis of Randomized Controlled Trials. J. Gastrointest. Surg. Off. J. Soc. Surg. Aliment. Tract 2019, 23, 1502–1512. [Google Scholar] [CrossRef] [PubMed]
- Fiorindi, C.; Cuffaro, F.; Piemonte, G.; Cricchio, M.; Addasi, R.; Dragoni, G.; Scaringi, S.; Nannoni, A.; Ficari, F.; Giudici, F. Effect of Long-Lasting Nutritional Prehabilitation on Postoperative Outcome in Elective Surgery for IBD. Clin. Nutr. 2020, 40, 928–935. [Google Scholar] [CrossRef]
- Godala, M.; Gaszyńska, E.; Walczak, K.; Małecka-Wojciesko, E. An Evaluation of the Usefulness of Selected Screening Methods in Assessing the Risk of Malnutrition in Patients with Inflammatory Bowel Disease. Nutrients 2024, 16, 814. [Google Scholar] [CrossRef]
- Balestrieri, P.; Ribolsi, M.; Guarino, M.P.L.; Emerenziani, S.; Altomare, A.; Cicala, M. Nutritional Aspects in Inflammatory Bowel Diseases. Nutrients 2020, 12, 372. [Google Scholar] [CrossRef] [PubMed]
- Shariff, S.; Moran, G.; Grimes, C.; Cooney, R.M. Current Use of EEN in Pre-Operative Optimisation in Crohn’s Disease. Nutrients 2021, 13, 4389. [Google Scholar] [CrossRef]
- Brennan, G.T.; Ha, I.; Hogan, C.; Nguyen, E.; Jamal, M.M.; Bechtold, M.L.; Nguyen, D.L. Does Preoperative Enteral or Parenteral Nutrition Reduce Postoperative Complications in Crohn’s Disease Patients: A Meta-Analysis. Eur. J. Gastroenterol. Hepatol. 2018, 30, 997–1002. [Google Scholar] [CrossRef]
- Costa-Santos, M.P.; Palmela, C.; Torres, J.; Ferreira, A.; Velho, S.; Ourô, S.; Glória, L.; Gordo, I.; Maio, R.; Cravo, M. Preoperative Enteral Nutrition in Adults with Complicated Crohn’s Disease: Effect on Disease Outcomes and Gut Microbiota. Nutrition 2020, 70, 100009. [Google Scholar] [CrossRef]
- Gatti, S.; Galeazzi, T.; Franceschini, E.; Annibali, R.; Albano, V.; Verma, A.K.; De Angelis, M.; Lionetti, M.E.; Catassi, C. Effects of the Exclusive Enteral Nutrition on the Microbiota Profile of Patients with Crohn’s Disease: A Systematic Review. Nutrients 2017, 9, 832. [Google Scholar] [CrossRef]
- Collins, S.; Castelan, V.C.; Wernick, R.; Banty, A.; Gwarnicki, C.; Solomon, T.; Martirosyan, L.; Roberts, P.; Wise, A.; Hampton, M.; et al. Effects of nutrition status and perioperative nutrition supplement completion on postoperative outcomes in patients with inflammatory bowel disease undergoing surgery. Inflamm. Bowel Dis. 2024, 30, S16. [Google Scholar] [CrossRef]
- Beattie, A.H.; Prach, A.T.; Baxter, J.P.; Pennington, C.R. A Randomised Controlled Trial Evaluating the Use of Enteral Nutritional Supplements Postoperatively in Malnourished Surgical Patients. Gut 2000, 46, 813–818. [Google Scholar] [CrossRef] [PubMed]
- Vanderstappen, J.; Hoekx, S.; Bislenghi, G.; D’Hoore, A.; Verstockt, B.; Sabino, J. Preoperative Optimization: Review on Nutritional Assessment and Strategies in IBD. Curr. Opin. Pharmacol. 2024, 77, 102475. [Google Scholar] [CrossRef] [PubMed]
- Gianotti, L.; Sandini, M.; Romagnoli, S.; Carli, F.; Ljungqvist, O. Enhanced Recovery Programs in Gastrointestinal Surgery: Actions to Promote Optimal Perioperative Nutritional and Metabolic Care. Clin. Nutr. Edinb. Scotl. 2020, 39, 2014–2024. [Google Scholar] [CrossRef]
- Heaton, K.W.; Thornton, J.R.; Emmett, P.M. Treatment of Crohn’s Disease with an Unrefined-Carbohydrate, Fibre-Rich Diet. Br. Med. J. 1979, 2, 764–766. [Google Scholar] [CrossRef]
