Association between Multiple Trace Elements, Executive Function, and Cognitive Impairment with No Dementia in Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Sample Collection and Measurement of Blood ETEs
2.3. Assessment of Frontal/Executive Function
2.4. Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, W.; Goodkind, D.; Kowal, P.R. An Aging World: 2015; United States Census Bureau: Washington, DC, USA, 2016.
- Kontis, V.; Bennett, J.E.; Mathers, C.D.; Li, G.; Foreman, K.; Ezzati, M. Future life expectancy in 35 industrialised countries: Projections with a Bayesian model ensemble. Lancet 2017, 389, 1323–1335. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Dan, X.; Babbar, M.; Wei, Y.; Hasselbalch, S.G.; Croteau, D.L.; Bohr, V.A. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019, 15, 565–581. [Google Scholar] [CrossRef] [PubMed]
- Passeri, E.; Elkhoury, K.; Morsink, M.; Broersen, K.; Linder, M.; Tamayol, A.; Malaplate, C.; Yen, F.T.; Arab-Tehrany, E. Alzheimer’s disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022, 23, 13954. [Google Scholar] [CrossRef] [PubMed]
- Lovett, R.M.; Curtis, L.M.; Persell, S.D.; Griffith, J.W.; Cobia, D.; Federman, A.; Wolf, M.S. Cognitive impairment no dementia and associations with health literacy, self-management skills, and functional health status. Patient Educ. Couns. 2020, 103, 1805–1811. [Google Scholar] [CrossRef] [PubMed]
- Martinez, C.H.; Richardson, C.R.; Han, M.K.; Cigolle, C.T. Chronic obstructive pulmonary disease, cognitive impairment, and development of disability: The health and retirement study. Ann. Am. Thorac. Soc. 2014, 11, 1362–1370. [Google Scholar] [CrossRef] [PubMed]
- Perna, L.; Wahl, H.-W.; Mons, U.; Saum, K.-U.; Holleczek, B.; Brenner, H. Cognitive impairment, all-cause and cause-specific mortality among non-demented older adults. Age Ageing 2015, 44, 445–451. [Google Scholar] [CrossRef]
- Engelken, J.; Espadas, G.; Mancuso, F.M.; Bonet, N.; Scherr, A.-L.; Jímenez-Álvarez, V.; Codina-Sola, M.; Medina-Stacey, D.; Spataro, N.; Stoneking, M. Signatures of evolutionary adaptation in quantitative trait loci influencing trace element homeostasis in liver. Mol. Biol. Evol. 2016, 33, 738–754. [Google Scholar] [CrossRef]
- Chen, L.; Min, J.; Wang, F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct. Target. Ther. 2022, 7, 378. [Google Scholar] [CrossRef]
- Mehri, A. Trace elements in human nutrition (II)—An update. Int. J. Prev. Med. 2020, 11, 2. [Google Scholar]
- Li, F.; Calingasan, N.Y.; Yu, F.; Mauck, W.M.; Toidze, M.; Almeida, C.G.; Takahashi, R.H.; Carlson, G.A.; Flint Beal, M.; Lin, M.T. Increased plaque burden in brains of APP mutant MnSOD heterozygous knockout mice. J. Neurochem. 2004, 89, 1308–1312. [Google Scholar] [CrossRef]
- Murakami, K.; Murata, N.; Noda, Y.; Tahara, S.; Kaneko, T.; Kinoshita, N.; Hatsuta, H.; Murayama, S.; Barnham, K.J.; Irie, K. SOD1 (copper/zinc superoxide dismutase) deficiency drives amyloid β protein oligomerization and memory loss in mouse model of Alzheimer disease. J. Biol. Chem. 2011, 286, 44557–44568. [Google Scholar] [CrossRef]
- Lovell, M.A.; Xiong, S.; Lyubartseva, G.; Markesbery, W.R. Organoselenium (Sel-Plex diet) decreases amyloid burden and RNA and DNA oxidative damage in APP/PS1 mice. Free Radic. Biol. Med. 2009, 46, 1527–1533. [Google Scholar] [CrossRef]
