Natural Bicarbonate Water Might Enhance Nitrogen Balance and Lipid Metabolism and Improve Calcium Balance: A Full Quantitative Targeted Metabolomics Study in Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Drinking Water and Food
2.2. Animals and Experiment Design
2.3. Biological Sample Analysis
2.4. Targeted Metabolic Profiling
2.5. Statistics
3. Results
3.1. Water Quality Analysis
3.2. Bodyweight, Food and Water Intake
3.3. Serum and Urinary Biochemical Analysis
3.4. Metabolic Profiling of Liver
4. Discussion
4.1. Calcium and Sodium Balance
4.2. Amino Acids and Protein Synthesis
4.3. Fatty Acids Metabolism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quattrini, S.; Pampaloni, B.; Brandi, M.L. Natural Mineral Waters: Chemical Characteristics and Health Effects. Clin. Cases Miner. Bone Metab. 2016, 13, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; Sarria, B.; Navas-Carretero, S.; Pilar Vaquero, M. Sodium-Bicarbonated Mineral Water Decreases Aldosterone Levels without Affecting Urinary Excretion of Bone Minerals. Int. J. Food Sci. Nutr. 2008, 59, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Giglio, O.D.; Quaranta, A.; Lovero, G.; Caggiano, G.; Montagna, M.T. Mineral Water or Tap Water? An Endless Debate. Ann Ig 2015, 27, 58–65. [Google Scholar] [CrossRef]
- Wasserfurth, P.; Schneider, I.; Ströhle, A.; Nebl, J.; Bitterlich, N.; Hahn, A. Effects of Mineral Waters on Acid-Base Status in Healthy Adults: Results of a Randomized Trial. Food Nutr. Res. 2019, 63, 3515. [Google Scholar] [CrossRef]
- Mansouri, K.; Greupner, T.; van de Flierdt, E.; Schneider, I.; Hahn, A. Acid-Base Balance in Healthy Adults: Beneficial Effects of Bicarbonate and Sodium-Rich Mineral Water in a Randomized Controlled Trial: The Bicarbowater Study. J. Nutr. Metab. 2024, 2024, 3905500. [Google Scholar] [CrossRef]
- Wynn Dumartheray, E.; Krieg, M.A.; Burckhardt, P. Bicarbonate from Mineral Water Lowers Bone Resorption Even in Calcium Sufficiency. Int. Congr. Ser. 2008, 1297, 303–309. [Google Scholar] [CrossRef]
- Wynn, E.; Krieg, M.A.; Aeschlimann, J.M.; Burckhardt, P. Alkaline Mineral Water Lowers Bone Resorption Even in Calcium Sufficiency: Alkaline Mineral Water and Bone Metabolism. Bone 2009, 44, 120–124. [Google Scholar] [CrossRef]
- Toxqui, L.; Vaquero, M.P. Aldosterone Changes after Consumption of a Sodium-Bicarbonated Mineral Water in Humans. a Four-Way Randomized Controlled Trial. J. Physiol. Biochem. 2016, 72, 635–641. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, K.; Greupner, T.; Hahn, A. Blood Pressure Stability and Plasma Aldosterone Reduction: The Effects of a Sodium and Bicarbonate-Rich Water—A Randomized Controlled Intervention Study. Blood Press. 2024, 33, 2291411. [Google Scholar] [CrossRef]
- Perez-Granados, A.M.; Navas-Carretero, S.; Schoppen, S.; Vaquero, M.P. Reduction in Cardiovascular Risk by Sodium-Bicarbonated Mineral Water in Moderately Hypercholesterolemic Young Adults. J. Nutr. Biochem. 2010, 21, 948–953. [Google Scholar] [CrossRef]
- Schorr, U.; Distler, A.; Sharma, A.M. Effect of Sodium Chloride- and Sodium Bicarbonate-Rich Mineral Water on Blood Pressure and Metabolic Parameters in Elderly Normotensive Individuals: A Randomized Double-Blind Crossover Trial. J. Hypertens. 1996, 14, 131–135. [Google Scholar] [PubMed]
- Murakami, S.; Goto, Y.; Ito, K.; Hayasaka, S.; Kurihara, S.; Soga, T.; Tomita, M.; Fukuda, S. The Consumption of Bicarbonate-Rich Mineral Water Improves Glycemic Control. Evid.-Based Compl. Alt. 2015, 2015, 824395. [Google Scholar] [CrossRef]
- Bertoni, M.; Olivieri, F.; Manghetti, M.; Boccolini, E.; Bellomini, M.G.; Blandizzi, C.; Bonino, F.; Del Tacca, M. Effects of a Bicarbonate-Alkaline Mineral Water on Gastric Functions and Functional Dyspepsia: A Preclinical and Clinical Study. Pharmacol. Res. 2002, 46, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Sachar, M.; Guo, G.L.; Shehu, A.I.; Lu, J.; Zhong, X.B.; Ma, X. Liver Metabolomics in a Mouse Model of Erythropoietic Protoporphyria. Biochem. Pharmacol. 2018, 154, 474–481. [Google Scholar] [CrossRef]
- Qiu, S.; Cai, Y.; Yao, H.; Lin, C.; Xie, Y.; Tang, S.; Zhang, A. Small Molecule Metabolites: Discovery of Biomarkers and Therapeutic Targets. Signal Transduct. Target. Ther. 2023, 8, 132. [Google Scholar] [CrossRef] [PubMed]
- Alseekh, S.; Aharoni, A.; Brotman, Y.; Contrepois, K.; D’Auria, J.; Ewald, J.; CEwald, J.; Fraser, P.D.; Giavalisco, P.; Hall, R.D.; et al. Mass Spectrometry-Based Metabolomics: A Guide for Annotation, Quantification and Best Reporting Practices. Nat. Methods 2021, 18, 747–756. [Google Scholar] [CrossRef]
- Wei, W.; Cai, M.; Yu, S.; Chen, H.; Luo, Y.; Zhang, X. Effect of Magnetic Nanoparticles on Hormone Level Changes During Perimenopausal Period and Regulation of Bone Metabolism. Cell Mol. Biol. (Noisy-Le-Grand) 2022, 68, 91–96. [Google Scholar] [CrossRef]
- GB/T 5750-2006; Standard Examination Methods for Drinking Water. Standardization Administration of China: Beijing, China, 2006.