- Loy, L.; Petronio, L.; Marcozzi, G.; Bezzio, C.; Armuzzi, A. Dietary Fiber in Inflammatory Bowel Disease: Are We Ready to Change the Paradigm? Nutrients 2024, 16, 1108. [Google Scholar] [CrossRef] [PubMed]
- Cavalcanti, E.; Marra, A.; Mileti, A.; Donghia, R.; Curlo, M.; Mastronardi, M. Nutritional Management in Stricturing Crohn’s Disease: A Pilot Study. Nutrients 2024, 16, 4153. [Google Scholar] [CrossRef]
- Hu, D.; Ren, J.; Wang, G.; Li, G.; Liu, S.; Yan, D.; Gu, G.; Zhou, B.; Wu, X.; Chen, J.; et al. Exclusive Enteral Nutritional Therapy Can Relieve Inflammatory Bowel Stricture in Crohn’s Disease. J. Clin. Gastroenterol. 2014, 48, 790–795. [Google Scholar] [CrossRef]
- Marafini, I.; Salvatori, S.; Troncone, E.; Scarozza, P.; Fantini, E.; Monteleone, G. No Effect of a Liquid Diet in the Management of Patients with Stricturing Crohn’s Disease. Int. J. Color. Dis. 2020, 35, 1881–1885. [Google Scholar] [CrossRef]
- Fitzpatrick, J.A.; Melton, S.L.; Yao, C.K.; Gibson, P.R.; Halmos, E.P. Dietary Management of Adults with IBD—The Emerging Role of Dietary Therapy. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 652–669. [Google Scholar] [CrossRef]
- Critch, J.; Day, A.S.; Otley, A.; King-Moore, C.; Teitelbaum, J.E.; Shashidhar, H.; NASPGHAN IBD Committee. Use of Enteral Nutrition for the Control of Intestinal Inflammation in Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 298–305. [Google Scholar] [CrossRef]
- Urlep, D.; Benedik, E.; Brecelj, J.; Orel, R. Partial Enteral Nutrition Induces Clinical and Endoscopic Remission in Active Pediatric Crohn’s Disease: Results of a Prospective Cohort Study. Eur. J. Pediatr. 2020, 179, 431–438. [Google Scholar] [CrossRef]
- Szczubełek, M.; Pomorska, K.; Korólczyk-Kowalczyk, M.; Lewandowski, K.; Kaniewska, M.; Rydzewska, G. Effectiveness of Crohn’s Disease Exclusion Diet for Induction of Remission in Crohn’s Disease Adult Patients. Nutrients 2021, 13, 4112. [Google Scholar] [CrossRef] [PubMed]
- Haskey, N.; Estaki, M.; Ye, J.; Shim, R.K.; Singh, S.; Dieleman, L.A.; Jacobson, K.; Gibson, D.L. A Mediterranean Diet Pattern Improves Intestinal Inflammation Concomitant with Reshaping of the Bacteriome in Ulcerative Colitis: A Randomised Controlled Trial. J. Crohns Colitis 2023, 17, 1569–1578. [Google Scholar] [CrossRef]
- Amrousy, D.E.; Elashry, H.; Salamah, A.; Maher, S.; Abd-Elsalam, S.M.; Hasan, S. Adherence to the Mediterranean Diet Improved Clinical Scores and Inflammatory Markers in Children with Active Inflammatory Bowel Disease: A Randomized Trial. J. Inflamm. Res. 2022, 15, 2075–2086. [Google Scholar] [CrossRef] [PubMed]
- Suskind, D.L.; Lee, D.; Kim, Y.-M.; Wahbeh, G.; Singh, N.; Braly, K.; Nuding, M.; Nicora, C.D.; Purvine, S.O.; Lipton, M.S.; et al. The Specific Carbohydrate Diet and Diet Modification as Induction Therapy for Pediatric Crohn’s Disease: A Randomized Diet Controlled Trial. Nutrients 2020, 12, 3749. [Google Scholar] [CrossRef] [PubMed]
- Cohen, S.A.; Gold, B.D.; Oliva, S.; Lewis, J.; Stallworth, A.; Koch, B.; Eshee, L.; Mason, D. Clinical and Mucosal Improvement With Specific Carbohydrate Diet in Pediatric Crohn Disease. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 516–521. [Google Scholar] [CrossRef]
- Roediger, W.E.W. Decreased Sulphur Aminoacid Intake in Ulcerative Colitis. Lancet 1998, 351, 1555. [Google Scholar] [CrossRef]
- Prince, A.C.; Myers, C.E.; Joyce, T.; Irving, P.; Lomer, M.; Whelan, K. Fermentable Carbohydrate Restriction (Low FODMAP Diet) in Clinical Practice Improves Functional Gastrointestinal Symptoms in Patients with Inflammatory Bowel Disease. Inflamm. Bowel Dis. 2016, 22, 1129–1136. [Google Scholar] [CrossRef]
- Massironi, S.; Viganò, C.; Palermo, A.; Pirola, L.; Mulinacci, G.; Allocca, M.; Peyrin-Biroulet, L.; Danese, S. Inflammation and Malnutrition in Inflammatory Bowel Disease. Lancet Gastroenterol. Hepatol. 2023, 8, 579–590. [Google Scholar] [CrossRef]
- Altomare, R.; Damiano, G.; Abruzzo, A.; Palumbo, V.D.; Tomasello, G.; Buscemi, S.; Lo Monte, A.I. Enteral Nutrition Support to Treat Malnutrition in Inflammatory Bowel Disease. Nutrients 2015, 7, 2125–2133. [Google Scholar] [CrossRef]
- Nakahigashi, M.; Yamamoto, T.; Sacco, R.; Hanai, H.; Kobayashi, F. Enteral Nutrition for Maintaining Remission in Patients with Quiescent Crohn’s Disease: Current Status and Future Perspectives. Int. J. Color. Dis. 2016, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, T.; Shiraki, M.; Nakahigashi, M.; Umegae, S.; Matsumoto, K. Enteral Nutrition to Suppress Postoperative Crohn’s Disease Recurrence: A Five-Year Prospective Cohort Study. Int. J. Color. Dis. 2013, 28, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Christensen, C.; Knudsen, A.; Arnesen, E.K.; Hatlebakk, J.G.; Sletten, I.S.; Fadnes, L.T. Diet, Food, and Nutritional Exposures and Inflammatory Bowel Disease or Progression of Disease: An Umbrella Review. Adv. Nutr. 2024, 15, 100219. [Google Scholar] [CrossRef] [PubMed]
- Cawood, A.L.; Elia, M.; Stratton, R.J. Systematic Review and Meta-Analysis of the Effects of High Protein Oral Nutritional Supplements. Ageing Res. Rev. 2012, 11, 278–296. [Google Scholar] [CrossRef]
- Madini, N.; Vincenti, A.; Beretta, A.; Santero, S.; Viroli, G.; Cena, H. Addressing Inflammaging and Disease-Related Malnutrition: Adequacy of Oral Nutritional Supplements in Clinical Care. Nutrients 2024, 16, 4141. [Google Scholar] [CrossRef]
- Narula, N.; Dhillon, A.; Zhang, D.; Sherlock, M.E.; Tondeur, M.; Zachos, M. Enteral Nutritional Therapy for Induction of Remission in Crohn’s Disease. Cochrane Database Syst. Rev. 2018, CD000542. [Google Scholar] [CrossRef]
- Zachos, M.; Tondeur, M.; Griffiths, A.M. Enteral Nutritional Therapy for Induction of Remission in Crohn’s Disease. Cochrane Database Syst. Rev. 2007, CD000542. [Google Scholar] [CrossRef]
- Akobeng, A.K.; Thomas, A.G. Enteral Nutrition for Maintenance of Remission in Crohn’s Disease. Cochrane Database Syst. Rev. 2007, CD005984. [Google Scholar] [CrossRef]
- Akobeng, A.K.; Zhang, D.; Gordon, M.; MacDonald, J.K. Enteral Nutrition for Maintenance of Remission in Crohn’s Disease. Cochrane Database Syst. Rev. 2018, CD005984. [Google Scholar] [CrossRef]
- Cohen, L.J.; Cho, J.H.; Gevers, D.; Chu, H. Genetic Factors and the Intestinal Microbiome Guide Development of Microbe-Based Therapies for Inflammatory Bowel Diseases. Gastroenterology 2019, 156, 2174–2189. [Google Scholar] [CrossRef]
- Gevers, D.; Kugathasan, S.; Denson, L.A.; Vázquez-Baeza, Y.; Van Treuren, W.; Ren, B.; Schwager, E.; Knights, D.; Song, S.J.; Yassour, M.; et al. The Treatment-Naive Microbiome in New-Onset Crohn’s Disease. Cell Host Microbe 2014, 15, 382–392. [Google Scholar] [CrossRef] [PubMed]