- Yang, P.; Ke, S.; Tu, L.; Wang, Y.; Ye, S.; Kou, S.; Ren, L. Regulation of autophagy orchestrates pyroptotic cell death in molybdenum disulfide quantum dot-induced microglial toxicity. ACS Biomater. Sci. Eng. 2020, 6, 1764–1775. [Google Scholar] [CrossRef]
- Tong, Y.; Yang, H.; Tian, X.; Wang, H.; Zhou, T.; Zhang, S.; Yu, J.; Zhang, T.; Fan, D.; Guo, X. High manganese, a risk for Alzheimer’s disease: High manganese induces amyloid-β related cognitive impairment. J. Alzheimer’s Dis. 2014, 42, 865–878. [Google Scholar] [CrossRef]
- Smorgon, C.; Mari, E.; Atti, A.; Dalla Nora, E.; Zamboni, P.; Calzoni, F.; Passaro, A.; Fellin, R. Trace elements and cognitive impairment: An elderly cohort study. Arch. Gerontol. Geriatr. 2004, 38, 393–402. [Google Scholar] [CrossRef]
- Gerardo, B.; Cabral Pinto, M.; Nogueira, J.; Pinto, P.; Almeida, A.; Pinto, E.; Marinho-Reis, P.; Diniz, L.; Moreira, P.I.; Simões, M.R. Associations between trace elements and cognitive decline: An exploratory 5-year follow-up study of an elderly cohort. Int. J. Environ. Res. Public Health 2020, 17, 6051. [Google Scholar] [CrossRef]
- Zhao, D.; Huang, Y.; Wang, B.; Chen, H.; Pan, W.; Yang, M.; Xia, Z.; Zhang, R.; Yuan, C. Dietary intake levels of iron, copper, zinc, and manganese in relation to cognitive function: A cross-sectional study. Nutrients 2023, 15, 704. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Breitner, S.; Hampel, R.; Basagaña, X. Statistical approaches to address multi-pollutant mixtures and multiple exposures: The state of the science. Curr. Environ. Health Rep. 2017, 4, 481–490. [Google Scholar] [CrossRef]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef] [PubMed]
- Weng, X.; Tan, Y.; Fei, Q.; Yao, H.; Fu, Y.; Wu, X.; Zeng, H.; Yang, Z.; Zeng, Z.; Liang, H. Association between mixed exposure of phthalates and cognitive function among the US elderly from NHANES 2011–2014: Three statistical models. Sci. Total Environ. 2022, 828, 154362. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Wang, H.; Zhu, Z.; Ye, Q.; Lin, F.; Cai, G. Association between exposure to phenols and parabens and cognitive function in older adults in the United States: A cross-sectional study. Sci. Total Environ. 2023, 858, 160129. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-Y.; Meng, L.; Guo, F.-J.; Zhang, X.-H.; Yang, D.-D.; Yao, X.-C.; Jin, M.-J.; Wang, J.-B.; Tang, M.-L.; Chen, K. Association between whole blood essential trace elements and cognitive function in older adults. Ecotoxicol. Environ. Saf. 2023, 261, 115114. [Google Scholar] [CrossRef] [PubMed]
- Cheng, B.-j.; Wang, J.; Meng, X.-l.; Sun, L.; Hu, B.; Li, H.-b.; Sheng, J.; Chen, G.-m.; Tao, F.-b.; Sun, Y.-h. The association between essential trace element mixture and cognitive function in Chinese community-dwelling older adults. Ecotoxicol. Environ. Saf. 2022, 231, 113182. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H.R.; Miyake, A.; Hankin, B.L. Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Front. Psychol. 2015, 6, 328. [Google Scholar] [CrossRef] [PubMed]
- Hazlett, K.E.; Figueroa, C.M.; Nielson, K.A. Executive functioning and risk for Alzheimer’s disease in the cognitively intact: Family history predicts Wisconsin Card Sorting Test performance. Neuropsychology 2015, 29, 582. [Google Scholar] [CrossRef] [PubMed]
