Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities
Highlights
- Opuntia ficus-indica exerts health beneficial effects that are indicative of its potential use in obesity prevention.
- Opuntia cactus could be used as a natural means for the development of functional foods.
- While the Opuntia plant resource most commonly used in preclinical studies is cladode extract, dehydrated cacti and derivatives such as flour or plant fibers have also been used in clinical studies.
Abstract
:1. Introduction
2. Search Strategy
3. Effects of Opuntia spp. on Obesity-Related Co-Morbidities in Preclinical Studies
Summary
4. Effects of Opuntia spp. on Obesity and Related Co-Morbidities in Clinical Studies
Summary
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Daniloski, D.; D’Cunha, N.M.; Speer, H.; McKune, A.J.; Alexopoulos, N.; Panagiotakos, D.B.; Petkoska, A.T.; Naumovski, N. Recent Developments on Opuntia spp., their Bioactive Composition, Nutritional Values, and Health Effects. Food Biosci. 2022, 47, 101665. [Google Scholar] [CrossRef]
- Madrigal-Santillan, E.; Portillo-Reyes, J.; Madrigal-Bujaidar, E.; Sanchez-Gutierrez, M.; Izquierdo-Vega, J.A.; Izquierdo-Vega, J.; Delgado-Olivares, L.; Vargas-Mendoza, N.; Alvarez-Gonzalez, I.; Morales-Gonzalez, A.; et al. Opuntia spp. in Human Health: A Comprehensive Summary on its Pharmacological, Therapeutic and Preventive Properties. Part 2. Plants 2022, 11, 2333. [Google Scholar] [CrossRef] [PubMed]
- Santos Diaz, M.; Barba de la Rosa, A.-P.; Helies-Toussaint, C.; Gueraud, F.; Negre-Salvayre, A. Opuntia spp.: Characterization and Benefits in Chronic Diseases. Oxid. Med. Cell. Longev. 2017, 2017, 8634249. [Google Scholar] [CrossRef]
- Stintzing, F.C.; Carle, R. Cactus Stems (Opuntia spp.): A Review on their Chemistry, Technology, and Uses. Mol. Nutr. Food Res. 2005, 49, 175–194. [Google Scholar] [CrossRef] [PubMed]
- Fernandes de Araujo, F.; de Paulo Farias, D.; Neri-Numa, I.A.; Pastore, G.M. Underutilized Plants of the Cactaceae Family: Nutritional Aspects and Technological Applications. Food Chem. 2021, 362, 130196. [Google Scholar] [CrossRef] [PubMed]
- Stavi, I. Ecosystem Services Related with Opuntia ficus-indica (Prickly Pear Cactus): A Review of Challenges and Opportunities. Agroecol. Sustain. Food Syst. 2022, 46, 815–841. [Google Scholar] [CrossRef]
- Ramirez-Rodriguez, Y.; Martinez-Huelamo, M.; Pedraza-Chaverri, J.; Ramirez, V.; Martinez-Taguena, N.; Trujillo, J. Ethnobotanical, Nutritional and Medicinal Properties of Mexican Drylands Cactaceae Fruits: Recent Findings and Research Opportunities. Food Chem. 2020, 312, 126073. [Google Scholar] [CrossRef] [PubMed]
- Gouws, C.; Mortazavi, R.; Mellor, D.; McKune, A.; Naumovski, N. The Effects of Prickly Pear Fruit and Cladode (Opuntia spp.) Consumption on Blood Lipids: A Systematic Review. Complement. Ther. Med. 2020, 50, 102384. [Google Scholar] [CrossRef] [PubMed]
- Gouws, C.; Georgousopoulou, E.N.; Mellor, D.D.; McKune, A.; Naumovski, N. Effects of the Consumption of Prickly Pear Cacti (Opuntia spp.) and its Products on Blood Glucose Levels and Insulin: A Systematic Review. Medicina 2019, 55, 138. [Google Scholar] [CrossRef]
- Moran-Ramos, S.; Avila-Nava, A.; Tovar, A.R.; Pedraza-Chaverri, J.; Lopez-Romero, P.; Torres, N. Opuntia ficus indica (Nopal) Attenuates Hepatic Steatosis and Oxidative Stress in Obese Zucker (Fa/Fa) Rats. J. Nutr. 2012, 142, 1956–1963. [Google Scholar] [CrossRef]
- Angulo-Bejarano, P.I.; Gomez-Garcia, M.D.R.; Valverde, M.E.; Paredes-Lopez, O. Nopal (Opuntia spp.) and its Effects on Metabolic Syndrome: New Insights for the use of a Millenary Plant. Curr. Pharm. Des. 2019, 25, 3457–3477. [Google Scholar] [CrossRef]
- Besne-Eseverri, I.; Trepiana, J.; Gomez-Zorita, S.; Antunes-Ricardo, M.; Cano, M.P.; Portillo, M.P. Beneficial Effects of Opuntia spp. on Liver Health. Antioxidants 2023, 12, 1174. [Google Scholar] [CrossRef]
- Rahimi, P.; Abedimanesh, S.; Mesbah-Namin, S.A.; Ostadrahimi, A. Betalains, the Nature-Inspired Pigments, in Health and Diseases. Crit. Rev. Food Sci. Nutr. 2019, 59, 2949–2978. [Google Scholar] [CrossRef]
- Perucini-Avendano, M.; Nicolas-Garcia, M.; Jimenez-Martinez, C.; Perea-Flores, M.J.; Gomez-Patino, M.B.; Arrieta-Baez, D.; Davila-Ortiz, G. Cladodes: Chemical and Structural Properties, Biological Activity, and Polyphenols Profile. Food Sci. Nutr. 2021, 9, 4007–4017. [Google Scholar] [CrossRef]
- Gomez-Lopez, I.; Lobo-Rodrigo, G.; Portillo, M.P.; Cano, M.P. Characterization, Stability, and Bioaccessibility of Betalain and Phenolic Compounds from Opuntia stricta Var. dillenii Fruits and Products of their Industrialization. Foods 2021, 10, 1593. [Google Scholar] [CrossRef]
- Manzur-Valdespino, S.; Arias-Rico, J.; Ramirez-Moreno, E.; Sanchez-Mata, M.C.; Jaramillo-Morales, O.A.; Angel-Garcia, J.; Zafra-Rojas, Q.Y.; Barrera-Galvez, R.; Cruz-Cansino, N.S. Applications and Pharmacological Properties of Cactus Pear (Opuntia spp.) Peel: A Review. Life 2022, 12, 1903. [Google Scholar] [CrossRef]
- Aruwa, C.E.; Amoo, S.O.; Kudanga, T. Opuntia (Cactaceae) Plant Compounds, Biological Activities and Prospects—A Comprehensive Review. Food Res. Int. 2018, 112, 328–344. [Google Scholar] [CrossRef]
- Héliès-Toussaint, C.; Fouché, E.; Naud, N.; Blas-Y-Estrada, F.; Del Socorro Santos-Diaz, M.; Nègre-Salvayre, A.; Barba de la Rosa, A.P.; Guéraud, F. Opuntia Cladode Powders Inhibit Adipogenesis in 3 T3-F442A Adipocytes and a High-Fat-Diet Rat Model by Modifying Metabolic Parameters and Favouring Faecal Fat Excretion. BMC Complement. Med. Ther. 2020, 20, 33. [Google Scholar] [CrossRef]
- Aboura, I.; Nani, A.; Belarbi, M.; Murtaza, B.; Fluckiger, A.; Dumont, A.; Benammar, C.; Tounsi, M.S.; Ghiringhelli, F.; Rialland, M.; et al. Protective Effects of Polyphenol-Rich Infusions from Carob (Ceratonia siliqua) Leaves and Cladodes of Opuntia Ficus-Indica Against Inflammation Associated with Diet-Induced Obesity and DSS-Induced Colitis in Swiss Mice. Biomed. Pharmacother. 2017, 96, 1022–1035. [Google Scholar] [CrossRef]
- Sánchez-Tapia, M.; Aguilar-López, M.; Pérez-Cruz, C.; Pichardo-Ontiveros, E.; Wang, M.; Donovan, S.M.; Tovar, A.R.; Torres, N. Nopal (Opuntia ficus indica) Protects from Metabolic Endotoxemia by Modifying Gut Microbiota in Obese Rats Fed High Fat/Sucrose Diet. Sci. Rep. 2017, 7, 4716. [Google Scholar] [CrossRef]
- Urquiza-Martínez, M.V.; Martínez-Flores, H.E.; Guzmán-Quevedo, O.; Toscano, A.E.; Manhães de Castro, R.; Torner, L.; Mercado-Camargo, R.; Pérez-Sánchez, R.E.; Bartolome-Camacho, M.C. Addition of Opuntia ficus-indica Reduces Hypothalamic Microglial Activation and Improves Metabolic Alterations in Obese Mice Exposed to a High-Fat Diet. J. Food Nutr. Res. 2020, 8, 473–483. [Google Scholar] [CrossRef]