- Ananthakrishnan, A.N.; Whelan, K.; Allegretti, J.R.; Sokol, H. Diet and Microbiome-Directed Therapy 2.0 for IBD. Clin. Gastroenterol. Hepatol. Off. Clin. Pract. J. Am. Gastroenterol. Assoc. 2025, 23, 406–418. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Z.; Dong, R.; Liu, Y.; Zhang, Y.; Guo, Y.; Yu, M.; Li, X.; Wang, J. Multiomics Analysis Reveals the Potential Mechanism of High-Fat Diet in Dextran Sulfate Sodium-Induced Colitis Mice Model. Food Sci. Nutr. 2024, 12, 8309–8323. [Google Scholar] [CrossRef] [PubMed]
- Olendzki, B.; Bucci, V.; Cawley, C.; Maserati, R.; McManus, M.; Olednzki, E.; Madziar, C.; Chiang, D.; Ward, D.V.; Pellish, R.; et al. Dietary Manipulation of the Gut Microbiome in Inflammatory Bowel Disease Patients: Pilot Study. Gut Microbes 2022, 14, 2046244. [Google Scholar] [CrossRef]
- Vich Vila, A.; Imhann, F.; Collij, V.; Jankipersadsing, S.A.; Gurry, T.; Mujagic, Z.; Kurilshikov, A.; Bonder, M.J.; Jiang, X.; Tigchelaar, E.F.; et al. Gut Microbiota Composition and Functional Changes in Inflammatory Bowel Disease and Irritable Bowel Syndrome. Sci. Transl. Med. 2018, 10, eaap8914. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, J.P.; Lagishetty, V.; Hauer, M.C.; Labus, J.S.; Dong, T.S.; Toma, R.; Vuyisich, M.; Naliboff, B.D.; Lackner, J.M.; Gupta, A.; et al. Multi-Omics Profiles of the Intestinal Microbiome in Irritable Bowel Syndrome and Its Bowel Habit Subtypes. Microbiome 2023, 11, 5. [Google Scholar] [CrossRef]
- Alghamdi, A.; Gerasimidis, K.; Blackburn, G.; Akinci, D.; Edwards, C.; Russell, R.K.; Watson, D.G. Untargeted Metabolomics of Extracts from Faecal Samples Demonstrates Distinct Differences Between Paediatric Crohn’s Disease Patients and Healthy Controls but No Significant Changes Resulting from Exclusive Enteral Nutrition Treatment. Metabolites 2018, 8, 82. [Google Scholar] [CrossRef]
- Marques, J.G.; Schwerd, T.; Bufler, P.; Koletzko, S.; Koletzko, B. Metabolic Changes during Exclusive Enteral Nutrition in Pediatric Crohn’s Disease Patients. Metabolomics Off. J. Metabolomic Soc. 2022, 18, 96. [Google Scholar] [CrossRef]
- da Silva Barros, V.J.; Severo, J.S.; Mendes, P.H.M.; da Silva, A.C.A.; de Oliveira, K.B.V.; Parente, J.M.L.; Lima, M.M.; Neto, E.M.M.; Aguiar Dos Santos, A.; Tolentino Bento da Silva, M. Effect of Dietary Interventions on Inflammatory Biomarkers of Inflammatory Bowel Diseases: A Systematic Review of Clinical Trials. Nutrition 2021, 91–92, 111457. [Google Scholar] [CrossRef]
- Papastratis, I.; Konstantinidis, D.; Daras, P.; Dimitropoulos, K. AI Nutrition Recommendation Using a Deep Generative Model and ChatGPT. Sci. Rep. 2024, 14, 14620. [Google Scholar] [CrossRef]
- Day, A.S.; Ballard, T.M.; Yao, C.K.; Gibson, P.R.; Bryant, R.V. Food-Based Interventions as Therapy for Inflammatory Bowel Disease: Important Steps in Diet Trial Design and Reporting of Outcomes. Inflamm. Bowel Dis. 2024, 31, 1121–1137. [Google Scholar] [CrossRef] [PubMed]
- Whitton, C.; Ramos-García, C.; Kirkpatrick, S.I.; Healy, J.D.; Dhaliwal, S.S.; Boushey, C.J.; Collins, C.E.; Rollo, M.E.; Kerr, D.A. A Systematic Review Examining Contributors to Misestimation of Food and Beverage Intake Based on Short-Term Self-Report Dietary Assessment Instruments Administered to Adults. Adv. Nutr. 2022, 13, 2620–2665. [Google Scholar] [CrossRef] [PubMed]
- Macdiarmid, J.; Blundell, J. Assessing Dietary Intake: Who, What and Why of under-Reporting. Nutr. Res. Rev. 1998, 11, 231–253. [Google Scholar] [CrossRef] [PubMed]
- Whelan, K.; Alexander, M.; Gaiani, C.; Lunken, G.; Holmes, A.; Staudacher, H.M.; Theis, S.; Marco, M.L. Design and Reporting of Prebiotic and Probiotic Clinical Trials in the Context of Diet and the Gut Microbiome. Nat. Microbiol. 2024, 9, 2785–2794. [Google Scholar] [CrossRef]
- Gormley, I.C.; Bai, Y.; Brennan, L. Combining Biomarker and Self-Reported Dietary Intake Data: A Review of the State of the Art and an Exposition of Concepts. Stat. Methods Med. Res. 2020, 29, 617–635. [Google Scholar] [CrossRef]
- Lee, B.Y.; Ordovás, J.M.; Parks, E.J.; Anderson, C.A.M.; Barabási, A.-L.; Clinton, S.K.; de la Haye, K.; Duffy, V.B.; Franks, P.W.; Ginexi, E.M.; et al. Research Gaps and Opportunities in Precision Nutrition: An NIH Workshop Report. Am. J. Clin. Nutr. 2022, 116, 1877–1900. [Google Scholar] [CrossRef]
- Crichton, G.E.; Howe, P.R.; Buckley, J.D.; Coates, A.M.; Murphy, K.J.; Bryan, J. Long-Term Dietary Intervention Trials: Critical Issues and Challenges. Trials 2012, 13, 111. [Google Scholar] [CrossRef]
Dietary Approach | Description | Disease Application | Level of Evidence | Primary Intent | Duration | Key Outcomes | Potential Limitations |
---|---|---|---|---|---|---|---|
Formula-based Interventions | |||||||
Exclusive Enteral Nutrition (EEN) | Complete liquid formula as sole nutrition source for defined period | CD (primarily pediatric) [221] | High (pediatric); Moderate (adult) | Induction | 6–8 weeks | Clinical remission rates comparable to corticosteroids in pediatric CD; mucosal healing; favorable microbiome changes | Poor palatability; social restrictions; adherence issues in adults |
Partial Enteral Nutrition (PEN) | Liquid formula providing 35–50% of calories with conventional diet | CD [51,222] | Moderate | Maintenance | Variable | Dose-dependent prevention of relapse; better long-term adherence than EEN | Limited efficacy as monotherapy without dietary modifications |
Whole-food Based Interventions | |||||||
Crohn’s Disease Exclusion Diet (CDED) | Three-phase diet excluding dietary triggers, often with PEN | CD (both pediatric and adults) [52,64,65,223] | High (pediatric)/moderate (adults) | Induction; Maintenance | 6–24 weeks | Efficacy comparable to EEN in pediatric and adult CD with better adherence | Requires detailed nutritional guidance and monitoring |
Mediterranean Diet (MD) | High plant foods, olive oil; moderate fish; limited red meat | CD; UC [79,224,225] | Moderate | Maintenance | Long-term | Similar efficacy to SCD in RCT; improved clinical markers; cardiovascular benefits | Limited evidence for induction of remission |
Specific Carbohydrate Diet | Eliminates complex carbohydrates and processed foods | CD [79,226,227,228] | Low-Moderate | Adjunctive; Symptom control | Long-term | Not superior to MD in controlled trials; patient-reported benefits | Highly restrictive; complex implementation; nutritional adequacy concerns |
Low-FODMAP Diet | Restricts fermentable carbohydrates with phased reintroduction | IBD with IBS symptoms [102,103,105,108,110,229] | Moderate (symptoms) | Symptom control | 2–6 weeks elimination; 6–8 weeks reintroduction; personalization long-term | Effective for functional GI symptoms in quiescent IBD | Not targeting underlying inflammation; concerns about microbiota effects |