- Junquera, A.; García-Zamora, E.; Olazarán, J.; Parra, M.A.; Fernández-Guinea, S. Role of executive functions in the conversion from mild cognitive impairment to dementia. J. Alzheimer’s Dis. 2020, 77, 641–653. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.-j.; Choi, J.-Y.; Hong, D.; Kim, D.; Min, J.-Y.; Min, K.-B. Sex differences in the association between sarcopenia and mild cognitive impairment in the older Korean population. BMC Geriatr. 2023, 23, 332. [Google Scholar] [CrossRef] [PubMed]
- Ryu, H.J.; Yang, D.W. The Seoul Neuropsychological Screening Battery (SNSB) for Comprehensive Neuropsychological Assessment. Dement. Neurocogn. Disord. 2023, 22, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.Y.; Lee, J.; Oh, E.; Yoon, S.J.; Yoon, B.; Yu, S.D. Clinical utility of Seoul Neuropsychological Screening Battery-Core for dementia management project in the community. J. Korean Neurol. Assoc. 2019, 37, 277–283. [Google Scholar] [CrossRef]
- Bai, W.; Chen, P.; Cai, H.; Zhang, Q.; Su, Z.; Cheung, T.; Jackson, T.; Sha, S.; Xiang, Y.-T. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: A meta-analysis and systematic review of epidemiology studies. Age Ageing 2022, 51, afac173. [Google Scholar]
- Qin, H.-y.; Zhao, X.-d.; Zhu, B.-g.; Hu, C.-p. Demographic factors and cognitive function assessments associated with mild cognitive impairment progression for the elderly. BioMed Res. Int. 2020, 2020, 3054373. [Google Scholar] [CrossRef]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 2018, 17, 67. [Google Scholar] [CrossRef]
- Duan, L.; Su, L.; He, X.; Du, Y.; Duan, Y.; Xu, N.; Wu, R.; Zhu, Y.; Shao, R.; Unverzagt, F.W. Multi-element Exposure and Cognitive Function in Rural Elderly Chinese. Biol. Trace Elem. Res. 2024, 202, 1401–1410. [Google Scholar] [CrossRef]
- Larvie, D.Y.; Erikson, K.M.; Armah, S.M. Elevated whole blood manganese is associated with impaired cognition in older adults, NHANES 2013–2014 cycle. Neurotoxicology 2022, 91, 94–99. [Google Scholar] [CrossRef]
- Du, K.; Liu, M.; Pan, Y.; Zhong, X.; Wei, M. Association of serum manganese levels with Alzheimer’s disease and mild cognitive impairment: A systematic review and meta-analysis. Nutrients 2017, 9, 231. [Google Scholar] [CrossRef]
- Horning, K.J.; Caito, S.W.; Tipps, K.G.; Bowman, A.B.; Aschner, M. Manganese is essential for neuronal health. Annu. Rev. Nutr. 2015, 35, 71–108. [Google Scholar] [CrossRef]
- Bresciani, G.; da Cruz, I.B.M.; González-Gallego, J. Manganese superoxide dismutase and oxidative stress modulation. Adv. Clin. Chem. 2015, 68, 87–130. [Google Scholar]
- Shan, X.; Chi, L.; Ke, Y.; Luo, C.; Qian, S.; Gozal, D.; Liu, R. Manganese superoxide dismutase protects mouse cortical neurons from chronic intermittent hypoxia-mediated oxidative damage. Neurobiol. Dis. 2007, 28, 206–215. [Google Scholar] [CrossRef]
- Estévez, A.G.; Sahawneh, M.A.; Lange, P.S.; Bae, N.; Egea, M.; Ratan, R.R. Arginase 1 regulation of nitric oxide production is key to survival of trophic factor-deprived motor neurons. J. Neurosci. 2006, 26, 8512–8516. [Google Scholar] [CrossRef] [PubMed]
- Gunter, T.E.; Gavin, C.E.; Aschner, M.; Gunter, K.K. Speciation of manganese in cells and mitochondria: A search for the proximal cause of manganese neurotoxicity. Neurotoxicology 2006, 27, 765–776. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, X.; Xing, Y.; Wang, W.; Li, S.; Zhang, D.; Zheng, W.; Shen, X. Threshold effects of total copper intake on cognitive function in US older adults and the moderating effect of fat and saturated fatty acid intake. J. Acad. Nutr. Diet. 2021, 121, 2429–2442. [Google Scholar] [CrossRef]
- