Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Eligibility Criteria
2.2. Search Strategy
2.3. Selection of Studies
2.4. Data Extraction
3. Results
3.1. Study Search and Selection Result
3.2. Study Characteristics
3.3. Experimental Trials Using DDW on Cancer Cell Lines and Animal Cancer Models
3.3.1. DDW Monotherapy in Cancer
The Effect of DDW on the Migration and Proliferation of Tumour Cells
Nation | Type of Cells/ Type of Animals | Type of Cancer | Main Results | Reference |
---|---|---|---|---|
China | A549 HLF-1 | Human lung carcinoma | Suppresses the growth of A549 cell lines; observes myelin bodies and physalides in the cytoplasm; increases S phase, reduces G0 to G1 and G2 to M phases. Induces cell apoptosis. | [28] |
H460 Male BALB/c nude mice (two groups: control, DDW) | Human lung carcinoma | Observes an obvious decrease of 30.80% in tumour inhibition rates. | ||
Hungary | Male CBA/Ca mice (four groups: 150 ppm, 150 ppm + DMBA, 25 ppm, 25 ppm + DMBA) | Mice lung carcinoma | No significant elevation of the of the expression of the Bcl2, Kras and Myc genes by DMBA. | [30] |
Female CBA/Ca mice (four groups: 150 ppm, 150 ppm + DMBA, 25 ppm, 25 ppm + DMBA) | Mice lung carcinoma | Decreases the upregulation of the Bcl2, Kras and Myc gene expression by DMBA. | ||
China | CNE-1 CNE-2 5-8F 6-10B Sune-1 preosteoblast MC3T3-E1 | Human nasopharyngeal carcinoma | Inhibits the proliferation of NPC cell lines; colony formation was promoted in normal preosteoblast MC3T3-E1 cells and was markedly inhibited in NPC tumour cells; increases G1 phase, reduces S phase in NPC cell lines; markedly inhibits migration in CNE-2, Sune-1 and CNE-1 cells; promotes NQO1 protein expression in NPC cell lines; significantly decreases the expression of PCNA and MMP9 in NPC cells. | [29] |
Iran | MDA-MB-231 PC-3 HCT-116 U-87MG AGS HDF-1 | Human breast adenocarcinoma Human prostate adenocarcinoma Human colon carcinoma Human glioblastoma multiforme Human gastric adenocarcinoma | No cytotoxic effects on all cell lines in DDW monotherapy. | [15] |
Romania | MDA-MB-231 | Human breast adenocarcinoma | No significant difference in mitochondrial membrane potential and nuclei integrity; slightly promotes autophagy and senescence; upregulates 528 and downregulates 368 miRNAs; upregulates MiR-155, MiR-205, downregulates MiR-210, MiR-181a/b/c, MiR-200 family members (miR-200b, miR-429 and miR-141) and let-7b family members. | [16] |
Romania | DLD-1 | Human colorectal carcinoma | Activates senescence, upregulates 46 and downregulates 59 miRNAs; upregulates let-7b and downregulates miR-23b and miR-193b. | [34] |
Iran | MCF-7 | Human breast adenocarcinoma | Inhibits cell growth; 50ppm DDW alone stops tumour proliferation at the G0/G1 stage and decreases the S phase. | [17] |
Sweden | MCF7 A549 HT29 | Human breast adenocarcinoma Human lung carcinoma Human colorectal adenocarcinoma | Inhibits A549 cells most efficiently; downregulates p53 signalling; suppresses glutathione metabolism pathways; DDW arrests cells in late S and G2 phases; increases ROS amount in the cells grown in 80ppm DDW for 48 h; promotes proteome thermal stability. | [18] |