- GB14924-2010; Laboratory Animals—Nutrients for Formula Feeds. Standardization Administration of China: Beijing, China, 2010.
- Xie, G.; Wang, L.; Chen, T.; Zhou, K.; Zhang, Z.; Li, J.; Sun, B.; Guo, Y.; Wang, X.; Wang, Y.; et al. A Metabolite Array Technology for Precision Medicine. Anal. Chem. 2021, 93, 5709–5717. [Google Scholar] [CrossRef]
- Sadki, D.; Fawaz, S.; Liegey, J.S.; Pucheu, Y.; Boulestreau, R.; Beuque, G.; Foucher, J.; Hein, L.; Couffinhal, T. Differential Cardiovascular Impacts of Sodium Salts: Unveiling the Distinct Roles of Sodium Chloride and Sodium Bicarbonate-Consequences for Heart Failure Patients. Eur. J. Prev. Cardiol. 2025, zwaf020. [Google Scholar] [CrossRef]
- Schoppen, S.; Perez-Granados, A.M.; Carbajal, A.; de la Piedra, C.; Pilar Vaquero, M. Bone Remodelling is Not Affected by Consumption of a Sodium-Rich Carbonated Mineral Water in Healthy Postmenopausal Women. Br. J. Nutr. 2005, 93, 339–344. [Google Scholar] [CrossRef]
- Teucher, B.; Dainty, J.R.; Spinks, C.A.; Majsak-Newman, G.; Berry, D.J.; Hoogewerff, J.A.; Foxall, R.J.; Jakobsen, J.; Cashman, K.D.; Flynn, A.; et al. Sodium and Bone Health: Impact of Moderately High and Low Salt Intakes on Calcium Metabolism in Postmenopausal Women. J. Bone Miner. Res. 2008, 23, 1477–1485. [Google Scholar] [CrossRef] [PubMed]
- Brandolini, M.; Guéguen, L.; Boirie, Y.; Rousset, P.; Bertière, M.C.; Beaufrère, B. Higher Calcium Urinary Loss Induced by a Calcium Sulphate-Rich Mineral Water Intake Than by Milk in Young Women. Br. J. Nutr. 2005, 93, 225–231. [Google Scholar] [CrossRef]
- Bushinsky, D.A. Metabolic Alkalosis Decreases Bone Calcium Efflux by Suppressing Osteoclasts and Stimulating Osteoblasts. Am. J. Physiol. 1996, 271, F216–F222. [Google Scholar] [CrossRef]
- Fasihi, S.; Fazelian, S.; Farahbod, F.; Moradi, F.; Dehghan, M. Effect of Alkaline Drinking Water on Bone Density of Postmenopausal Women with Osteoporosis. J. Menopausal Med. 2021, 27, 94–101. [Google Scholar] [CrossRef]
- Roux, S.; Baudoin, C.; Boute, D.; Brazier, M.; Guéronniere, V.D.L.; Vernejoul, M.C.D. Biological Effects of Drinking-Water Mineral Composition on Calcium Balance and Bone Remodeling Markers. J. Nutr. Health Aging 2004, 8, 380–384. [Google Scholar]
- Biţă, A.; Scorei, I.R.; Bălşeanu, T.A.; Ciocîlteu, M.V.; Bejenaru, C.; Radu, A.; Bejenaru, L.E.; Rău, G.; Mogoşanu, G.D.; Neamţu, J.; et al. New Insights into Boron Essentiality in Humans and Animals. Int. J. Mol. Sci. 2022, 23, 9147. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Mani, V.; Pal, R.P.; Sarkar, S.; Datt, C. Boron Supplementation in Peripartum Murrah Buffaloes: The Effect on Calcium Homeostasis, Bone Metabolism, Endocrine and Antioxidant Status. J. Trace Elem. Med. Biol. 2020, 62, 126623. [Google Scholar] [CrossRef]
- Hunt, C.D.; Herbel, J.L.; Nielsen, F.H. Metabolic Responses of Postmenopausal Women to Supplemental Dietary Boron and Aluminum During Usual and Low Magnesium Intake: Boron, Calcium, and Magnesium Absorption and Retention and Blood Mineral Concentrations. Am. J. Clin. Nutr. 1997, 65, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Abdelnour, S.A.; Abd El-Hack, M.E.; Swelum, A.A.; Perillo, A.; Losacco, C. The Vital Roles of Boron in Animal Health and Production: A Comprehensive Review. J. Trace Elem. Med. Biol. 2018, 50, 296–304. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Bargagli, M.; Trinchieri, A.; Gambaro, G. Risk of Kidney Stones: Influence of Dietary Factors, Dietary Patterns, and Vegetarian-Vegan Diets. Nutrients 2020, 12, 779. [Google Scholar] [CrossRef]
- Dridi, S. Proteins, Amino Acids, and Nitrogen Metabolism. Nutritional Biochemistry: From the Classroom to the Research Bench; Bentham Science Publishers: Amsterdam, The Netherlands, 2022; pp. 182–207. [Google Scholar] [CrossRef]
- Wu, G. Dietary Protein Intake and Human Health. Food Funct. 2016, 17, 1251–1265. [Google Scholar] [CrossRef] [PubMed]
- Kukułowicz, J.; Pietrzak-Lichwa, K.; Klimończyk, K.; Idlin, N.; Bajda, M. The SLC6A15-SLC6A20 Neutral Amino Acid Transporter Subfamily: Functions, Diseases, and Their Therapeutic Relevance. Pharmacol. Rev. 2023, 76, 142–193. [Google Scholar] [CrossRef] [PubMed]
- Chandel, N.S. Amino Acid Metabolism. Cold Spring Harb. Perspect. Biol. 2021, 13, a040584. [Google Scholar] [CrossRef]
- Kurmi, K.; Haigis, M.C. Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol. 2020, 30, 408–424. [Google Scholar] [CrossRef]
- Hosios, A.M.; Hecht, V.C.; Danai, L.V.; Johnson, M.O.; Rathmell, J.C.; Steinhauser, M.L.; Manalis, S.R.; Vander Heiden, M.G. Amino Acids Rather Than Glucose Account for the Majority of Cell Mass in Proliferating Mammalian Cells. Dev. Cell 2016, 36, 540–549. [Google Scholar] [CrossRef]
- Yuan, Q.; Yin, L.Y.; He, J.; Zeng, Q.T.; Liang, Y.X.; Shen, Y.Y.; Zu, X.Y. Metabolism of Asparagine in the Physiological State and Cancer. Cell Commun. Signal 2024, 22, 163. [Google Scholar] [CrossRef]
- Sears, S.M.; Hewett, S.J. Influence of Glutamate and GABA Transport on Brain Excitatory/Inhibitory Balance. Exp. Biol. Med. 2021, 246, 1069–1083. [Google Scholar] [CrossRef] [PubMed]
- Lou, H.C. Dopamine Precursors and Brain Function in Phenylalanine Hydroxylase Deficiency. Acta Paediatr. Suppl. 1994, 407, 86–88. [Google Scholar] [CrossRef]
- Fernstrom, J.D.; Fernstrom, M.H. Tyrosine, Phenylalanine, and Catecholamine Synthesis and Function in the Brain. J. Nutr. 2007, 137, 1539S–1547S; discussion 1548S. [Google Scholar] [CrossRef]
- Holeček, M. Histidine in Health and Disease: Metabolism, Physiological Importance, and Use as a Supplement. Nutrients 2020, 12, 848. [Google Scholar] [CrossRef]
- Karna, E.; Szoka, L.; Huynh, T.Y.L.; Palka, J.A. Proline-Dependent Regulation of Collagen Metabolism. Cell Mol. Life Sci. 2020, 77, 1911–1918. [Google Scholar] [CrossRef]
- Yao, Y.; Han, W. Proline Metabolism in Neurological and Psychiatric Disorders. Mol. Cells 2022, 45, 781–788. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.J.; Hunter, C.J.; Zhang, Z.Y.; TeSlaa, T.; Xu, X.C.; Ducker, G.S.; Rabinowitz, J.D. Glycine Homeostasis Requires Reverse SHMT Flux. Cell Metab. 2024, 36, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Fan, M.; Liu, Z.; Li, X.; Wang, H. Serine, Glycine and One-Carbon Metabolism in Cancer (Review). Int. J. Oncol. 2021, 58, 158–170. [Google Scholar] [CrossRef]
- Le Couteur, D.G.; Solon-Biet, S.M.; Cogger, V.C.; Ribeiro, R.; de Cabo, R. Branched Chain Amino Acids, Aging and Age-Related Health. Ageing Res. Rev. 2020, 64, 101198. [Google Scholar] [CrossRef] [PubMed]
- Bifari, F.; Nisoli, E. Branched-Chain Amino Acids Differently Modulate Catabolic and Anabolic States in Mammals: A Pharmacological Point of View. Br. J. Pharmacol. 2017, 174, 1366–1377. [Google Scholar] [CrossRef]
- Nie, C.X.; He, T.; Zhang, W.J.; Zhang, G.L.; Ma, X. Branched Chain Amino Acids: Beyond Nutrition Metabolism. Int. J. Mol. Sci. 2018, 19, 954. [Google Scholar] [CrossRef]
- Khan, I.; Hussain, M.; Jiang, B.; Zheng, L.; Pan, Y.; Hu, J.; Khan, A.; Ashraf, A.; Zou, X. Omega-3 Long-Chain Polyunsaturated Fatty Acids: Metabolism and Health Implications. Prog. Lipid Res. 2023, 92, 101255. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, Y.; Sun, J.; Zhang, W.; Guo, Z.; Ma, Q. Arachidonic Acid Metabolism in Health and Disease. MedComm 2023, 4, e363. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.P.; Zhang, Y.N.; Li, Y.; Gu, L.T.; Sun, H.H.; Liu, M.D.; Zhou, H.L.; Wang, Y.S.; Xu, Z.X. Short-chain fatty acids in diseases. Cell Commun. Signal 2023, 21, 212. [Google Scholar] [CrossRef]
- Lymperopoulos, A.; Suster, M.S.; Borges, J. Short-Chain Fatty Acid Receptors and Cardiovascular Function. Int. J. Mol. Sci. 2022, 23, 3303. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, W.; Zhang, X.; Xue, B.; Yang, X.; Zhao, C.; Li, C.; Wang, S.; Qiu, Z.; Li, C.; et al. Bicarbonate-Rich Mineral Water Mitigates Hypoxia-Induced Osteoporosis in Mice via Gut Microbiota and Metabolic Pathway Regulation. Nutrients 2025, 17, 998. [Google Scholar] [CrossRef] [PubMed]
Index | pH | TDS mg/L | TH mg/L | HCO3− mg/L | SO42− mg/L | Cl− mg/L | Boron mg/L | Ca2+ mg/L | Mg2+ mg/L | K+ mg/L | Na+ mg/L | H2SiO3 mg/L | CODMn mg/L | PRAL mEq/L |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PW | 6.33 | 3.63 | 0.43 | 0 | 0 | 0 | 0 | 0.17 | 0.08 | 0.04 | 0.33 | 0 | 0.50 | −0.02 |
NBW | 9.10 | 508.20 | 12.51 | 319.10 | 1.63 | 1.63 | 0.97 | 4.23 | 0.47 | 0.81 | 136.50 | 15.14 | 0.79 | −5.64 |
Index | PW | NBW | p Value | |
---|---|---|---|---|
Serum mineral | Sodium, mmol/L | 135.84 ± 1.36 | 135.24 ± 2.51 | 0.51 |
Potassium, mmol/L | 9.71 ± 1.34 | 9.75 ± 1.56 | 0.96 | |
Calcium, mmol/L | 2.69 ± 0.14 | 2.62 ± 0.12 | 0.28 | |
Magnesium, mmol/L | 1.21 ± 0.09 | 1.22 ± 0.15 | 0.88 | |
Urinary mineral | Sodium/Cr, mg/mg creatinine | 2.74 ± 0.84 | 2.88 ± 0.75 | 0.68 |
Potassium/Cr, mg/mg creatinine | 6.96 ± 1.72 | 6.86 ± 1.54 | 0.88 | |
Calcium/Cr, mg/mg creatinine | 0.42 ± 0.20 | 0.27 ± 0.17 | 0.08 | |
Magnesium/Cr, mg/mg creatinine | 0.11 ± 0.12 | 0.12 ± 0.16 | 0.98 |
Index | PW | NBW | p Value | |
---|---|---|---|---|
Serum lipid | Triglyceride, mmol/L | 3.37 ± 2.42 | 4.88 ± 2.81 | 0.74 |
Total cholesterol, mmol/L | 3.00 ± 0.72 | 2.90 ± 0.65 | 0.21 | |
High-density lipoprotein, mmol/L | 0.68 ± 0.11 | 0.63 ± 0.16 | 0.45 | |
Low-density lipoprotein, mmol/L | 0.37 ± 0.12 | 0.35 ± 0.09 | 0.66 | |
AI | 3.43 ± 0.95 | 3.74 ± 1.23 | 0.54 | |
Hepatic enzyme biomarkers | Alanine aminotransferase, IU/L | 81.69 ± 26.67 | 114.05 ± 73.22 | 0.21 |
Aspartate aminotransferase, IU/L | 185.41 ± 99.85 | 239.37 ± 151.13 | 0.35 | |
Direct bilirubin, μmol/L | 0.58 ± 0.11 | 0.50 ± 0.14 | 0.14 | |
alkaline phosphatase, U/L | 72.01 ± 30.45 | 79.69 ± 41.16 | 0.64 | |
Renal function index | Urea, mmol/L | 7.18 ± 1.90 | 7.53 ± 1.25 | 0.64 |
Creatinine, μmol/L | 42.22 ± 6.72 | 38.16 ± 5.17 | 0.15 | |
Uric acid, μmol/L | 100.66 ± 40.93 | 90.19 ± 16.54 | 0.46 | |
Cystatin C, mg/L | 0.07 ± 0.03 | 0.05 ± 0.03 | 0.54 | |
Retinol-binding protein, mg/L | 2.80 ± 0.63 | 2.70 ± 0.67 | 0.74 | |
Serum protein | Total protein, g/L | 77.36 ± 4.81 | 74.89 ± 5.31 | 0.29 |
Albumin, g/L | 35.22 ± 2.84 | 33.63 ± 2.85 | 0.23 | |
Globulin, g/L | 42.14 ± 3.62 | 41.26 ± 3.08 | 0.57 | |
Albumin/Globulin | 0.84 ± 0.09 | 0.82 ± 0.06 | 0.46 | |
Prealbumin, mg/L | 2.80 ± 0.92 | 2.10 ± 1.10 | 0.14 | |
Urinary parameter | pH | 7.77 ± 0.82 | 7.77 ± 0.85 | 1.00 |
Urea/Cr, mmol/μmol creatinine | 53.97 ± 19.57 | 49.37 ± 9.68 | 0.49 | |
Uric acid/Cr, μmol/μmol creatinine | 0.15 ± 0.05 | 0.14 ± 0.05 | 0.59 | |
Creatinine, μmol/L | 360.79 ± 94.99 | 268.02 ± 103.02 | 0.04 |
Metabolite | Class | HMDB | KEGG | p-Value | FDR | FC | VIP | Trend | |
---|---|---|---|---|---|---|---|---|---|
1 | Lysine | Amino Acids | HMDB0000182 | C00047 | 1.60 × 10−4 | 2.09 × 10−3 | 1.45 | 1.78 | ↑ |
2 | Histidine | Amino Acids | HMDB0000177 | C00135 | 2.18 × 10−5 | 4.27 × 10−4 | 1.49 | 1.91 | ↑ |
3 | Ornithine | Amino Acids | HMDB0000214 | C00077 | 8.39 × 10−4 | 6.49 × 10−3 | 1.48 | 1.65 | ↑ |
4 | Glutamine | Amino Acids | HMDB0000641 | C00064 | 7.64 × 10−3 | 3.07 × 10−2 | 1.30 | 1.32 | ↑ |
5 | Glutamic acid | Amino Acids | HMDB0000148 | C00025 | 6.95 × 10−6 | 2.66 × 10−4 | 1.51 | 1.88 | ↑ |
6 | Cystine | Amino Acids | HMDB0000192 | C00491 | 9.86 × 10−3 | 3.89 × 10−2 | 1.49 | 1.24 | ↑ |
7 | Sarcosine | Amino Acids | HMDB0000271 | C00213 | 3.89 × 10−3 | 2.03 × 10−2 | 2.00 | 1.37 | ↑ |
8 | β-Alanine | Amino Acids | HMDB0000056 | C00099 | 4.87 × 10−4 | 4.43 × 10−3 | 2.12 | 1.82 | ↑ |
9 | Alanine | Amino Acids | HMDB0000161 | C00041 | 1.08 × 10−5 | 2.66 × 10−4 | 1.58 | 1.91 | ↑ |
10 | Dimethylglycine | Amino Acids | HMDB0000092 | C01026 | 4.01 × 10−2 | 1.15 × 10−1 | 1.42 | 1.07 | ↑ |
11 | γ-aminobutyric acid | Amino Acids | HMDB0000112 | C00334 | 2.88 × 10−3 | 1.57 × 10−2 | 1.68 | 1.51 | ↑ |
12 | Serine | Amino Acids | HMDB0000187 | C00065 | 1.23 × 10−3 | 8.89 × 10−3 | 1.40 | 1.69 | ↑ |
13 | Methylcysteine | Amino Acids | HMDB0002108 | NA | 2.13 × 10−4 | 2.35 × 10−3 | 1.81 | 1.76 | ↑ |
14 | 2-Phenylglycine | Amino Acids | HMDB0002210 | NA | 6.17 × 10−3 | 2.73 × 10−2 | 1.81 | 1.33 | ↑ |
15 | Tyrosine | Amino Acids | HMDB0000158 | C00082 | 2.25 × 10−5 | 4.27 × 10−4 | 1.57 | 1.88 | ↑ |
16 | Asparagine | Amino Acids | HMDB0000168 | C00152 | 9.43 × 10−5 | 1.31 × 10−3 | 1.65 | 1.82 | ↑ |
17 | Phenylalanine | Amino Acids | HMDB0000159 | C00079 | 2.09 × 10−3 | 1.25 × 10−2 | 1.20 | 1.22 | ↑ |
18 | Kynurenine | Amino Acids | HMDB0000684 | C00328 | 2.14 × 10−2 | 7.22 × 10−2 | 2.08 | 1.28 | ↑ |
19 | Aspartic acid | Amino Acids | HMDB0000191 | C00049 | 9.50 × 10−4 | 7.09 × 10−3 | 1.33 | 1.58 | ↑ |
20 | Glycine | Amino Acids | HMDB0000123 | C00037 | 7.00 × 10−5 | 1.05 × 10−3 | 1.37 | 1.72 | ↑ |
21 | Proline | Amino Acids | HMDB0000162 | C00148 | 1.14 × 10−6 | 2.37 × 10−4 | 1.87 | 2.04 | ↑ |
22 | Acetylglycine | Amino Acids | HMDB0000532 | NA | 1.08 × 10−5 | 2.66 × 10−4 | 1.37 | 1.87 | ↑ |
23 | Pipecolic acid | Amino Acids | HMDB0000716 | C00408 | 5.42 × 10−3 | 2.46 × 10−2 | 1.44 | 1.39 | ↑ |
24 | N-Acetylserine | Amino Acids | HMDB0002931 | NA | 3.37 × 10−6 | 2.43 × 10−4 | 1.82 | 1.95 | ↑ |
25 | N-Acetylglutamine | Amino Acids | HMDB0006029 | NA | 1.69 × 10−2 | 6.09 × 10−2 | 1.21 | 1.16 | ↑ |
26 | Valine | Amino Acids | HMDB0000883 | C00183 | 1.35 × 10−3 | 9.11 × 10−3 | 1.36 | 1.55 | ↑ |
27 | Pyroglutamic acid | Amino Acids | HMDB0000267 | C01879 | 3.49 × 10−6 | 2.43 × 10−4 | 1.73 | 1.93 | ↑ |
28 | Methionine | Amino Acids | HMDB0000696 | C00073 | 6.68 × 10−4 | 5.59 × 10−3 | 1.42 | 1.66 | ↑ |
29 | Isoleucine | Amino Acids | HMDB0000172 | C00407 | 1.51 × 10−3 | 9.25 × 10−3 | 1.42 | 1.30 | ↑ |
30 | Leucine | Amino Acids | HMDB0000687 | C00123 | 2.12 × 10−4 | 2.35 × 10−3 | 1.37 | 1.74 | ↑ |
31 | Tryptophan | Amino Acids | HMDB0000929 | C00078 | 4.33 × 10−5 | 7.54 × 10−4 | 1.33 | 1.67 | ↑ |
32 | 1-Methylhistidine | Amino Acids | HMDB0000001 | C01152 | 3.63 × 10−4 | 3.45 × 10−3 | 1.45 | 1.56 | ↑ |
33 | α-Aminobutyric acid | Amino Acids | HMDB0000452 | C02356 | 4.80 × 10−3 | 2.43 × 10−2 | 1.57 | 1.45 | ↑ |
34 | 5-Aminolevulinic acid | Amino Acids | HMDB0001149 | C00430 | 5.14 × 10−4 | 4.48 × 10−3 | 1.59 | 1.68 | ↑ |
35 | ortho-Hydroxyphenylacetic acid | Benzenoids | HMDB0000669 | C05852 | 2.10 × 10−2 | 7.19 × 10−2 | 0.61 | 1.15 | ↓ |
36 | Gluconolactone | Carbohydrates | HMDB0000150 | C00198 | 2.39 × 10−2 | 7.93 × 10−2 | 1.48 | 1.16 | ↑ |
37 | N-Acetylneuraminic acid | Carbohydrates | HMDB0000230 | C00270 | 5.84 × 10−5 | 9.39 × 10−4 | 1.78 | 1.86 | ↑ |
38 | Glucose | Carbohydrates | HMDB0000122 | C00221 | 8.64 × 10−6 | 2.66 × 10−4 | 1.62 | 1.93 | ↑ |
39 | Lactulose | Carbohydrates | HMDB0000740 | C07064 | 1.15 × 10−5 | 2.66 × 10−4 | 1.87 | 1.95 | ↑ |
40 | Maltose/Lactose | Carbohydrates | NA | NA | 1.08 × 10−5 | 2.66 × 10−4 | 2.06 | 2.00 | ↑ |
41 | Maltotriose | Carbohydrates | HMDB0001262 | C01835 | 2.93 × 10−3 | 1.57 × 10−2 | 1.50 | 1.51 | ↑ |
42 | Rhamnose | Carbohydrates | HMDB0000849 | C00507 | 3.68 × 10−2 | 1.07 × 10−1 | 1.50 | 1.03 | ↑ |
43 | Fructose | Carbohydrates | HMDB0000660 | C02336 | 5.20 × 10−3 | 2.43 × 10−2 | 1.66 | 1.28 | ↑ |
44 | N-Acetyl-D-glucosamine | Carbohydrates | HMDB0000215 | C00140 | 7.25 × 10−4 | 5.83 × 10−3 | 1.79 | 1.76 | ↑ |
45 | Fructose 6-phosphate | Carbohydrates | HMDB0000124 | C00085 | 4.87 × 10−2 | 1.30 × 10−1 | 1.35 | 1.17 | ↑ |
46 | Ribonic acid | Carbohydrates | HMDB0000867 | C01685 | 3.25 × 10−4 | 3.23 × 10−3 | 2.05 | 1.51 | ↑ |
47 | Butyrylcarnitine | Carnitines | HMDB0002013 | C02862 | 3.25 × 10−2 | 9.71 × 10−2 | 2.08 | 1.01 | ↑ |
48 | 3-Hydroxylisovalerylcarnitine | Carnitines | NA | NA | 3.00 × 10−2 | 9.37 × 10−2 | 1.30 | 1.17 | ↑ |
49 | Methylsuccinic acid | Fatty Acids | HMDB0001844 | NA | 4.33 × 10−2 | 1.17 × 10−1 | 1.39 | 1.32 | ↑ |
50 | Ricinoleic acid | Fatty Acids | HMDB0034297 | C08365 | 1.80 × 10−2 | 6.38 × 10−2 | 1.44 | 1.04 | ↑ |
51 | 10Z-Heptadecenoic acid | Fatty Acids | HMDB0060038 | NA | 1.85 × 10−2 | 6.46 × 10−2 | 1.87 | 1.11 | ↑ |
52 | α-Linolenic acid | Fatty Acids | HMDB0001388 | C06427 | 6.84 × 10−3 | 2.80 × 10−2 | 1.79 | 1.33 | ↑ |
53 | Eicosapentaenoic acid | Fatty Acids | HMDB0001999 | C06428 | 5.20 × 10−3 | 2.43 × 10−2 | 2.28 | 1.31 | ↑ |
54 | Arachidonic acid | Fatty Acids | HMDB0001043 | C00219 | 6.84 × 10−3 | 2.80 × 10−2 | 1.53 | 1.28 | ↑ |
55 | Docosahexaenoic acid | Fatty Acids | HMDB0002183 | C06429 | 2.88 × 10−3 | 1.57 × 10−2 | 1.60 | 1.40 | ↑ |
56 | Glutaric acid | Organic Acids | HMDB0000661 | C00489 | 5.20 × 10−3 | 2.43 × 10−2 | 1.35 | 1.53 | ↑ |
57 | Aconitic acid | Organic Acids | HMDB0000072 | C02341 | 3.05 × 10−2 | 9.37 × 10−2 | 0.89 | 1.23 | ↓ |
58 | 3-Hydroxybutyric acid | Organic Acids | HMDB0000357 | C01089 | 1.51 × 10−3 | 9.25 × 10−3 | 1.43 | 1.36 | ↑ |
59 | 2-Hydroxybutyric acid | Organic Acids | HMDB0000008 | C05984 | 1.51 × 10−3 | 9.25 × 10−3 | 1.54 | 1.49 | ↑ |
60 | Acetoacetic acid | Organic Acids | HMDB0000060 | C00164 | 1.58 × 10−2 | 5.80 × 10−2 | 1.52 | 1.17 | ↑ |
61 | Glycylproline | Peptides | HMDB0000721 | NA | 5.23 × 10−3 | 2.43 × 10−2 | 1.60 | 1.40 | ↑ |
62 | Homovanillic acid | Phenols | HMDB0000118 | C05582 | 3.25 × 10−4 | 3.23 × 10−3 | 1.51 | 1.49 | ↑ |
63 | Acetic acid | SCFAs | HMDB0000042 | C00033 | 1.04 × 10−2 | 3.96 × 10−2 | 1.47 | 1.47 | ↑ |
64 | 3-Hydroxyisovaleric acid | SCFAs | HMDB0000754 | NA | 3.12 × 10−2 | 9.44 × 10−2 | 1.53 | 1.08 | ↑ |
65 | Butyric acid | SCFAs | HMDB0000039 | C00246 | 2.05 × 10−4 | 2.35 × 10−3 | 1.97 | 1.66 | ↑ |
66 | Caproic acid | SCFAs | HMDB0000535 | C01585 | 6.27 × 10−3 | 2.73 × 10−2 | 1.57 | 1.24 | ↑ |
67 | Ethylmethylacetic acid | SCFAs | HMDB0002176 | C18319 | 2.76 × 10−3 | 1.57 × 10−2 | 1.92 | 1.60 | ↑ |
68 | Isovaleric acid | SCFAs | HMDB0000718 | C08262 | 1.31 × 10−3 | 9.11 × 10−3 | 2.73 | 1.69 | ↑ |
69 | Valeric acid | SCFAs | HMDB0000892 | C00803 | 2.51 × 10−2 | 8.19 × 10−2 | 1.34 | 1.25 | ↑ |
Total in Pathway | Hits | Raw p | FDR | Impact | Enriched Compounds | KEGG Link | |
---|---|---|---|---|---|---|---|
Aminoacyl-tRNA biosynthesis | 67 | 17 | 1.45 × 10−10 | 1.18 × 10−8 | 0.37 | Asparagine, Histidine, Phenylalanine, Glutamine, Glycine, Aspartic acid, Serine, Methionine, Valine, Alanine, Lysine, Isoleucine, Leucine, Tryptophan, Tyrosine, Proline, Glutamic acid | http://www.genome.jp/kegg-bin/show_pathway?rno00970/C00152%09red/C00135%09red/C00079%09red/C00064%09red/C00037%09red/C00049%09red/C00065%09red/C00073%09red/C00183%09red/C00041%09red/C00047%09red/C00407%09red/C00123%09red/C00078%09red/C00082%09red/C00148%09red/C00025%09red (Accessed on 27 May 2025) |
Alanine, aspartate and glutamate metabolism | 24 | 6 | 2.64 × 10−4 | 7.19 × 10−3 | 0.64 | Aspartic acid, Alanine, Glutamic acid, GABA, Glutamine, Asparagine | http://www.genome.jp/kegg-bin/show_pathway?rno00250/C00049%09red/C00041%09red/C00025%09red/C00334%09red/C00064%09red/C00152%09red (Accessed on 27 May 2025) |
Nitrogen metabolism | 9 | 4 | 2.66 × 10−4 | 7.19 × 10−3 | 0.44 | Glutamic acid, Glutamine, Histidine, Glycine | http://www.genome.jp/kegg-bin/show_pathway?rno00910/C00025%09red/C00064%09red/C00135%09red/C00037%09red (Accessed on 27 May 2025) |
Butanoate metabolism | 20 | 5 | 9.04 × 10−4 | 1.83 × 10−2 | 0.28 | 3-Hydroxybutyric acid, Acetoacetic acid, GABA, Glutamic acid, Butyric acid | http://www.genome.jp/kegg-bin/show_pathway?rno00650/C01089%09red/C00164%09red/C00334%09red/C00025%09red/C00246%09red (Accessed on 27 May 2025) |
Histidine metabolism | 15 | 4 | 2.4 × 10−3 | 3.89 × 10−2 | 0.31 | Glutamic acid, Histidine, Aspartic acid, 1-Methylhistidine | http://www.genome.jp/kegg-bin/show_pathway?rno00340/C00025%09red/C00135%09red/C00049%09red/C01152%09red (Accessed on 27 May 2025) |
Phenylalanine metabolism | 9 | 3 | 4.50 × 10−3 | 6.07 × 10−2 | 0.44 | Phenylalanine, ortho-Hydroxyphenylacetic acid, Tyrosine | http://www.genome.jp/kegg-bin/show_pathway?rno00360/C00079%09red/C05852%09red/C00082%09DeepSkyBlue (Accessed on 27 May 2025) |
Arginine and proline metabolism | 44 | 6 | 7.35 × 10−3 | 7.49 × 10−2 | 0.22 | Glutamine, Ornithine, Aspartic acid, Glutamic acid, Proline, GABA | http://www.genome.jp/kegg-bin/show_pathway?rno00330/C00064%09red/C00077%09red/C00049%09red/C00025%09red/C00148%09red/C00334%09red (Accessed on 27 May 2025) |
Glycine, serine and threonine metabolism | 32 | 5 | 8.07 × 10−3 | 7.49 × 10−2 | 0.43 | Serine, Dimethylglycine, Glycine, Sarcosine, 5-Aminolevulinic acid | http://www.genome.jp/kegg-bin/show_pathway?rno00260/C00065%09red/C01026%09red/C00037%09red/C00213%09red/C00430%09red (Accessed on 27 May 2025) |
Valine, leucine and isoleucine biosynthesis | 11 | 3 | 8.34 × 10−3 | 7.49 × 10−2 | 0.57 | Leucine, Valine, Isoleucine | http://www.genome.jp/kegg-bin/show_pathway?rno00290/C00123%09red/C00183%09red/C00407%09red (Accessed on 27 May 2025) |
Phenylalanine, tyrosine and tryptophan biosynthesis | 4 | 2 | 9.25 × 10−3 | 7.49 × 10−2 | 0.75 | Phenylalanine, Tyrosine | http://www.genome.jp/kegg-bin/show_pathway?rno00400/C00079%09red/C00082%09red (Accessed on 27 May 2025) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, J.; Wang, J.; Qiu, Z.; Zeng, H.; Tan, Y.; Huang, Y.; Shu, W. Natural Bicarbonate Water Might Enhance Nitrogen Balance and Lipid Metabolism and Improve Calcium Balance: A Full Quantitative Targeted Metabolomics Study in Rats. Nutrients 2025, 17, 1875. https://doi.org/10.3390/nu17111875
Luo J, Wang J, Qiu Z, Zeng H, Tan Y, Huang Y, Shu W. Natural Bicarbonate Water Might Enhance Nitrogen Balance and Lipid Metabolism and Improve Calcium Balance: A Full Quantitative Targeted Metabolomics Study in Rats. Nutrients. 2025; 17(11):1875. https://doi.org/10.3390/nu17111875
Chicago/Turabian StyleLuo, Jiaohua, Jia Wang, Zhiqun Qiu, Hui Zeng, Yao Tan, Yujing Huang, and Weiqun Shu. 2025. "Natural Bicarbonate Water Might Enhance Nitrogen Balance and Lipid Metabolism and Improve Calcium Balance: A Full Quantitative Targeted Metabolomics Study in Rats" Nutrients 17, no. 11: 1875. https://doi.org/10.3390/nu17111875
APA StyleLuo, J., Wang, J., Qiu, Z., Zeng, H., Tan, Y., Huang, Y., & Shu, W. (2025). Natural Bicarbonate Water Might Enhance Nitrogen Balance and Lipid Metabolism and Improve Calcium Balance: A Full Quantitative Targeted Metabolomics Study in Rats. Nutrients, 17(11), 1875. https://doi.org/10.3390/nu17111875