Relationship Between Level of Trimethylamine Oxide and the Risk of Recurrent Cardiovascular Events in Patients with Acute Myocardial Infarction
Abstract
:1. Background
2. Methods
2.1. Study Population
2.2. Collection of Baseline Data
2.3. TMAO Metabolites
2.4. Laboratory Examination
2.5. Cardiovascular Outcomes
2.6. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Participants
3.2. Associations of TMAO, Choline, Betaine, and L-Carnitine Levels with All Endpoint Events
3.3. Subgroup Analysis and Interaction Test
3.4. Assessment of Forecasting Effectiveness and Analysis of Mediating Effects
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on Cardiovascular Health and Diseases in China 2021: An Updated Summary. Biomed. Environ. Sci. 2022, 35, 573–603. [Google Scholar]
- Gatarek, P.; Kaluzna-Czaplinska, J. Trimethylamine N-oxide (TMAO) in human health. EXCLI J. 2021, 20, 301–319. [Google Scholar] [PubMed]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Klipfell, E.; Bennett, B.J.; Koeth, R.; Levison, B.S.; DuGar, B.; Feldstein, A.E.; Britt, E.B.; Fu, X.; Chung, Y.M.; et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 2011, 472, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J. Am. Heart Assoc. 2016, 5, e002767. [Google Scholar] [CrossRef]
- Zhu, W.; Gregory, J.C.; Org, E.; Buffa, J.A.; Gupta, N.; Wang, Z.; Li, L.; Fu, X.; Wu, Y.; Mehrabian, M.; et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell 2016, 165, 111–124. [Google Scholar] [CrossRef]
- Tang, W.W.; Li, X.S.; Wu, Y.; Wang, Z.; Khaw, K.T.; Wareham, N.J.; Nieuwdorp, M.; Boekholdt, S.M.; Hazen, S.L. Plasma trimethylamine N-oxide (TMAO) levels predict future risk of coronary artery disease in apparently healthy individuals in the EPIC-Norfolk prospective population study. Am. Heart J. 2021, 236, 80–86. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.S.; Wang, Z.; de Oliveira Otto, M.C.; Lemaitre, R.N.; Fretts, A.; Sotoodehnia, N.; Budoff, M.; Nemet, I.; DiDonato, J.A.; et al. Trimethylamine N-oxide is associated with long-term mortality risk: The multi-ethnic study of atherosclerosis. Eur. Heart J. 2023, 44, 1608–1618. [Google Scholar] [CrossRef]
- Qi, J.; You, T.; Li, J.; Pan, T.; Xiang, L.; Han, Y.; Zhu, L. Circulating trimethylamine N-oxide and the risk of cardiovascular diseases: A systematic review and meta-analysis of 11 prospective cohort studies. J. Cell Mol. Med. 2018, 22, 185–194. [Google Scholar] [CrossRef]
- Yang, Q.; Han, H.; Sun, Z.; Liu, L.; Zheng, X.; Meng, Z.; Tao, N.; Liu, J. Association of choline and betaine with the risk of cardiovascular disease and all-cause mortality: Meta-analysis. Eur. J. Clin. Investig. 2023, 53, e14041. [Google Scholar] [CrossRef] [PubMed]
- Senthong, V.; Li, X.S.; Hudec, T.; Coughlin, J.; Wu, Y.; Levison, B.; Wang, Z.; Hazen, S.L.; Tang, W.W. Plasma Trimethylamine N-Oxide, a Gut Microbe-Generated Phosphatidylcholine Metabolite, Is Associated with Atherosclerotic Burden. J. Am. Coll. Cardiol. 2016, 67, 2620–2628. [Google Scholar] [CrossRef]
- Zhao, S.; Tian, Y.; Wang, S.; Yang, F.; Xu, J.; Qin, Z.; Liu, X.; Cao, M.; Zhao, P.; Zhang, G.; et al. Prognostic value of gut microbiota-derived metabolites in patients with ST-segment elevation myocardial infarction. Am. J. Clin. Nutr. 2023, 117, 499–508. [Google Scholar] [CrossRef] [PubMed]
- Ringel, C.; Dittrich, J.; Gaudl, A.; Schellong, P.; Beuchel, C.F.; Baber, R.; Beutner, F.; Teren, A.; Engel, C.; Wirkner, K.; et al. Association of plasma trimethylamine N-oxide levels with atherosclerotic cardiovascular disease and factors of the metabolic syndrome. Atherosclerosis 2021, 335, 62–67. [Google Scholar] [CrossRef]
- Lee, Y.; Nemet, I.; Wang, Z.; Lai, H.T.; de Oliveira Otto, M.C.; Lemaitre, R.N.; Fretts, A.M.; Sotoodehnia, N.; Budoff, M.; DiDonato, J.A.; et al. Longitudinal Plasma Measures of Trimethylamine N-Oxide and Risk of Atherosclerotic Cardiovascular Disease Events in Community-Based Older Adults. J. Am. Heart Assoc. 2021, 10, e020646. [Google Scholar] [CrossRef] [PubMed]
- Bjørnestad, E.Ø.; Dhar, I.; Svingen, G.F.; Pedersen, E.R.; Ørn, S.; Svenningsson, M.M.; Tell, G.S.; Ueland, P.M.; Sulo, G.; Laaksonen, R.; et al. Circulating trimethylamine N-oxide levels do not predict 10-year survival in patients with or without coronary heart disease. J. Intern. Med. 2022, 292, 915–924. [Google Scholar] [CrossRef]
- Liu, D.; Gu, S.; Zhou, Z.; Ma, Z.; Zuo, H. Associations of plasma TMAO and its precursors with stroke risk in the general population: A nested case-control study. J. Intern. Med. 2023, 293, 110–120. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, W.W.; Buffa, J.A.; Fu, X.; Britt, E.B.; Koeth, R.A.; Levison, B.S.; Fan, Y.; Wu, Y.; Hazen, S.L. Prognostic value of choline and betaine depends on intestinal microbiota-generated metabolite trimethylamine-N-oxide. Eur. Heart J. 2014, 35, 904–910. [Google Scholar] [CrossRef]
- Shea, J.W.; Jacobs, D.R., Jr.; Howard, A.G.; Lulla, A.; Lloyd-Jones, D.M.; Murthy, V.L.; Shah, R.V.; Trujillo-Gonzalez, I.; Gordon-Larsen, P.; Meyer, K.A. Choline metabolites and incident cardiovascular disease in a prospective cohort of adults: Coronary Artery Risk Development in Young Adults (CARDIA) Study. Am. J. Clin. Nutr. 2024, 119, 29–38. [Google Scholar] [CrossRef]
- Li, N.; Wang, Y.; Zhou, J.; Chen, R.; Li, J.; Zhao, X.; Zhou, P.; Liu, C.; Chen, Y.; Song, L.; et al. Association between the Changes in Trimethylamine N-Oxide-Related Metabolites and Prognosis of Patients with Acute Myocardial Infarction: A Prospective Study. J. Cardiovasc. Dev. Dis. 2022, 9, 380. [Google Scholar] [CrossRef]
- Tang, W.W.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef] [PubMed]
- Baranyi, A.; Meinitzer, A.; von Lewinski, D.; Rothenhäusler, H.B.; Amouzadeh-Ghadikolai, O.; Harpf, H.; Harpf, L.; Traninger, H.; Hödl, R.; Harb, B.M.; et al. Sex-specific differences in trimethylamine N-oxide (TMAO) concentrations before and after cardiac rehabilitation in acute myocardial infarction patients. EXCLI J. 2022, 21, 1–10. [Google Scholar] [PubMed]
- Luis Eduardo, R.; Luis, B.-d.-S. Alcohol and the heart: The good, the bad and the worse in heart failure. Heart 2018, 104, 1641. [Google Scholar]
- Latkovskis, G.; Makarova, E.; Mazule, M.; Bondare, L.; Hartmane, D.; Cirule, H.; Grinberga, S.; Erglis, A.; Liepinsh, E.; Dambrova, M. Loop diuretics decrease the renal elimination rate and increase the plasma levels of trimethylamine-N-oxide. Br. J. Clin. Pharmacol. 2018, 84, 2634–2644. [Google Scholar] [CrossRef] [PubMed]
- Díez-Ricote, L.; San-Cristobal, R.; Concejo, M.J.; Martínez-González, M.Á.; Corella, D.; Salas-Salvadó, J.; Goday, A.; Martínez, J.A.; Alonso-Gómez, Á.M.; Wärnberg, J.; et al. One-year longitudinal association between changes in dietary choline or betaine intake and cardiometabolic variables in the PREvención con DIeta MEDiterránea-Plus (PREDIMED-Plus) trial. Am. J. Clin. Nutr. 2022, 116, 1565–1579. [Google Scholar] [CrossRef]
- da Costa, K.A.; Gaffney, C.E.; Fischer, L.M.; Zeisel, S.H. Choline deficiency in mice and humans is associated with increased plasma homocysteine concentration after a methionine load. Am. J. Clin. Nutr. 2005, 81, 440–444. [Google Scholar] [CrossRef]
- Millard, H.R.; Musani, S.K.; Dibaba, D.T.; Talegawkar, S.A.; Taylor, H.A.; Tucker, K.L.; Bidulescu, A. Dietary choline and betaine; associations with subclinical markers of cardiovascular disease risk and incidence of CVD, coronary heart disease and stroke: The Jackson Heart Study. Eur. J. Nutr. 2018, 57, 51–60. [Google Scholar] [CrossRef]
- Dai, Y.; Tian, Q.; Si, J.; Sun, Z.; Shali, S.; Xu, L.; Ren, D.; Chang, S.; Dong, X.; Zhao, H.; et al. Circulating metabolites from the choline pathway and acute coronary syndromes in a Chinese case-control study. Nutr. Metab. 2020, 17, 39. [Google Scholar] [CrossRef]
- Winther, S.A.; Øllgaard, J.C.; Hansen, T.W.; Von Scholten, B.J.; Reinhard, H.; Ahluwalia, T.S.; Wang, Z.; Gæde, P.; Parving, H.H.; Hazen, S.; et al. Plasma trimethylamine N-oxide and its metabolic precursors and risk of mortality, cardiovascular and renal disease in individuals with type 2-diabetes and albuminuria. PLoS ONE 2021, 16, e0244402. [Google Scholar] [CrossRef]
Variables | Total (n = 996) | Non-MACE (n = 677) | MACE (n = 319) | p-Value |
---|---|---|---|---|
Male | 755 (75.8) | 523 (77.3) | 232 (72.7) | 0.120 |
Age (years) | 63.3 ± 12.5 | 61.2 ± 12.2 | 67.8 ± 11.9 | <0.001 |
MI type, n (%) | 0.002 | |||
STEMI | 427 (42.9) | 313 (46.2) | 114 (35.7) | |
NSTEMI | 569 (57.1) | 364 (53.8) | 205 (64.3) | |
Medical history, n (%) | ||||
Hypertension | 676 (67.9) | 436 (64.4) | 240 (75.2) | <0.001 |
Diabetes mellitus | 420 (42.2) | 256 (37.8) | 164 (51.4) | <0.001 |
Hyperlipidemia | 582 (58.4) | 402 (59.4) | 180 (56.4) | 0.378 |
Previous stroke | 164 (16.5) | 86 (12.7) | 78 (24.5) | <0.001 |
Chronic kidney disease | 110 (11.0) | 44 (6.5) | 66 (20.7) | <0.001 |
Old myocardial infarction | 122 (12.3) | 69 (10.2) | 53 (16.6) | 0.004 |
Previous PCI | 91 (9.1) | 56 (8.3) | 35 (11.0) | 0.168 |
Previous CABG | 17 (1.7) | 11 (1.6) | 6 (1.9) | 0.766 |
Personal history, n (%) | ||||
Smoke | 583 (58.6) | 415 (61.4) | 168 (52.7) | 0.009 |
Drink | 346 (34.8) | 247 (36.5) | 99 (31.0) | 0.089 |
Laboratory indexes | ||||
TMAO (μg/mL) | 0.2 (0.1–0.3) | 0.2 (0.1–0.3) | 0.3 (0.2–0.5) | <0.001 |
Choline (μg/mL) | 1.9 (1.6–2.5) | 1.9 (1.5–2.3) | 2.2 (1.7–2.8) | <0.001 |
Betaine (μg/mL) | 5.3 ± 1.7 | 5.1 ± 1.6 | 5.6 ± 2.0 | <0.001 |
L-carnitine (μg/mL) | 6.1 ± 2.6 | 6.0 ± 2.1 | 6.4 ± 3.3 | 0.028 |
Creatinine (μmol/L) | 82.8 (72.1–99.2) | 80.7 (70.6–93.5) | 91.1 (75.1–118.5) | <0.001 |
TCHO (mmol/L) | 4.2 ± 1.1 | 4.3 ± 1.1 | 4.0 ± 1.1 | <0.001 |
TG (mmol/L) | 1.3 (1.0–2.0) | 1.4 (1.0–2.1) | 1.3 (1.0–1.8) | 0.007 |
LDL-C (mmol/L) | 2.6 ± 0.9 | 2.6 ± 0.9 | 2.4 ± 0.8 | 0.001 |
HDL-C (mmol/L) | 1.0 ± 0.2 | 1.0 ± 0.2 | 0.9 ± 0.2 | 0.092 |
cTnI-peak (ng/mL) | 3.4 (0.6–19.7) | 3.3 (0.6–18.3) | 4.2 (0.8–25.7) | 0.246 |
BNP-peak (pg/mL) | 230.0 (87.0–547.2) | 171.0 (60.0–392.0) | 455.0 (180.2–1031.0) | <0.001 |
hsCRP (mg/L) | 4.1 (1.4–13.3) | 3.9 (1.2–11.6) | 5.6 (1.8–22.3) | <0.001 |
LVEF (%) | 58.5 ± 13.0 | 60.4 ± 12.2 | 54.4 ± 13.6 | <0.001 |
Angiography finding, n (%) | ||||
Number of diseased vessels | <0.001 | |||
0 | 39 (3.9) | 27 (4.0) | 12 (3.8) | |
1 | 204 (20.5) | 167 (24. 7) | 37 (11.6) | |
2 | 232 (23.3) | 173 (25.6) | 59 (18.5) | |
3 | 521 (52.3) | 310 (45.8) | 211 (66.1) | |
Emergency PCI | 184 (18.5) | 138 (20.4) | 46 (14.4) | 0.024 |
Selected PCI | 635 (63.8) | 450 (66.5) | 185 (58.0) | 0.009 |
Medication, n (%) | ||||
Aspirin | 975 (98.3) | 662 (98.1) | 313 (98.7) | 0.452 |
Ticagrelor | 62 (6.3) | 59 (8.7) | 3 (1.0) | <0.001 |
Clopidogrel | 863 (87.0) | 574 (85.0) | 289 (91.2) | 0.007 |
ACEIs/ARBs | 694 (70.0) | 492 (72.9) | 202 (63.7) | 0.003 |
Beta-blocker | 814 (82.1) | 554 (82.1) | 260 (82.0) | 0.983 |
Statins | 933 (94.2) | 640(95.0) | 293 (92.4) | 0.114 |
Standard secondary prevention therapy | 538 (54.2) | 390 (57.8) | 148 (46.7) | 0.001 |
Endpoint | Group | Event | Crude HR | Model 1 | Model 2 |
---|---|---|---|---|---|
(n, %) | (95% CI) | HR (95% CI) | HR (95% CI) | ||
MACE | |||||
Ln transform per 1 increase | 319 (32.0) | 1.65 (1.49, 1.82) ** | 1.28 (1.10, 1.49) * | 1.19 (1.02, 1.39) * | |
Tertile 1 | 68 (20.5) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 90 (27.1) | 1.31 (0.95, 1.79) | 0.95 (0.68, 1.32) | 0.93 (0.66, 1.29) | |
Tertile 3 | 161 (48.5) | 2.94 (2.21, 3.91) ** | 1.56 (1.13, 2.15) * | 1.36 (0.98, 1.89) | |
Trend test | <0.001 | 0.003 | 0.045 | ||
All-cause death | |||||