Hungary | MIA-PaCa-2 H449 MCF-7 | Human pancreatic carcinoma Human lung carcinoma Human breast carcinoma | Decreases synthesis and turnover of new RNA ribose in MIA-Paca-2; decreases synthesis of nuclear membrane cholesterol in MIA-Paca-2; exhibits a dose-dependent inhibition of growth rate of MIA-Paca-2; significantly decreases the production of G6PDH flux and NADPH. | [19] |
Turkey | EAT, male BALB/c mice (four groups: 150 ppm, 150 ppm + EAT, 85 ppm, 85 ppm + EAT) | Mouse mammary adenocarcinoma | Upregulates GSH, CAT, Na+/K+-ATPase and PON1 in tumour + DDW group compared to tumour group; downregulates LPO, GPX, GR, GST, GGT, PC, SDH, ALT, AST, MPO and XO in the tumour + DDW group compared to the tumour group. | [20] |
Hungary | A459 | Human lung carcinoma | Higher Deuterium/Hydrogen Ratio stimulates cancer-related and kinase genes expression, DDW upregulates 1 cancer-related gene, downregulates 5 cancer-related genes and 1 kinase gene. | |
Male CBA/Ca mice (two groups: 150 ppm + DMBA, 25 ppm + DMBA) | Mice lung carcinoma | Significantly improves 1-year survival. | [31] | |
Female CBA/Ca mice (two groups: 150 ppm + DMBA, 25 ppm + DMBA) | Mice lung carcinoma | Significantly improves 1-year survival. | ||
Hungary | 4T1, female and male BALB/cJ mice (six groups: CTRL water, CTRL yolk, DDW, DDW + DDOC, DDOC, DU283) | Mice mammary carcinoma | DDW and DDyolk decrease primary tumour size and weight of metastasis. | [32] |
MCF-7, female and male NSG immunodeficient mice (three groups: control, DDyolk-treated, DDyolk- and DDW-treated) | Human breast carcinoma | DDW and DDyolk increase the survival time of mice; slightly decrease tumour size. | ||
Iran | HT-29 | Human colorectal adenocarcinoma | Inhibits the proliferation of HT-29 cells. | [21] |
Russia | Murine melanoma B16, male C57Bl/6 mice (three groups: 50 ppm [D]/0, 50 ppm [D]/-30, 146 ppm [D]) | Mice melanoma | The mice consuming DDW 30 days prior to inoculation showed a significant increase in survival, stronger inhibition of cancer growth and metastasis; the mice receiving DDW since tumour inoculation had no difference from control group in survival and metastasis of cancer cells and demonstrated a peak of tumour inhibition from the 20th to the 25th day following a subsequent decrease. | [35] |
The Effect of DDW on Apoptosis, Autophagy and Senescence in the Tumour Cells
The Effect of DDW on the Expression Level of Cancer-Related Genes in Tumour Cells
DDW Regulates the Expression of Proteins in the Tumour
3.3.2. Chemotherapeutic Drugs in Combination with DDW in Tumours
Nation | Type of Cells/ Type of Animals | Type of Cancer | Medicine | Main Results | Reference |
---|---|---|---|---|---|
Iran | MDA-MB-231 PC-3 HCT-116 U-87MG AGS HDF-1 | Human breast adenocarcinoma Human prostate adenocarcinoma Human colon carcinoma Human glioblastoma multiforme Human gastric adenocarcinoma | Paclitaxel | Paclitaxel remarkably decreased the surviving proportions of all cell lines. DDW enhanced the inhibition of paclitaxel on AGS, PC-3 and U-87MG but did not significantly affect HCT-116 and HDF-1. | [15] |
Romania | MDA-MB-231 | Human breast adenocarcinoma | Cisplatin | DDW has a weak synergistic effect on mitochondrial activity and autophagy activation in the case of cisplatin treatment of MDA-MB-231 cells. | [16] |
Romania | DLD-1 | Human colorectal carcinoma | 5-FU Oxaliplatin | DDW shows a weakly synergic effect on pro-apoptosis in 5-FU- and oxaliplatin-treated DLD-1 cells. | [34] |
Iran | MCF-7 | Human breast adenocarcinoma | 5-FU | 5-FU inhibits MCF-7 in a concentration-dependent way; DDW enhances inhibition of 5-FU in a concentration-dependent manner; DDW enhances the decreasing proportion of MCF-7 cells at the S and G2 to M phases and the increasing ratio of MCF-7 cells at the G0 to G1 phase in the cells treated with the 5-FU combinations; DDW reverses the decrease in SOD and CAT and increase in MDA in MCF-7 cells treated with 5-FU. | [17] |
Sweden | MCF7 A549 HT29 | Human breast adenocarcinoma Human lung carcinoma Human colorectal adenocarcinoma | Auranofin | Combination of auranofin and 80 ppm DDW increases the ROS amount significantly compared with monotherapy of either auranofin or DDW; DDW lowers the concentration of auranofin to achieve the same suppression of cell growth as higher concentration of auranofin. | [18] |
Hungary | MIA-PaCa-2 H449 MCF-7 | Human pancreatic carcinoma Human lung carcinoma Human breast carcinoma | Cisplatin | DDW enhances the cell growth inhibitory effect of cisplatin on MIA-PaCa-2 in a concentration-dependent manner. | [19] |
Iran | HT-29 | Human colorectal adenocarcinoma | Crocin | Crocin inhibits the growth of HT-29 in a concentration-dependent way; DDW and crocin had concerted results on the inhibition of tumours; 1 mg/mL crocin in combination with 75 ppm DDW had the most significant inhibition on the proliferation of HT-29 cells at 48 h, and the combination therapy enhances the decrease in SOD and catalase and the increase in MDA compared with 75 ppm DDW alone; crocin and DDW have a synergistic effect in increasing the cell amount at the G0 to G1 phases and decreasing the cell number at the S and G2 to M phases on HT-29 cells. | [21] |
Mitotic Inhibitors—Paclitaxel
Antimetabolites—5-FU
Alkylating Agents
Gold Salt—Auranofin
Plant Extracts—Crocin
3.4. Clinical Study Using DDW in the Treatment of Cancer
3.5. Effects of DDW on the Cellular Redox Balance in the Tumour
4. Discussion
5. Advantages and Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xu, J.; Murphy, S.L.; Kochanek, K.D.; Arias, E. Mortality in the United States, 2021. NCHS Data Briefs 2022, 427, 1–8. [Google Scholar] [CrossRef]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef]
- Morrison, W.B. Cancer Chemotherapy: An Annotated History. J. Vet. Intern. Med. 2010, 24, 1249–1262. [Google Scholar] [CrossRef]
- Galmarini, D.; Galmarini, C.M.; Galmarini, F.C. Cancer Chemotherapy: A Critical Analysis of Its 60 Years of History. Crit. Rev. Oncol. Hematol. 2012, 84, 181–199. [Google Scholar] [CrossRef]
- Somlyai, G.; Kovács, B.Z.; Papp, A.; Somlyai, I. A Preliminary Study Indicating Improvement in the Median Survival Time of Glioblastoma Multiforme Patients by the Application of Deuterium Depletion in Combination with Conventional Therapy. Biomedicines 2023, 11, 1989. [Google Scholar] [CrossRef]
- Kselíková, V.; Vítová, M.; Bišová, K. Deuterium and its impact on living organisms. Folia Microbiol. 2019, 64, 673–681. [Google Scholar] [CrossRef]
- Pope, E.C.; Bird, D.K.; Rosing, M.T. Isotope composition and volume of Earth’s early oceans. Proc. Natl. Acad. Sci. USA 2012, 109, 4371–4376. [Google Scholar] [CrossRef]
- Macrae, R.M. Isotopes and Analogs of Hydrogen—From Fundamental Investigations to Practical Applications. Sci. Prog. 2013, 96, 237–293. [Google Scholar] [CrossRef] [PubMed]
- Ehleringer, J.R.; Rundel, P.W.; Nagy, K.A. Stable isotopes in physiological ecology and food web research. Trends Ecol. Evol. 1986, 1, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Xi, X. A Review of Water Isotopes in Atmospheric General Circulation Models: Recent Advances and Future Prospects. Int. J. Atmos. Sci. 2014, 2014, 16. [Google Scholar] [CrossRef]
- Smirnov, A.Y.; Sulaberidze, G.A. Production of Water with Reduced Content of Deuterium for Water Supply System with Desalination Installation. J. Phys. Conf. Ser. 2018, 1099, 012035. [Google Scholar] [CrossRef]
- Mladin, C.; Popescu, A.; Stefanescu, I.; Oubraham, A. Deuterium Depleted Water-New Studies About Isotopic Distillation Obtaining Process. Asian J. Chem. 2013, 25, 7976–7978. [Google Scholar] [CrossRef]
- Huang, F.; Meng, C. Method for production of deuterium-depleted potable water. Ind. Eng. Chem. Res. 2011, 50, 378–381. [Google Scholar] [CrossRef]
- Somlyai, G.; Kovacs, A.; Guller, I.; Gyongyi, Z.; Krempels, K.; Somlyai, I.; Szabó, M.; Berkényi, T.; Molnar, M. Deuterium Has a Key Role in Tumour Development—New Target in Anticancer Drug Development. Eur. J. Cancer Suppl. 2010, 8, 208. [Google Scholar] [CrossRef]
- Soleyman-Jahi, S.; Zendehdel, K.; Akbarzadeh, K.; Haddadi, M.; Amanpour, S.; Muhammadnejad, S. In vitro assessment of antineoplastic effects of deuterium depleted water. Asian Pac. J. Cancer Prev. 2014, 15, 2179–2183. [Google Scholar] [CrossRef]
- Lajos, R.; Braicu, C.; Jurj, A.; Chira, S.; Cojocneanu-Petric, R.; Pileczki, V.; Berindan-Neagoe, I. A miRNAs profile evolution of triple-negative breast cancer cells in the presence of a possible adjuvant therapy and senescence inducer. JBUON 2018, 23, 692–705. [Google Scholar]
- Yavari, K.; Kooshesh, L. Deuterium Depleted Water Inhibits the Proliferation of Human MCF7 Breast Cancer Cell Lines by Inducing Cell Cycle Arrest. Nutr. Cancer 2019, 71, 1019–1029. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gaetani, M.; Chernobrovkin, A.; Zubarev, R.A. Anticancer Effect of Deuterium Depleted Water—Redox Disbalance Leads to Oxidative Stress. Mol. Cell. Proteom. 2019, 18, 2373–2387. [Google Scholar] [CrossRef]
- Boros, L.G.; Somlyai, I.; Kovács, B.Z.; Puskás, L.G.; Nagy, L.I.; Dux, L.; Farkas, G.; Somlyai, G. Deuterium Depletion Inhibits Cell Proliferation, RNA and Nuclear Membrane Turnover to Enhance Survival in Pancreatic Cancer. Cancer Control 2021, 28, 1073274821999655. [Google Scholar] [CrossRef]
- Bayrak, B.B.; Kulak, G.Y.; Yanardag, R.; Yarat, A. Short-Term Deuterium Depletion in Drinking Water Reduced Tumor Induced Oxidative Stress in Mice Liver. Pathol. Res. Pract. 2022, 240, 154186. [Google Scholar] [CrossRef]
- Haseli, R.; Honarvar, M.; Yavari, K.; Ghavami, M. Synergistic anticancer effects of crocin combined with deuterium-depleted water on HT-29 cells. Anti-Cancer Drugs 2023, 34, 162–1170. [Google Scholar] [CrossRef] [PubMed]
- Panieri, E.; Saso, L. Potential Applications of NRF2 Inhibitors in Cancer Therapy. Oxid. Med. Cell. Longev. 2019, 2019, 8592348. [Google Scholar] [CrossRef]
- Wu, S.; Lu, H.; Bai, Y. Nrf2 in cancers: A double-edged sword. Cancer Med. 2019, 8, 2252–2267. [Google Scholar] [CrossRef] [PubMed]
- Zimta, A.A.; Cenariu, D.; Irimie, A.; Magdo, L.; Nabavi, S.M.; Atanasov, A.G.; Berindan-Neagoe, I. The Role of Nrf2 Activity in Cancer Development and Progression. Cancers 2019, 11, 1755. [Google Scholar] [CrossRef] [PubMed]
- Tossetta, G.; Marzioni, D. Targeting the NRF2/KEAP1 pathway in cervical and endometrial cancers. Eur. J. Pharmacol. 2023, 941, 175503. [Google Scholar] [CrossRef] [PubMed]
- Tossetta, G.; Fantone, S.; Piani, F.; Crescimanno, C.; Ciavattini, A.; Giannubilo, S.R.; Marzioni, D. Modulation of NRF2/KEAP1 Signaling in Preeclampsia. Cells 2023, 12, 1545. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Cong, S.; Zhang, R.; Sheng, C.; Ao, H.; Zhang, Y.; Wang, Y. Deuterium-depleted water inhibits human lung carcinoma cell growth by apoptosis. Exp. Ther. Med. 2010, 1, 277–283. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhu, B.; He, Z.; Fu, H.; Dai, Z.; Huang, G.; Li, B.; Qin, D.; Zhang, X.; Tian, L.; et al. Deuterium-depleted Water (DDW) Inhibits the Proliferation and Migration of Nasopharyngeal Carcinoma Cells In Vitro. Biomed. Pharmacother. 2013, 67, 489–496. [Google Scholar] [CrossRef]
- Gyöngyi, Z.; Budán, F.; Szabó, I.; Ember, I.; Kiss, I.; Krempels, K.; Somlyai, I.; Somlyai, G. Deuterium Depleted Water Effects on Survival of Lung Cancer Patients and Expression of Kras, Bcl2, and Myc Genes in Mouse Lung. Nutr. Cancer 2013, 65, 240–246. [Google Scholar] [CrossRef]
- Kovács, B.Z.; Puskás, L.G.; Nagy, L.I.; Papp, A.; Gyöngyi, Z.; Fórizs, I.; Czuppon, G.; Somlyai, I.; Somlyai, G. Blocking the Increase of Intracellular Deuterium Concentration Prevents the Expression of Cancer-Related Genes, Tumor Development, and Tumor Recurrence in Cancer Patients. Cancer Control 2022, 29, 10732748211068963. [Google Scholar] [CrossRef]
- Somlyai, G.; Nagy, L.I.; Puskás, L.G.; Papp, A.; Kovács, B.Z.; Fórizs, I.; Czuppon, G.; Somlyai, I. Deuterium Content of the Organic Compounds in Food Has an Impact on Tumor Growth in Mice. Curr. Issues Mol. Biol. 2022, 45, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Kovács, A.; Guller, I.; Krempels, K.; Somlyai, I.; Jánosi, I.; Gyöngyi, Z.; Szabó, I.; Ember, I.A.; Somlyai, G. Deuterium Depletion May Delay the Progression of Prostate Cancer. J. Cancer Ther. 2011, 2, 548–556. [Google Scholar] [CrossRef]
- Chira, S.; Raduly, L.; Braicu, C.; Jurj, A.; Cojocneanu-Petric, R.; Pop, L.; Pileczki, V.; Ionescu, C.; Berindan-Neagoe, I. Premature Senescence Activation in DLD-1 Colorectal Cancer Cells through Adjuvant Therapy to Induce a MiRNA Profile Modulating Cellular Death. Exp. Ther. Med. 2018, 16, 1241–1249. [Google Scholar] [CrossRef]
- Yaglova, N.V.; Obernikhin, S.S.; Yaglov, V.V.; Nazimova, S.V. Time-dependent effect of deuterium depletion on tumour growth and metastasis. Russ. Open Med. J. 2020, 9, 210. [Google Scholar] [CrossRef]
- Seyfried, T.N.; Huysentruyt, L.C. On the Origin of Cancer Metastasis. Crit. Rev. Oncog. 2013, 18, 43. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, C.M.; Singh, A.T.K. Apoptosis: A Target for Anticancer Therapy. Int. J. Mol. Sci. 2018, 19, 448. [Google Scholar] [CrossRef]
- Elmore, S. Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007, 35, 495. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Yang, Z.; Xu, Y.; Chen, Y.; Yu, Q. MicroRNAs in Apoptosis, Autophagy and Necroptosis. Oncotarget 2015, 11, 8474–8490. [Google Scholar] [CrossRef]
- Oliveto, S.; Mancino, M.; Manfrini, N.; Biffo, S. Role of MicroRNAs in Translation Regulation and Cancer. World J. Biol. Chem. 2017, 8, 45–56. [Google Scholar] [CrossRef]
- Ramos, A.; Sadeghi, S.; Tabatabaeian, H. Battling Chemoresistance in Cancer: Root Causes and Strategies to Uproot Them. Int. J. Mol. Sci. 2021, 22, 9451. [Google Scholar] [CrossRef] [PubMed]
- Weaver, B.A. How Taxol/Paclitaxel Kills Cancer Cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef] [PubMed]
- Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: Mechanisms of Action and Clinical Strategies. Nat. Rev. Cancer 2003, 3, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.; Calvo, J.A.; Samson, L.D. Balancing Repair and Tolerance of DNA Damage Caused by Alkylating Agents. Nat. Rev. Cancer 2012, 12, 104–120. [Google Scholar] [CrossRef]
- Alcindor, T.; Beauger, N. Oxaliplatin: A Review in the Era of Molecularly Targeted Therapy. Curr. Oncol. 2011, 18, 18–25. [Google Scholar] [CrossRef]
- Dasari, S.; Tchounwou, P.B. Cisplatin in Cancer Therapy: Molecular Mechanisms of Action. Eur. J. Pharmacol. 2014, 740, 364. [Google Scholar] [CrossRef]
- Roder, C.; Thomson, M.J. Auranofin: Repurposing an Old Drug for a Golden New Age. Drugs R&D, 2015; 15, 13. [Google Scholar] [CrossRef]
- Veisi, A.; Akbari, G.; Mard, S.A.; Badfar, G.; Zarezade, V.; Mirshekar, M.A. Role of Crocin in Several Cancer Cell Lines: An Updated Review. Iran. J. Basic Med. Sci. 2019, 23, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Sullivan, L.B.; Chandel, N.S. Mitochondrial reactive oxygen species and cancer. Cancer Metab. 2014, 2, 17. [Google Scholar] [CrossRef] [PubMed]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Nakamura, H.; Takada, K. Reactive Oxygen Species in Cancer: Current Findings and Future Directions. Cancer Sci. 2021, 112, 945–3952. [Google Scholar] [CrossRef]
- Somlyai, G.; Jancsó, G.; Jákli, G.; Vass, K.; Barna, B.; Lakics, V.; Gaál, T. Naturally Occurring Deuterium Is Essential for the Normal Growth Rate of Cells. FEBS Lett. 1993, 317, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Youle, R.J.; Strasser, A. The BCL-2 Protein Family: Opposing Activities That Mediate Cell Death. Nat. Rev. Mol. Cell Biol. 2007, 9, 47–59. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Guo, Z.; Wang, F.; Fu, L. KRAS Mutation: From Undruggable to Druggable in Cancer. Signal Transduct. Target. Ther. 2021, 6, 386. [Google Scholar] [CrossRef] [PubMed]
- Dhanasekaran, R.; Deutzmann, A.; Mahauad-Fernandez, W.D.; Hansen, A.S.; Gouw, A.M.; Felsher, D.W. The MYC Oncogene—The Grand Orchestrator of Cancer Growth and Immune Evasion. Nat. Rev. Clin. Oncol. 2021, 19, 23–36. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Chen, C.; Yang, S.; Gong, W.; Wang, Y.; Cianflone, K.; Tang, J.; Wang, D.W. Let-7b Inhibits Human Cancer Phenotype by Targeting Cytochrome P450 Epoxygenase 2J2. PLoS ONE 2012, 7, e39197. [Google Scholar] [CrossRef] [PubMed]