IBD Anti-Inflammatory Diet | Modified SCD with prebiotics/probiotics and omega-3 emphasis | CD; UC [78,121] | Low | Adjunctive | Variable | Limited evidence from controlled trials | Implementation complexity |
Plant-Based Diets | Emphasis on whole plant foods with limited/excluded animal products; ranges from semi-vegetarian to vegan patterns | CD; UC [126,127] | Moderate (epidemiological); Low (interventional) | Maintenance; Risk reduction | Long-term | Prospective cohort evidence for reduced IBD risk and surgery with Healthy plant patterns; improved inflammatory markers | Need for nutritional monitoring for protein, iron, B12, zinc, vitamin D; limited interventional evidence |
Ketogenic Diet | Very high fat (70–90%), very low carbohydrate diet inducing ketosis | CD; UC [147] | Very Low | Experimental | Variable | Contradictory preclinical evidence; limited human data from small uncontrolled case series | Drastic fiber reduction affecting microbiome diversity; high saturated fat potentially pro-inflammatory; limited SCFA production; experimental status with minimal clinical evidence |
Targeted Exclusion Diets | |||||||
Low-Sulfur Diet (4-SURE) | Reduces dietary sulfur to decrease hydrogen sulfide production | UC [134] | Low | Induction | 8 weeks | Improvement in colonic mucus layer; reduced hydrogen sulfide toxicity | Limited evidence; complex implementation |
Low-Emulsifier Diet | Eliminates food additives in processed foods | CD [140] | Low-Moderate | Adjunctive | 2–12 weeks | Emerging clinical trial evidence for symptom improvement | Difficult implementation without broader dietary changes |
Tasty & Healthy Diet (T&H) | Excludes processed foods, gluten, red meat, dairy | CD [141] | Moderate (emerging) | Induction | 8 weeks | Non-inferior to EEN with significantly better adherence | Limited published evidence |
Gluten-Free Diet | Elimination of all gluten-containing foods | IBD [155]. | Low | Symptom control | Long-term | Patient-reported symptom improvement | No consistent evidence for IBD without celiac disease |
Low-Residue Diet | Restriction of dietary fiber and indigestible components | CD [159] | Low | Symptom control | Short-term | Short-term reduction in mechanical irritation | No improvement in disease outcomes; potential adverse microbiome impact |
High-Fiber Diet | Increased fiber consumption with appropriate preparation | UC; CD without strictures [166,168,169,171] | Moderate (UC); Low (CD) | Maintenance | Long-term | Increased SCFA production; improved microbiome diversity | May pose a challenge in stricturing disease |
Diet in Special Situations | |||||||
Monash Pouch Diet | Modified MD with potential FODMAP restrictions | Pouch [189] | Low | Prevention; Treatment | Long-term | Reduction in inflammation markers; decreased stool frequency | High withdrawal rate in studies; requires individualization |
ONS Category | Composition | Common Commercial Examples | Clinical Applications in IBD | Advantages | Limitations | Level of Evidence |
---|---|---|---|---|---|---|
Elemental Formulas | Free amino acids, minimal fat content (primarily MCTs), simple carbohydrates, vitamins, minerals | Vivonex, Elemental 028, Neocate, E028 Extra | Primary therapy for active CD induction of remission; Used in severe malabsorption; Post-surgical nutrition | Highly digestible and absorbable; Reduced antigenic load; May provide bowel rest | Poor palatability; High cost; Poor compliance; Requires medical supervision | High (CD) |
