High Adherence to the Mediterranean Dietary Pattern Is Inversely Associated with Systemic Inflammation in Older but Not in Younger Brazilian Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Blood Collection and Investigation of the Low-Grade Systemic Inflammation
2.3. Dietary Assessment
2.4. Adherence to the Mediterranean Dietary Pattern
2.5. Socio-Demographic Characteristics
2.6. Behavior and Lifestyle Variables
2.7. Health Conditions
2.8. Statistical Analysis
3. Results
3.1. Sociodemographic, Lifestyle and Health Characteristics
3.2. Association between Adherence to the Mediterranean Diet and Low-Grade Systemic Inflammation
3.3. MedDietScore’s Food Component Intake According to the Degree of Adherence by Age Group and Its Association with Systemic Inflammation
4. Discussion
5. Limitations
6. Conclusions and Future Perspectives
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Franceschi, C.; Garagnani, P.; Parini, P.; Giuliani, C.; Santoro, A. Inflammaging: A new immune-metabolic viewpoint for age-related diseases. Nat. Rev. Endocrinol. 2018, 14, 576–590. [Google Scholar] [CrossRef] [PubMed]
- Gurinović, M.; Zeković, M.; Milešević, J.; Nikolić, M.; Glibetić, M. Nutritional Assessment. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Wu, P.Y.; Chen, K.M.; Tsai, W.C. The Mediterranean Dietary Pattern and Inflammation in Older Adults: A Systematic Review and Meta-analysis. Adv. Nutr. 2021, 12, 363–373. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef]
- Tristan Asensi, M.; Napoletano, A.; Sofi, F.; Dinu, M. Low-Grade Inflammation and Ultra-Processed Foods Consumption: A Review. Nutrients 2023, 15, 1546. [Google Scholar] [CrossRef]
- IBGE. Pesquisa de Orçamentos Familiares 2017–2018: Análise do Consumo Alimentar Pessoal No Brasil; IBGE, Coordenação de Trabalho e Rendimento: Rio de Janeiro, Brazil, 2020; p. 120. [Google Scholar]
- Monteiro, C.A.; Moubarac, J.C.; Levy, R.B.; Canella, D.S.; Louzada, M.; Cannon, G. Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutr. 2018, 21, 18–26. [Google Scholar] [CrossRef]
- Rosa, A.; Loy, F.; Pinna, I.; Masala, C. Role of Aromatic Herbs and Spices in Salty Perception of Patients with Hyposmia. Nutrients 2022, 14, 4976. [Google Scholar] [CrossRef]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef]
- Panagiotakos, D.B.; Pitsavos, C.; Stefanadis, C. Dietary patterns: A Mediterranean diet score and its relation to clinical and biological markers of cardiovascular disease risk. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 559–568. [Google Scholar] [CrossRef]
- Hoffman, R.; Gerber, M. Evaluating and adapting the Mediterranean diet for non-Mediterranean populations: A critical appraisal. Nutr. Rev. 2013, 71, 573–584. [Google Scholar] [CrossRef]
- Barnaba, L.; Intorre, F.; Azzini, E.; Ciarapica, D.; Venneria, E.; Foddai, M.S.; Maiani, F.; Raguzzini, A.; Polito, A. Evaluation of adherence to Mediterranean diet and association with clinical and biological markers in an Italian population. Nutrition 2020, 77, 110813. [Google Scholar] [CrossRef] [PubMed]
- Ubago-Jiménez, J.L.; Zurita-Ortega, F.; San Román-Mata, S.; Puertas-Molero, P.; González-Valero, G. Impact of Physical Activity Practice and Adherence to the Mediterranean Diet in Relation to Multiple Intelligences among University Students. Nutrients 2020, 12, 2630. [Google Scholar] [CrossRef] [PubMed]
- Lopes, S.; Fontes, T.; Menezes, R.; Rodrigues, L.M.; Ferreira-Pêgo, C. Mediterranean Diet Adherence and Its Relationship to Metabolic Markers and Body Composition in Portuguese University Students. Nutrients 2023, 15, 2330. [Google Scholar] [CrossRef] [PubMed]
- Koelman, L.; Egea Rodrigues, C.; Aleksandrova, K. Effects of Dietary Patterns on Biomarkers of Inflammation and Immune Responses: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2022, 13, 101–115. [Google Scholar] [CrossRef] [PubMed]
- Aridi, Y.S.; Walker, J.L.; Wright, O.R.L. The Association between the Mediterranean Dietary Pattern and Cognitive Health: A Systematic Review. Nutrients 2017, 9, 674. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.C.G.P.; Escuder, M.M.L.; Goldbaum, M.; Barros, M.B.d.A.; Fisberg, R.M.; Cesar, C.L.G. Sampling plan in health surveys, city of São Paulo, Brazil, 2015. Rev. Saúde Pública 2018, 52, 81. [Google Scholar] [CrossRef] [PubMed]
- Fisberg, R.M.; Sales, C.H.; Fontanelli, M.M.; Pereira, J.L.; Alves, M.; Escuder, M.M.L.; Cesar, C.L.G.; Goldbaum, M. 2015 Health Survey of Sao Paulo with Focus in Nutrition: Rationale, Design, and Procedures. Nutrients 2018, 10, 169. [Google Scholar] [CrossRef]
- Norde, M.M.; Fisberg, R.M.; Marchioni, D.M.L.; Rogero, M.M. Systemic low-grade inflammation-associated lifestyle, diet, and genetic factors: A population-based cross-sectional study. Nutrition 2020, 70, 110596. [Google Scholar] [CrossRef]
- Vicente, B.M.; Bastos, A.A.; Melo, C.M.; Aquino, R.d.C.; Ribeiro, S.M.L. Correlation Between Different Dietary Indexes, and Their Association with An Anti-inflammatory Biomarker in Older Adults: An Exploratory Study. Eur. J. Geriatr. Gerontol. 2023, 5, 238–245. [Google Scholar] [CrossRef]
- Moshfegh, A.J.; Rhodes, D.G.; Baer, D.J.; Murayi, T.; Clemens, J.C.; Rumpler, W.V.; Paul, D.R.; Sebastian, R.S.; Kuczynski, K.J.; Ingwersen, L.A.; et al. The US Department of Agriculture Automated Multiple-Pass Method reduces bias in the collection of energy intakes. Am. J. Clin. Nutr. 2008, 88, 324–332. [Google Scholar] [CrossRef]
- Raper, N.; Perloff, B.; Ingwersen, L.; Steinfeldt, L.; Anand, J. An overview of USDA’s Dietary Intake Data System. J. Food Compos. Anal. 2004, 17, 545–555. [Google Scholar] [CrossRef]
- Blanton, C.A.; Moshfegh, A.J.; Baer, D.J.; Kretsch, M.J. The USDA Automated Multiple-Pass Method accurately estimates group total energy and nutrient intake. J. Nutr. 2006, 136, 2594–2599. [Google Scholar] [CrossRef] [PubMed]
- Haubrock, J.; Nothlings, U.; Volatier, J.L.; Dekkers, A.; Ocke, M.; Harttig, U.; Illner, A.K.; Knuppel, S.; Andersen, L.F.; Boeing, H. Estimating usual food intake distributions by using the multiple source method in the EPIC-Potsdam Calibration Study. J. Nutr. 2011, 141, 914–920. [Google Scholar] [CrossRef] [PubMed]
- WHO. Global Recommendations on Physical Activity for Health; World Health Organization: Geneva, Switzerland, 2010. [Google Scholar]
- WHO. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; Volume 894, pp. 1–253. [Google Scholar]
- PAHO. Encuesta Multicéntrica Salud Bienestar y Envejecimiento (SABE) en América Latina y el Caribe: Inform Preliminar; Kingston: Washington, DC, USA, 2002. [Google Scholar]
- World Health Organization (WHO). Department of Service Delivery and Safety. In Multimorbidity: Technical Series on Safer Primary Care; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Ministério da Saúde (MS); Secretaria de Atenção à Saúde; Coordenação-Geral da Política de Alimentação e Nutrição. Guia alimentar Para a População Brasileira: Promovendo a Alimentação Saudável; Série A. Normas e Manuais Técnicos; Secretaria de Atenção à Saúde, Ed.; Coordenação-Geral da Política de Alimentação e Nutrição: Brasília, Brasil, 2006. [Google Scholar]
- Antoniazzi, L.; Arroyo-Olivares, R.; Bittencourt, M.S.; Tada, M.T.; Lima, I.; Jannes, C.E.; Krieger, J.E.; Pereira, A.C.; Quintana-Navarro, G.; Muñiz-Grijalvo, O.; et al. Adherence to a Mediterranean diet, dyslipidemia and inflammation in familial hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2014–2022. [Google Scholar] [CrossRef] [PubMed]
- Martimianaki, G.; Peppa, E.; Valanou, E.; Papatesta, E.M.; Klinaki, E.; Trichopoulou, A. Today’s Mediterranean Diet in Greece: Findings from the National Health and Nutrition Survey-HYDRIA (2013–2014). Nutrients 2022, 14, 1193. [Google Scholar] [CrossRef] [PubMed]
- Mamalaki, E.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.M.; Sakka, P.; Scarmeas, N.; Yannakoulia, M. Social life characteristics in relation to adherence to the Mediterranean diet in older adults: Findings from the Hellenic Longitudinal Investigation of Aging and Diet (HELIAD) study. Public Health Nutr. 2020, 23, 439–445. [Google Scholar] [CrossRef] [PubMed]
- Castro-Quezada, I.; Román-Viñas, B.; Serra-Majem, L. The Mediterranean diet and nutritional adequacy: A review. Nutrients 2014, 6, 231–248. [Google Scholar] [CrossRef]
- Saura-Calixto, F.; Goñi, I. Definition of the Mediterranean diet based on bioactive compounds. Crit. Rev. Food Sci. Nutr. 2009, 49, 145–152. [Google Scholar] [CrossRef]
- Swann, O.G.; Kilpatrick, M.; Breslin, M.; Oddy, W.H. Dietary fiber and its associations with depression and inflammation. Nutr. Rev. 2020, 78, 394–411. [Google Scholar] [CrossRef]
- Tsigalou, C.; Konstantinidis, T.; Paraschaki, A.; Stavropoulou, E.; Voidarou, C.; Bezirtzoglou, E. Mediterranean Diet as a Tool to Combat Inflammation and Chronic Diseases. An Overview. Biomedicines 2020, 8, 201. [Google Scholar] [CrossRef]
- Martucci, M.; Ostan, R.; Biondi, F.; Bellavista, E.; Fabbri, C.; Bertarelli, C.; Salvioli, S.; Capri, M.; Franceschi, C.; Santoro, A. Mediterranean diet and inflammaging within the hormesis paradigm. Nutr. Rev. 2017, 75, 442–455. [Google Scholar] [CrossRef] [PubMed]
- Carluccio, M.A.; Massaro, M.; Bonfrate, C.; Siculella, L.; Maffia, M.; Nicolardi, G.; Distante, A.; Storelli, C.; De Caterina, R. Oleic acid inhibits endothelial activation: A direct vascular antiatherogenic mechanism of a nutritional component in the mediterranean diet. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Perez-Martinez, P.; Lopez-Miranda, J.; Blanco-Colio, L.; Bellido, C.; Jimenez, Y.; Moreno, J.A.; Delgado-Lista, J.; Egido, J.; Perez-Jimenez, F. The chronic intake of a Mediterranean diet enriched in virgin olive oil, decreases nuclear transcription factor kappaB activation in peripheral blood mononuclear cells from healthy men. Atherosclerosis 2007, 194, e141–e146. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Dziechciaz, M.; Filip, R. Biological psychological and social determinants of old age: Bio-psycho-social aspects of human aging. Ann. Agric. Environ. Med. 2014, 21, 835–838. [Google Scholar] [CrossRef] [PubMed]
- Yannakoulia, M.; Mamalaki, E.; Anastasiou, C.A.; Mourtzi, N.; Lambrinoudaki, I.; Scarmeas, N. Eating habits and behaviors of older people: Where are we now and where should we go? Maturitas 2018, 114, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Morley, J.E. Decreased food intake with aging. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56 (Suppl. 2), 81–88. [Google Scholar] [CrossRef]
- Wysokiński, A.; Sobów, T.; Kłoszewska, I.; Kostka, T. Mechanisms of the anorexia of aging-a review. Age 2015, 37, 9821. [Google Scholar] [CrossRef]
- Andreo-López, M.C.; Contreras-Bolívar, V.; García-Fontana, B.; García-Fontana, C.; Muñoz-Torres, M. The Influence of the Mediterranean Dietary Pattern on Osteoporosis and Sarcopenia. Nutrients 2023, 15, 3224. [Google Scholar] [CrossRef]
- Ntanasi, E.; Yannakoulia, M.; Kosmidis, M.H.; Anastasiou, C.A.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Scarmeas, N. Adherence to Mediterranean Diet and Frailty. J. Am. Med. Dir. Assoc. 2018, 19, 315–322. [Google Scholar] [CrossRef]
- McClure, R.; Villani, A. Mediterranean Diet attenuates risk of frailty and sarcopenia: New insights and future directions. JCSM Clin. Rep. 2017, 2, 1–17. [Google Scholar] [CrossRef]
- Lo Buglio, A.; Bellanti, F.; Capurso, C.; Paglia, A.; Vendemiale, G. Adherence to Mediterranean Diet, Malnutrition, Length of Stay and Mortality in Elderly Patients Hospitalized in Internal Medicine Wards. Nutrients 2019, 11, 790. [Google Scholar] [CrossRef] [PubMed]
- Mazza, E.; Ferro, Y.; Pujia, R.; Mare, R.; Maurotti, S.; Montalcini, T.; Pujia, A. Mediterranean Diet In Healthy Aging. J. Nutr. Health Aging 2021, 25, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Lăcătușu, C.M.; Grigorescu, E.D.; Floria, M.; Onofriescu, A.; Mihai, B.M. The Mediterranean Diet: From an Environment-Driven Food Culture to an Emerging Medical Prescription. Int. J. Environ. Res. Public. Health 2019, 16, 942. [Google Scholar] [CrossRef]
Younger Adults (n = 290) | Older Adults (n = 293) | |
---|---|---|
Variables | n (%) or Median (IQR) | n (%) or Median (IQR) |
Sex | ||
Male | 150 (54.2) | 146 (52.2) |
Female | 140 (45.8) | 147 (47.8) |
Age (Years) | 41 (33–50) | 68 (63–73) |
Race | ||
White | 148 (52.4) | 168 (61.6) |
Nonwhite | 142 (47.6) | 119 (38.4) |
Years of Education | ||
≤9 | 104 (33.9) | 203 (64.4) |
10–12 | 111 (36.9) | 36 (13.3) |
>12 | 75 (29.2) | 51 (22.3) |
Household income a | ||
≤1 MW | 134 (48.7) | 110 (41.1) |
>1 MW | 123 (51.3) | 141 (58.9) |
Physical activity | ||
<150 min/week | 229 (77.3) | 241 (83.2) |
≥150 min/week | 61 (22.7) | 50 (16.8) |
Smoking status | ||
Never smoke. | 172 (60.8) | 175 (62.1) |
Former smoker | 57 (19) | 80 (25.1) |
Current smoker | 61 (20.2) | 35 (12.8) |
Energy intake (kcal) | 1804.5 (1516.8–2221.4) | 1565.4 (1311.5–1853.3) |
BMI (kg/m2) b | ||
Below normality range | 9 (3.6) | 55 (16.7) |
Within normality range | 106 (36.7) | 107 (38.1) |
Overweight range | 102 (35.2) | 42 (15.3) |
Obesity range | 70 (24.5) | 85 (29.9) |
Multimorbidity c | ||
No | 239 (83.8) | 144 (49.6) |
Yes | 50 (16.2) | 144 (50.4) |
Anti-inflammatory medication use d | ||
No | 151 (53.9) | 48 (15.9) |
Yes | 133 (46.1) | 242 (84.1) |
Degrees of Adherence (MedDietScore) | |||||
---|---|---|---|---|---|
Low Adherence | Moderate Adherence | High Adherence | |||
Total (%) | 150 (26) | 243 (40) | 190 (34) | ||
Mean Score (±SD) | 25 (±1.71) | 29 (±1.14) | 34 (±1.84) | ||
β (SE) | p-value | β (SE) | p-value | ||
Crude model | Ref | −0.040 (0.034) | 0.247 | −0.106 (0.036) | 0.004 |
Model 1 a | Ref | −0.050 (0.034) | 0.148 | −0.103 (0.036) | 0.005 |
Model 2 b | Ref | −0.046 (0.034) | 0.176 | −0.097 (0.037) | 0.008 |
Model 3 c | Ref | −0.051 (0.033) | 0.127 | −0.095 (0.035) | 0.008 |
Degrees of Adherence (MedDietScore) by Younger Adults | |||||
---|---|---|---|---|---|
Low Adherence | Moderate Adherence | High Adherence | |||