- Ross, D.; Siegel, D. The Diverse Functionality of NQO1 and Its Roles in Redox Control. Redox. Biol. 2021, 41, 101950. [Google Scholar] [CrossRef] [PubMed]
- Kwon, D.H.; Cha, H.J.; Lee, H.; Hong, S.H.; Park, C.; Park, S.H.; Kim, G.Y.; Kim, S.; Kim, H.S.; Hwang, H.J.; et al. Protective Effect of Glutathione against Oxidative Stress-induced Cytotoxicity in RAW 264.7 Macrophages through Activating the Nuclear Factor Erythroid 2-Related Factor-2/Heme Oxygenase-1 Pathway. Antioxidants 2019, 8, 82. [Google Scholar] [CrossRef] [PubMed]
- Précourt, L.P.; Amre, D.; Denis, M.C.; Lavoie, J.C.; Delvin, E.; Seidman, E.; Levy, E. The Three-gene Paraoxonase Family: Physiologic Roles, Actions and Regulation. Atherosclerosis 2010, 214, 20–36. [Google Scholar] [CrossRef] [PubMed]
- Pei, J.; Pan, X.; Wei, G.; Hua, Y. Research Progress of Glutathione Peroxidase Family (GPX) in Redoxidation. Front. Pharmacol. 2023, 14, 1147414. [Google Scholar] [CrossRef]
- Couto, N.; Wood, J.; Barber, J. The Role of Glutathione Reductase and Related Enzymes on Cellular Redox Homoeostasis Network. Free Radic. Biol. Med. 2016, 95, 27–42. [Google Scholar] [CrossRef]
- Allocati, N.; Masulli, M.; Di Ilio, C.; Federici, L. Glutathione Transferases: Substrates, Inihibitors and Pro-drugs in Cancer and Neurodegenerative Diseases. Oncogenesis 2018, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.Q.; Lin, J.F.; Tian, T.; Xie, D.; Xu, R.H. NADPH Homeostasis in Cancer: Functions, Mechanisms and Therapeutic Implications. Signal Transduct. Target. Ther. 2020, 5, 231. [Google Scholar] [CrossRef] [PubMed]
- Ju, H.; Lu, Y.; Wu, Q.; Liu, J.; Zeng, Z.; Mo, H.; Chen, Y.; Tian, T.; Wang, Y.; Kang, T.; et al. Disrupting G6PD-mediated Redox Homeostasis Enhances Chemosensitivity in Colorectal Cancer. Oncogene 2017, 36, 6282–6292. [Google Scholar] [CrossRef] [PubMed]
- Raguz, S.; Yagüe, E. Resistance to Chemotherapy: New Treatments and Novel Insights into an Old Problem. Br. J. Cancer 2008, 99, 387–391. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Chen, R.; Wang, Z.; Huang, Z.; Kong, N.; Zhang, M.; Han, W.; Lou, F.; Yang, J.; Zhang, Q.; et al. Autophagy and Chemotherapy Resistance: A Promising Therapeutic Target for Cancer Treatment. Cell Death Dis. 2013, 4, e838. [Google Scholar] [CrossRef]
- Vichaya, E.G.; Chiu, G.S.; Krukowski, K.; Lacourt, T.E.; Kavelaars, A.; Dantzer, R.; Heijnen, C.J.; Walker, A.K. Mechanisms of chemotherapy-induced behavioral toxicities. Front. Neurosci. 2015, 9, 131. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, Y.; Chen, H. Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials. Nutrients 2024, 16, 1397. https://doi.org/10.3390/nu16091397
Lu Y, Chen H. Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials. Nutrients. 2024; 16(9):1397. https://doi.org/10.3390/nu16091397
Chicago/Turabian StyleLu, Yutong, and Hongping Chen. 2024. "Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials" Nutrients 16, no. 9: 1397. https://doi.org/10.3390/nu16091397
APA StyleLu, Y., & Chen, H. (2024). Deuterium-Depleted Water in Cancer Therapy: A Systematic Review of Clinical and Experimental Trials. Nutrients, 16(9), 1397. https://doi.org/10.3390/nu16091397