- Chekkal, H.; Harrat, N.e.I.; Affane, F.; Bensalah, F.; Louala, S.; Lamri-Senhadji, M. Cactus Young Cladodes Improves Unbalanced Glycemic Control, Dyslipidemia, Prooxidant/Antioxidant Stress Biomarkers and Stimulate Lecithin-Cholesterol Acyltransferase and Paraoxonase Activities in Young Rats After Cafeteria Diet Exposure. Nutr. Food Sci. 2020, 50, 288–302. [Google Scholar] [CrossRef]
- Cardenas, Y.; Rios-Silva, M.; Huerta, M.; Lopez, M.; Bricio-Barrios, J.; Ortiz-Mesina, M.; Urzua, Z.; Saavedra-Molina, A.; Trujillo, X. The Comparative Effect of Nopal and Mucilage in Metabolic Parameters in Rats with a High-Fructose Diet. J. Med. Food 2019, 22, 538–541. [Google Scholar] [CrossRef]
- Bounihi, A.; Bitam, A.; Bouazza, A.; Yargui, L.; Koceir, E.A. Fruit Vinegars Attenuate Cardiac Injury Via Anti-Inflammatory and Anti-Adiposity Actions in High-Fat Diet-Induced Obese Rats. Pharm. Biol. 2017, 55, 43–52. [Google Scholar] [CrossRef]
- Veron, H.E.; Gauffin Cano, P.; Fabersani, E.; Sanz, Y.; Isla, M.I.; Fernandez Espinar, M.T.; Gil Ponce, J.V.; Torres, S. Cactus Pear (Opuntia ficus-indica) Juice Fermented with Autochthonous Lactobacillus plantarum S-811. Food Funct. 2019, 10, 1085–1097. [Google Scholar] [CrossRef]
- Rosas-Campos, R.; Meza-Rios, A.; Rodriguez-Sanabria, J.S.; la Rosa-Bibiano, R.D.; Corona-Cervantes, K.; Garcia-Mena, J.; Santos, A.; Sandoval-Rodriguez, A.; Armendariz-Borunda, J. Dietary Supplementation with Mexican Foods, Opuntia ficus indica, Theobroma cacao, and Acheta domesticus: Improving Obesogenic and Microbiota Features in Obese Mice. Front. Nutr. 2022, 9, 987222. [Google Scholar] [CrossRef]
- Shokri, Y.; Variji, A.; Nosrati, M.; Khonakdar-Tarsi, A.; Kianmehr, A.; Kashi, Z.; Bahar, A.; Bagheri, A.; Mahrooz, A. Importance of Paraoxonase 1 (PON1) as an Antioxidant and Antiatherogenic Enzyme in the Cardiovascular Complications of Type 2 Diabetes: Genotypic and Phenotypic Evaluation. Diabetes Res. Clin. Pract. 2020, 161, 108067. [Google Scholar] [CrossRef]
- Linares, E.; Thimonier, C.; Degre, M. The Effect of NeOpuntia on Blood Lipid Parameters-Risk Factors for the Metabolic Syndrome (Syndrome X). Adv. Ther. 2007, 24, 1115–1125. [Google Scholar] [CrossRef]
- Godard, M.P.; Ewing, B.A.; Pischel, I.; Ziegler, A.; Benedek, B.; Feistel, B. Acute Blood Glucose Lowering Effects and Long-Term Safety of OpunDia Supplementation in Pre-Diabetic Males and Females. J. Ethnopharmacol. 2010, 130, 631–634. [Google Scholar] [CrossRef] [PubMed]
- Grube, B.; Chong, P.; Lau, K.; Orzechowski, H. A Natural Fiber Complex Reduces Body Weight in the Overweight and Obese: A Double-Blind, Randomized, Placebo-Controlled Study. Obesity 2013, 21, 58–64. [Google Scholar] [CrossRef] [PubMed]
- Grube, B.; Chong, P.; Alt, F.; Uebelhack, R. Weight Maintenance with Litramine (IQP-G-002AS): A 24-Week Double-Blind, Randomized, Placebo-Controlled Study. J. Obes. 2015, 2015, 953138. [Google Scholar] [CrossRef]
- Pignotti, G.; Hook, G.; Ghan, E.; Vega-López, S. Effect of Nopales (Opuntia spp.) on Lipoprotein Profile and Oxidative Stress among Moderately Hypercholesterolemic Adults: A Pilot Study. J. Funct. Foods. 2016, 27, 115–121. [Google Scholar] [CrossRef]
- Aiello, A.; Di Bona, D.; Candore, G.; Carru, C.; Zinellu, A.; Di Miceli, G.; Nicosia, A.; Gambino, C.M.; Ruisi, P.; Caruso, C.; et al. Targeting Aging with Functional Food: Pasta with Opuntia Single-Arm Pilot Study. Rejuvenation Res. 2018, 21, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Giglio, R.V.; Carruba, G.; Cicero, A.F.G.; Banach, M.; Patti, A.M.; Nikolic, D.; Cocciadiferro, L.; Zarcone, M.; Montalto, G.; Stoian, A.P.; et al. Pasta Supplemented with Opuntia ficus-indica Extract Improves Metabolic Parameters and Reduces Atherogenic Small Dense Low-Density Lipoproteins in Patients with Risk Factors for the Metabolic Syndrome: A Four-Week Intervention Study. Metabolites 2020, 10, 428. [Google Scholar] [CrossRef]
- Sanchez-Murillo, M.E.; Cruz-Lopez, E.O.; Verde-Star, M.J.; Rivas-Morales, C.; Morales-Rubio, M.E.; Garza-Juarez, A.J.; Llaca-Diaz, J.M.; Ibarra-Salas, M.J. Consumption of Nopal Powder in Adult Women. J. Med. Food 2020, 23, 938–942. [Google Scholar] [CrossRef]
- Corona-Cervantes, K.; Parra-Carriedo, A.; Hernandez-Quiroz, F.; Martinez-Castro, N.; Velez-Ixta, J.M.; Guajardo-Lopez, D.; Garcia-Mena, J.; Hernandez-Guerrero, C. Physical and Dietary Intervention with Opuntia ficus-indica (Nopal) in Women with Obesity Improves Health Condition through Gut Microbiota Adjustment. Nutrients 2022, 14, 1008. [Google Scholar] [CrossRef]
- Wolfram, R.M.; Kritz, H.; Efthimiou, Y.; Stomatopoulos, J.; Sinzinger, H. Effect of Prickly Pear (Opuntia robusta) on Glucose- and Lipid-Metabolism in Non-Diabetics with Hyperlipidemia—A Pilot Study. Wien. Klin. Wochenschr. 2002, 114, 840–846. [Google Scholar]
Author Year [Ref.] | Animal Model | Opuntia Species and Product | Experimental Design | Effects | Mechanism |
---|---|---|---|---|---|
Morán-Ramos et al., 2012 [10] | Male Zucker (fa/fa) rats (7-week-old) | Opuntia ficus-indica Dehydrated extract of cladodes | Standard diet supplemented or not with 4% of dietary fibre from Opuntia ficus-indica in place of cellulose 7 weeks | NS Final body weight ↑ Food intake ↓ Cholesterol, ALT, AST serum levels ↑ Adiponectin serum level | |
Aboura et al., 2017 [19] | Swiss male mice (40–50 g weight) | Opuntia ficus-indica Aqueus cladode extract | High-fat diet (60% of energy from fat) or standard diet supplemented or not with 1% of extract in the drinking water 6 weeks | ↓ Body weight ↓ Adipose tissue weight ↓ TG, TC, glucose, insulin, IL-6 and TNFα plasma levels ↓ Leptin, Il-1β, Il-6 and Tnfα gene expression in adipose tissue | |
Sánchez-Tapia et al., 2017 [20] | Male Wistar rats (6 week-old) | Opuntis ficus-indica Dehydrated extract of cladodes to provide 5% of dietary fibre from nopal in place of cellulose | High-fat diet (45% of energy from fat added to the diet and 5% sucrose added to the drinking water) or standard diet 7 months Each group continued with the same diet but were distributed into 4 groups: rats fed the standard diet or the high-fat diet supplemented or not with nopal 1 month | ↓ Body weight (SD+Opuntia; HFD+Opuntia) ↓ Glucose and insulin serum levels (SD+Opuntia; HFD+Opuntia) ↓ TG, TC and leptin serum levels (SD+Opuntia; HFD+Opuntia) ↓ LDL-cholesterol serum levels (SD+Opuntia) ↓ Leptin, Nox and App gene expression in adipose tissue (SD+Opuntia; HFD+Opuntia) ↓ Tnfα gene expression in adipose tissue (HFD+Opuntia) | ↑ Gut microbiota diversity and abundance ↑ Bacteroidetes increased with respect to the Firmicutes ↑ Anaeroplasma, Prevotella and Ruminucoccus (SD+Opuntia; HFD+Opuntia) ↓Faecalibacterium, Clostridium and Butyricicoccus (SD+Opuntia; HFD+Opuntia) ↑ Intestinal mucus layer thickness and occluding (HFD+Opuntia) ↓ LPS serum levels (HFD+Opuntia) |