Semi-Elemental/Peptide-Based Formulas | Peptides (hydrolyzed proteins), moderate fat content with MCTs, oligosaccharides, vitamins, minerals | Peptamen, Perative, Vital, Crucial, Peptide 1.5 | Moderate malabsorption states; Alternative when elemental formulas not tolerated | Better palatability than elemental; Lower cost than elemental; Good digestibility | Less effective than elemental in some studies; Higher allergenicity than elemental | Moderate |
Polymeric Formulas | Whole proteins, balanced fat profile including LCTs, complex carbohydrates, fiber options, vitamins, minerals | Ensure, Boost, Fortisip, Fresubin, Nutrison | Supplemental nutrition in IBD; Prevention of malnutrition in remission phases; Maintenance therapy | Improved palatability; Lower cost; Better compliance; Available in multiple flavors and formats; generally recommended by guidelines | May not be tolerated in severe disease | Moderate (CD); Limited (UC) |
Disease-Specific Formulations | Specialized nutrient profiles with anti-inflammatory components (TGF-β, specific fatty acids, glutamine, antioxidants) | Impact Advanced Recovery, Modulen IBD, Alicalm, LH Viola | Targeted therapy for inflammatory modulation; Maintenance therapy | Potential for dual nutritional and disease-modifying effects; Some evidence for maintenance therapy | Higher cost; Limited availability; Newer formulations with evolving evidence base | Low to Moderate |
Immunomodulating Formulas | Enhanced levels of omega-3 fatty acids, glutamine, arginine, nucleotides, and antioxidants | Impact, Immun-Aid, Intestamin | Perioperative nutrition in IBD; Adjunctive therapy during flares | Potential to influence disease activity beyond nutritional repletion | Limited IBD-specific evidence; Higher cost; Variable clinical response | Limited |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barberio, B.; Bertin, L.; Facchin, S.; Bonazzi, E.; Cusano, S.; Romanelli, G.; Pesenti, F.F.; Cazzaniga, E.; Palestini, P.; Zingone, F.; et al. Dietary Interventions and Oral Nutritional Supplementation in Inflammatory Bowel Disease: Current Evidence and Future Directions. Nutrients 2025, 17, 1879. https://doi.org/10.3390/nu17111879
Barberio B, Bertin L, Facchin S, Bonazzi E, Cusano S, Romanelli G, Pesenti FF, Cazzaniga E, Palestini P, Zingone F, et al. Dietary Interventions and Oral Nutritional Supplementation in Inflammatory Bowel Disease: Current Evidence and Future Directions. Nutrients. 2025; 17(11):1879. https://doi.org/10.3390/nu17111879
Chicago/Turabian StyleBarberio, Brigida, Luisa Bertin, Sonia Facchin, Erica Bonazzi, Sara Cusano, Giulia Romanelli, Francesco Francini Pesenti, Emanuela Cazzaniga, Paola Palestini, Fabiana Zingone, and et al. 2025. "Dietary Interventions and Oral Nutritional Supplementation in Inflammatory Bowel Disease: Current Evidence and Future Directions" Nutrients 17, no. 11: 1879. https://doi.org/10.3390/nu17111879
APA StyleBarberio, B., Bertin, L., Facchin, S., Bonazzi, E., Cusano, S., Romanelli, G., Pesenti, F. F., Cazzaniga, E., Palestini, P., Zingone, F., & Savarino, E. V. (2025). Dietary Interventions and Oral Nutritional Supplementation in Inflammatory Bowel Disease: Current Evidence and Future Directions. Nutrients, 17(11), 1879. https://doi.org/10.3390/nu17111879