Ln transform per 1 increase | 250 (25.1) | 1.82 (1.62, 2.04) ** | 1.13 (0.95, 1.35) | 1.03 (0.86, 1.23) | |
Tertile 1 | 51 (15.4) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 66 (19.9) | 1.25 (0.87, 1.80) | 0.70 (0.48, 1.03) | 0.67 (0.45, 0.99) * | |
Tertile 3 | 133 (40.1) | 3.06 (2.22, 4.23) ** | 1.09 (0.75, 1.57) | 0.89 (0.61, 1.31) | |
Trend test | <0.001 | 0.389 | 0.817 | ||
Cardiac death | |||||
Ln transform per 1 increase | 127 (12.8) | 1.90 (1.63, 2.22) ** | 1.44 (1.12, 1.84) * | 1.28 (0.99, 1.66) | |
Tertile 1 | 21 (6.3) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 34 (10.2) | 1.57 (0.91, 2.71) | 0.98 (0.55, 1.74) | 0.92 (0.52, 1.65) | |
Tertile 3 | 72 (21.7) | 3.96 (2.44, 6.44) ** | 1.56 (0.90, 2.70) | 1.23 (0.70, 2.16) | |
Trend test | <0.001 | 0.066 | 0.366 | ||
reMI | |||||
Ln transform per 1 increase | 185 (18.6) | 1.64 (1.44, 1.87) ** | 1.27 (1.04, 1.55) * | 1.21 (0.98, 1.49) | |
Tertile 1 | 40 (12.0) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 51 (15.4) | 1.25 (0.83, 1.90) | 0.93 (0.60, 1.45) | 0.88 (0.57, 1.38) | |
Tertile 3 | 94 (28.3) | 2.79 (1.92, 4.03) ** | 1.48 (0.97, 2.27) | 1.31 (0.84, 2.02) | |
Trend test | <0.001 | 0.042 | 0.170 | ||
Stroke | |||||
Ln transform per 1 increase | 107 (10.7) | 1.54 (1.28, 1.86) ** | 1.22 (0.94, 1.59) | 1.19 (0.90, 1.56) | |
Tertile 1 | 21 (6.3) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 31 (9.3) | 1.45 (0.83, 2.53) | 1.02 (0.57, 1.82) | 1.03 (0.57, 1.84) | |
Tertile 3 | 55 (16.6) | 3.23 (1.95, 5.34) ** | 1.72 (0.98, 3.01) | 1.68 (0.94, 2.99) | |
Trend test | <0.001 | 0.035 | 0.057 |
Endpoint | Group | Event | Crude HR | Model 1 | Model 2 |
---|---|---|---|---|---|
(n, %) | (95% CI) | HR (95% CI) | HR (95% CI) | ||
MACE | |||||
Ln transform per 1 increase | 319 (32.0) | 5.39 (3.96, 7.33) ** | 2.84 (1.90, 4.23) ** | 2.82 (1.81, 4.38) ** | |
Tertile 1 | 68 (20.5) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 90 (27.1) | 1.48 (1.08, 2.01) * | 1.35 (0.97, 1.88) | 1.29 (0.92, 1.81) | |
Tertile 3 | 161 (48.5) | 3.14 (2.37, 4.16) ** | 1.91 (1.38, 2.65) ** | 1.76 (1.25, 2.48) * | |
Trend test | <0.001 | <0.001 | 0.001 | ||
All-cause death | |||||
Ln transform per 1 increase | 250 (25.1) | 8.02 (5.72, 11.24) ** | 3.39 (2.12, 5.40) ** | 3.36 (2.01, 5.60) ** | |
Tertile 1 | 51 (15.4) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 66 (19.9) | 1.39 (0.95, 2.03) | 1.21 (0.81, 1.82) | 1.18 (0.79, 1.78) | |
Tertile 3 | 133 (40.1) | 4.12 (2.98, 5.71) ** | 2.06 (1.39, 3.05) ** | 1.97 (1.32, 2.95) * | |
Trend test | <0.001 | <0.001 | <0.001 | ||
Cardiac death | |||||
Ln transform per 1 increase | 127 (12.8) | 10.81 (6.89, 16.97) ** | 6.86 (3.51, 13.41) ** | 5.46 (2.61, 11.38) ** | |
Tertile 1 | 21 (6.3) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 34 (10.2) | 2.61 (1.39, 4.89) * | 2.92 (1.45, 5.86) * | 2.74 (1.36, 5.55) * | |