Héliès-Toussaint et al., 2020 [18] | Male Sprague–Dawley rats (6 week-old) | Opuntia ficus-indica (OFI) Opuntia streptacantha (OSC) and Cladode extracts (0.5% w/w in the diet) | HFD (30% of energy from fat) 8 weeks | ↓ Body mass gain (significant only in OFI) ↓ Serum adiponectin level (both OSC and OFI) ↑ Serum leptin level (both OSC and OFI) | ↑ Faecal lipid excretion (OFI) |
Urquiza-Martínez et al., 2020 [21] | Male C57Bl/6J mice (9 week- old) | Opuntia ficus-indica Flour (17% w/w in the diet) | HFD (60% of energy from fat) or SD 12 weeks 4 additional weeks with supplementation or not 17% cactus | ↓ Body weight ↓ Epididymal and retroperitoneal adipose tissue weights ↓ AUC in glucose and insulin tolerance tests | ↑ Caloric intake (SD+Opuntia) ↓ Caloric intake (HFD+Opuntia) Delays the point of satiation (SD+Opuntia) Earlier point of satiation (HFD+Opuntia) ↓ Activated microglial cells in arcuate nucleus (HFD+Opuntia) |
Chekkal et al., 2020 [22] | Male Wistar rat (4 week-old and 110 ± 20 g) | Opuntia ficus-indica Cladode extract (50 g/100 g diet) | Cafeteria diet (50% hyperlipidic diet with 20% of energy from fat + 50% junk food) 4 weeks | ↓ Body weight ↓ Adipose tissue weight ↓ Food intake ↓ Serum glucose, insulin and glycated haemoglobin levels and HOMA-IR ↓ Serum TC, TG, TG-VLDL levels | ↓ Lipid peroxidation in serum ↑ PON-1, GPx and CAT activities in serum ↓ Lipid peroxidation in adipose tissue and VLDL ↑ PON-1 activity in HDL ↑ SOD and CAT activities in adipose tissue |
Cárdenas et al., 2019 [23] | Male Wistar rats (8 week-old and 250–350 g) | Opuntia ficus-indica Cladode extracts (4.36 g/kg bw/day) | Standard diet + 20% fructose in water 3 weeks + additional 8 weeks, receiving or not cactus extract | ↓ Plasma TG levels NS Abdominal circumference | |
Bounihi, A. et al., 2017 [24] | Male Wistar rats (7–8 week-old) | Opuntia ficus-indica Vinegar of prickly pear (fruit) | High-fat diet (45% of energy from fat) supplemented with 3.5, 7 or 14 mL/kg/day of the vinegar 8 weeks | ↓ Final body weight (all doses) ↓ Visceral adipose tissue weights (mesenteric, epididymal and perirenal) (all doses) ↓ TG, TC, LDL-c and CRI plasma levels (all doses) ↑ Adiponectin in plasma (all doses) ↓ Leptin and TNF-α in plasma (all doses) | |
Verón et al., 2019 [25] | Male C57BL-6 mice (4–6 week-old) | Opuntia ficus-indica Fruit juice (5 mL/day/mouse) fermented and non- fermented with Lactobacillus plantarum S-811(1.2 × 109 CFU/mL) | High-fat diet (60.3% of energy from fat) 7 weeks | ↓ Body weight ↓ Adipose tissue index (HFD-fermented OFI group) Fermented fruit juice: ↓ Plasma TG, TC, glucose and insulin levels and HOMA-IR index (HFD-fermented OFI group) Non-fermented fruit juice: ↓ Plasma TG and TC levels NS Blood leptin levels | |
Rosas-Campos et al., 2022 [26] | Male C57BL/6J mice (7 week-old) | Opuntia ficus Indica along with other 2 Mexican functional foods (MexMix): Theobroma cacao and Acheta domesticus (10% from 8th to 16th each) | HFD (35% of energy from fat) together with high-carbohydrate beverage (2.31% fructose, 1.89% sucrose) From week 8th to week 16th supplementation | ↓ Body weight ↓ Visceral and epididymal fat pad ↓ Adipocyte size (hyperplasia) ↓ Variations in adipocyte size and shape ↓ Serum glucose and insulin levels ↑ Insulin sensitivity ↓ Serum TG, cholesterol and LDL cholesterol levels ↓ Inflammatory infiltrates (by haematoxylin-eosin staining) |
Author Year [Ref.] | Participants | Opuntia Species, Product and Dose | Experimental Design | Effects | Mechanism |
---|---|---|---|---|---|
Linarès et al., 2007 [28] | 59 women with metabolic syndrome Age: 20–55 year-old BMI: 25–40 kg/m2 | Opuntia ficus-indica Dehydrated leaves (NeOpuntia) 1.6 g, 3 times daily | Intervention group and placebo group 6 weeks All subjects: 30 min physical activity/day | ↑ HDL-cholesterol ↓ Triglycerides ↓ Waist circumference ↓ Patients with metabolic syndrome (−39%) | |
Godard et al., 2010 [29] | 29 pre-diabetic adult male and female (14 placebo and 15 patients Age: 20–50 year-old BMI: 30–35 kg/m2 | Opuntia ficus-indica OpunDia™ (a capsule contains 75% Opuntia ficus-indica cladode extract + 25% fruit skin extract) 400 mg/day | Intervention group and placebo group Acute study: OpunDiaTM were given 30 min before ingestion of a 75 g glucose solution Chronic study: 16 weeks | Acute study phase: ↓ Plasma glucose level at 60, 90 and 120 min Chronic study phase: NS fat mass, percent body fat and total body weight NS Plasma insulin, proinsulin, hsCRP, adiponectin and HbA1c levels | |
Grube et al., 2013 [30] | 123 volunteers (30 male and 93 female) Age: 18–60 year-old BMI: 25–35 kg/m2 | Opuntia ficus-indica Litramine IQP G-002AS (a fibre extract) 3000 mg/day | Intervention group and placebo group All subjects: hypocaloric diet (−500 kcal/day) plus daily exercise (30 min/day) 14 weeks | ↓ Body weight ↓ BMI ↓ Waist circumference ↓ Body fat | |
Grube et al., 2015 [31] | 49 volunteers Age: 18–60 year-old BMI: 25–35 kg/m2 | Opuntia ficus-indica. Litramine IQP G-002AS (a fibre extract) 3000 mg/day | Intervention group (n = 25): received 1000 mg fibre extract three times a day Placebo group (n = 24): received 1000 mg of cellulose three times a day All subjects: indication of daily exercise (30 min/day) 24 weeks | ↓ Body weight ↓ BMI ↓ Hip and waist circumference ↓ Fat mass ↓ Satiety | |
Pignotti et al., 2016 [32] | 16 participants with moderate hypercholesterolemia (LDL-c ≥ 120 mg/dL) Age: 32–60 year-old BMI: 31.4 ± 5.7 kg/m2 | Opuntia ficus-indica Pad boiled 280 g/day | Nopal group: received 1 cup (140 g) of Opuntia twice a day Cucumber group (control): received 1 cup (130 g) of cucumber twice a day 2 weeks | NS BMI, body mass and% fat ↑ Plasma triglycerides | |
Aiello et al., 2018 [33] | 39 participants with at least two of these conditions: impaired glucose tolerance, slight dyslipidaemia or waist circumference ≥102 cm in men and ≥88 in women Age: 19–69 year-old | Opuntia ficus-indica 500 g of pasta/week supplemented with 3% of cladode extract | Intervention group and placebo group All subjects: Mediterranean diet 4 weeks | NS% fat mass and BMI ↓ Abdominal waist circumference in men and women ↓ serum glycemia NS serum total cholesterol | |
Giglio et al., 2020 [34] | 49 volunteers (13 male and 36 female without metabolic syndrome. Among the 49 subjects: 31% presented hypertension, 12% were obese and dyslipidaemic, and 4% were diabetic Age: 40–65 year-old BMI: > 30 kg/m2 | Opuntia ficus-indica 500 g of pasta/week supplemented with 3% of cladode extract (30% of insoluble polysaccharides) | Intervention group and placebo group All subjects: Mediterranean diet and little physical activity was practiced 4 weeks | NS Body weight and BMI ↓ Waist circumference ↓ Plasma glucose, triglycerides, creatinine and AST ↓ LDL-2 and LDL-3 | |
Sánchez-Murillo et al., 2020 [35] | 69 women volunteers Age: 40–60 year-old BMI: 27.8 and 29.0 kg/m2 | Opuntia ficus-indica Flour from cladodes 5 g/day | Intervention group (n = 56); and control group (n = 13) 24 weeks | NS BMI and body fat | |
Corona-Cervantes et al., 2022 [36] | 36 women Age: average age between groups were significantly different (obesity group: 40.6 year-old and normal weight group: 22.1 year-old) BMI: >30 kg/m2 in obesity group; BMI: 18.5–24.9 kg/m2 in normal weight group | Opuntia ficus-indica Boiled fresh cladodes 300 g/day | Intervention group (obesity group); and control group (normal weight group) No antibiotic treatment in the three months prior to the study | Obesity group: ↓ BMI, weight, hip, waist/hip ratio, serum glucose, total cholesterol and HDL-cholesterol Normal weight group: no changes | Obesity group ↑ Prevotella, Roseburia, Lachnospiraceae and Clostridiaceae ↓ Bacteroides, Blautia and Ruminococcus Normal weight group: ↓ Ruminococcus and Bacteroides ↑ Lachnospiraceae |
Wolfram et al., 2002 [37] | 24 non-diabetic, non-obese males with hypercholesterolemia or hyperlipidaemia Age: 37–55 year-old | Opuntia robusta Prickly pear pulp 250 g/day | Group A: Patients with primary isolated hypercholesterolemia (n = 12) Group B: Patients with combined hyperlipidaemia (n = 12) 16 weeks Phase I: 8 weeks of pre-running phase with a diet of 7506 kJ Phase II: 8 weeks with a diet where 625 kJ were replaced by prickly pear pulp | NS Body weight ↓ Plasma total cholesterol, LDL-cholesterol, apolipoprotein B, triglycerides, fibrinogen, glucose, insulin and uric acid NS HDL-cholesterol, apolipoprotein A-I, and lipoprotein(a) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-García, I.; Fernández-Quintela, A.; González, M.; Gómez-Zorita, S.; Muguerza, B.; Trepiana, J.; Portillo, M.P. Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities. Nutrients 2024, 16, 1282. https://doi.org/10.3390/nu16091282
Gómez-García I, Fernández-Quintela A, González M, Gómez-Zorita S, Muguerza B, Trepiana J, Portillo MP. Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities. Nutrients. 2024; 16(9):1282. https://doi.org/10.3390/nu16091282
Chicago/Turabian StyleGómez-García, Iker, Alfredo Fernández-Quintela, Marcela González, Saioa Gómez-Zorita, Begoña Muguerza, Jenifer Trepiana, and María P. Portillo. 2024. "Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities" Nutrients 16, no. 9: 1282. https://doi.org/10.3390/nu16091282
APA StyleGómez-García, I., Fernández-Quintela, A., González, M., Gómez-Zorita, S., Muguerza, B., Trepiana, J., & Portillo, M. P. (2024). Usefulness of Opuntia spp. on the Management of Obesity and Its Metabolic Co-Morbidities. Nutrients, 16(9), 1282. https://doi.org/10.3390/nu16091282