Total (%) | 78 (26.5) | 121 (40) | 91 (33.5) | ||
Mean score (±SD) | 25 (±1.77) | 30 (±1.14) | 34 (±1.75) | ||
β (SE) | p-value | β (SE) | p-value | ||
Crude model | Ref | −0.005 (0.046) | 0.911 | −0.080 (0.049) | 0.107 |
Model 1 a | Ref | −0.012 (0.050) | 0.789 | −0.087 (0.050) | 0.080 |
Model 2 b | Ref | −0.010 (0.047) | 0.829 | −0.082 (0.050) | 0.105 |
Model 3 c | Ref | −0.010 (0.043) | 0.809 | −0.064 (0.046) | 0.161 |
Degrees of Adherence (MedDietScore) by Older Adults | |||||
Low Adherence | Moderate Adherence | High Adherence | |||
Total (%) | 106 (36) | 112 (38) | 75 (26) | ||
Mean score (±SD) | 26 (±1.88) | 30 (±1.15) | 34 (±1.82) | ||
β (SE) | p-value | β (SE) | p-value | ||
Crude model | Ref | −0.037 (0.049) | 0.453 | −0.139 (0.055) | 0.012 |
Model 1 a | Ref | −0.043 (0.049) | 0.380 | −0.118 (0.055) | 0.033 |
Model 2 b | Ref | −0.038 (0.049) | 0.444 | −0.119 (0.056) | 0.033 |
Model 3 c | Ref | −0.041 (0.049) | 0.404 | −0.115 (0.055) | 0.040 |
Food Component | Food Component Intake in Each Degree of Adherence * | p-Value ** | ||
---|---|---|---|---|
Low | Moderate | High | ||
Non-refined cereals and potatoes | ||||
Younger adults | 3 servings/week | 6 servings/week | 8 servings/week | <0.001 |
Older adults | 3 servings/week | 5 servings/week | 7 servings/week | <0.001 |
Fruits | ||||
Younger adults | 5 servings/week | 8 servings/week | 8 servings/week | 0.021 |
Older adults | 9 servings/week | 10 servings/week | 12 servings/week | 0.023 |
Vegetables | ||||
Younger adults | 8 servings/week | 10 servings/week | 13 servings/week | <0.001 |
Older adults | 9 servings/week | 11 servings/week | 12 servings/week | <0.001 |
Legumes | ||||
Younger adults | 10 servings/week | 9 servings/week | 8 servings/week | 0.706 |
Older adults | 9 servings/week | 8 servings/week | 9 servings/week | 0.569 |
Fish | ||||
Younger adults | 1 serving/month | 1 serving/month | 1 serving/month | 0.038 |
Older adults | 1 serving/month | 1 serving/month | 1 serving/month | <0.001 |
Meat | ||||
Younger adults | 6 servings/week | 6 servings/week | 6 servings/week | 0.617 |
Older adults | 7 servings/week | 6 servings/week | 6 servings/week | 0.044 |
Poultry | ||||
Younger adults | 4 servings/week | 3 servings/week | 2 servings/week | 0.002 |
Older adults | 3 servings/week | 3 servings/week | 3 servings/week | 0.013 |
Full-fat dairy | ||||
Younger adults | 7 servings/week | 6 servings/week | 7 servings/week | 0.374 |
Older adults | 7 servings/week | 7 servings/week | 5 servings/week | 0.013 |
Olive oil | ||||
Younger adults | 1 serving/week | 1 serving/week | 3 servings/week | <0.001 |
Older adults | 1 serving/week | 2 servings/week | 3 servings/week | <0.001 |
Wine | ||||
Younger adults | 30 mL/month | 50 mL/month | 50 mL/month | 0.006 |
Older adults | 40 mL/month | 40 mL/month | 50 mL/month | 0.335 |
MedDietScore’s Food Intake | LGSI Score | |
---|---|---|
Crude Model β (p) | Adjusted Model * β (p) | |
Non-refined cereals/potatoes | ||
Younger adults | ||
≤3 servings/week | Ref | Ref |
>3 and <8 servings/week | −0.035 (0.447) | −0.020 (0.644) |
≥8 servings/week | −0.087 (0.085) | −0.064 (0.189) |
Older adults | ||
≤3 servings/week | Ref | Ref |
>3 and <7 servings/week | −0.072 (0.153) | −0.084 (0.101) |
≥7 servings/week | −0.114 (0.044) | −0.082 (0.161) |
Fruits | ||
Younger adults | ||
≤5 servings/week | Ref | Ref |
>5 and <8 servings/week | −0.017 (0.756) | 0.010 (0.845) |
≥8 servings/week | 0.018 (0.661) | 0.004 (0.910) |
Older adults | ||
≤9 servings/week | Ref | Ref |
>9 and <12 servings/week | −0.063 (0.268) | −0.032 (0.572) |
≥12 servings/week | −0.072 (0.133) | −0.006 (0.901) |
Vegetables | ||
Younger adults | ||
≤8 servings/week | Ref | Ref |
>8 and <13 servings/week | −0.059 (0.200) | −0.027 (0.527) |
≥13 servings/week | −0.044 (0.336) | −0.025 (0.558) |
Older adults | ||
≤9 servings/week | Ref | Ref |
>9 and <12 servings/week | −0.121 (0.029) | −0.124 (0.030) |
≥12 servings/week | −0.148 (0.002) | −0.132 (0.010) |
Legumes | ||
Younger adults | ||
≤8 servings/week | Ref | Ref |
>8 servings/week | −0.022 (0.565) | 0.023 (0.548) |
Older adults | ||
≤9 servings/week | Ref | Ref |
>9 servings/week | −0.025 (0.552) | −0.015 (0.745) |
Fish | ||
Younger adults | ||
≤1 serving/month | Ref | Ref |
>1 serving/month | −0.024 (0.537) | −0.001 (0.977) |
Older adults | ||
≤1 serving/month | Ref | Ref |
>1 serving/month | 0.030 (0.486) | 0.053 (0.228) |
Red meat | ||
Younger adults | ||
≤6 servings/week | Ref | Ref |
>6 servings/week | −0.008 (0.822) | 0.004 (0.910) |
Older adults | ||
≤6 servings/week | Ref | Ref |
> 6 servings/week | −0.027 (0.532) | −0.059 (0.182) |
Poultry | ||
Younger adults | ||
≤2 servings/week | Ref | Ref |
>2 servings/week | −0.107 (0.015) | −0.065 (0.108) |
Older adults | ||
≤3 servings/week | Ref | Ref |
>3 servings/week | 0.021 (0.629) | 0.026 (0.556) |
Full-fat dairy | ||
Younger adults | ||
≤7 servings/week | Ref | Ref |
>7 servings/week | 0.032 (0.389) | 0.031 (0.382) |
Older adults | ||
≤5 servings/week | Ref | Ref |
>5 servings/week | 0.079 (0.077) | 0.082 (0.069) |
Olive oil | ||
Younger adults | ||
≤1 serving/week | Ref | Ref |
>1 and <3 servings/week | −0.032 (0.470) | −0.026 (0.536) |
≥3 servings/week | −0.053 (0.254) | −0.034 (0.433) |
Older Adults | ||
≤1 serving/week | Ref | Ref |
>1 and <3 servings/week | −0.055 (0.267) | −0.054 (0.289) |
≥3 servings/week | −0.102 (0.059) | −0.115 (0.034) |
Wine | ||
Younger adults | ||
≤50 mL/month | Ref | Ref |
>50 mL/month | −0.034 (0.373) | 0.011 (0.756) |
Older adults | ||
≤50 mL/month | Ref | Ref |
>50 mL/month | −0.040 (0.346) | −0.042 (0.337) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bastos, A.A.; Félix, P.V.; Valentini Neto, J.; Rogero, M.M.; Fisberg, R.M.; Yannakoulia, M.; Ribeiro, S.M.L. High Adherence to the Mediterranean Dietary Pattern Is Inversely Associated with Systemic Inflammation in Older but Not in Younger Brazilian Adults. Nutrients 2024, 16, 1385. https://doi.org/10.3390/nu16091385
Bastos AA, Félix PV, Valentini Neto J, Rogero MM, Fisberg RM, Yannakoulia M, Ribeiro SML. High Adherence to the Mediterranean Dietary Pattern Is Inversely Associated with Systemic Inflammation in Older but Not in Younger Brazilian Adults. Nutrients. 2024; 16(9):1385. https://doi.org/10.3390/nu16091385
Chicago/Turabian StyleBastos, Amália Almeida, Paula Victória Félix, João Valentini Neto, Marcelo Macedo Rogero, Regina Mara Fisberg, Mary Yannakoulia, and Sandra Maria Lima Ribeiro. 2024. "High Adherence to the Mediterranean Dietary Pattern Is Inversely Associated with Systemic Inflammation in Older but Not in Younger Brazilian Adults" Nutrients 16, no. 9: 1385. https://doi.org/10.3390/nu16091385
APA StyleBastos, A. A., Félix, P. V., Valentini Neto, J., Rogero, M. M., Fisberg, R. M., Yannakoulia, M., & Ribeiro, S. M. L. (2024). High Adherence to the Mediterranean Dietary Pattern Is Inversely Associated with Systemic Inflammation in Older but Not in Younger Brazilian Adults. Nutrients, 16(9), 1385. https://doi.org/10.3390/nu16091385