Tertile 3 | 72 (21.7) | 8.21 (4.64, 14.52) ** | 5.19 (2.64, 10.19) ** | 4.61 (2.31, 9.21) ** | |
Trend test | <0.001 | <0.001 | <0.001 | ||
reMI | |||||
Ln transform per 1 increase | 185 (18.6) | 4.59 (3.07, 6.86) ** | 2.61 (1.54, 4.43) ** | 2.53 (1.42, 4.52) * | |
Tertile 1 | 40 (12.0) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 51 (15.4) | 1.45 (0.97, 2.17) | 1.31 (0.84, 2.04) | 1.25 (0.80, 1.95) | |
Tertile 3 | 94 (28.3) | 2.96 (2.05, 4.29) ** | 1.90 (1.23, 2.94) * | 1.71 (1.09, 2.69) * | |
Trend test | <0.001 | 0.003 | 0.017 | ||
Stroke | |||||
Ln transform per 1 increase | 107 (10.7) | 3.35 (1.92, 5.84) ** | 1.56 (0.78, 3.10) | 1.92 (0.88, 4.17) | |
Tertile 1 | 21 (6.3) | 1 (Ref) | 1 (Ref) | 1 (Ref) | |
Tertile 2 | 31 (9.3) | 1.35 (0.82, 2.22) | 1.26 (0.75, 2.11) | 1.33 (0.78, 2.26) | |
Tertile 3 | 55 (16.6) | 2.22 (1.38, 3.56) ** | 1.25 (0.73, 2.15) | 1.39 (0.78, 2.48) | |
Trend test | <0.001 | 0.430 | 0.275 |
C Index (95% CI) | Continuous NRI | p-Value | IDI | p-Value | ||
---|---|---|---|---|---|---|
MACE | TMAO * | 0.732 (0.702, 0.761) | 0.097 | 0.100 | 0.021 | 0.066 |
Choline * | 0.744 (0.715, 0.772) | |||||
All-cause death | TMAO * | 0.814 (0.786, 0.843) | 0.185 | 0.007 | 0.030 | 0.020 |
Choline * | 0.823 (0.796, 0.851) | |||||
Cardiac death | TMAO * | 0.853 (0.820, 0.886) | 0.199 | 0.126 | 0.039 | 0.146 |
Choline * | 0.872 (0.843, 0.898) | |||||
Recurrent myocardial infarction | TMAO * | 0.742 (0.703, 0.781) | 0.114 | 0.106 | 0.014 | 0.206 |
Choline * | 0.752 (0.714, 0.790) | |||||
Stroke | TMAO * | 0.750 (0.702, 0.798) | −0.031 | 0.997 | −0.000 | 0.831 |
Choline * | 0.750 (0.702, 0.799) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, W.; Zhang, B.; Liu, J.; Li, K.; Jia, J.; Fan, F.; Jiang, J.; Wang, X.; Zhang, Y. Relationship Between Level of Trimethylamine Oxide and the Risk of Recurrent Cardiovascular Events in Patients with Acute Myocardial Infarction. Nutrients 2025, 17, 1664. https://doi.org/10.3390/nu17101664
Ji W, Zhang B, Liu J, Li K, Jia J, Fan F, Jiang J, Wang X, Zhang Y. Relationship Between Level of Trimethylamine Oxide and the Risk of Recurrent Cardiovascular Events in Patients with Acute Myocardial Infarction. Nutrients. 2025; 17(10):1664. https://doi.org/10.3390/nu17101664
Chicago/Turabian StyleJi, Wenjun, Bin Zhang, Jiahui Liu, Kaiyin Li, Jia Jia, Fangfang Fan, Jie Jiang, Xingang Wang, and Yan Zhang. 2025. "Relationship Between Level of Trimethylamine Oxide and the Risk of Recurrent Cardiovascular Events in Patients with Acute Myocardial Infarction" Nutrients 17, no. 10: 1664. https://doi.org/10.3390/nu17101664
APA StyleJi, W., Zhang, B., Liu, J., Li, K., Jia, J., Fan, F., Jiang, J., Wang, X., & Zhang, Y. (2025). Relationship Between Level of Trimethylamine Oxide and the Risk of Recurrent Cardiovascular Events in Patients with Acute Myocardial Infarction. Nutrients, 17(10), 1664. https://doi.org/10.3390/nu17101664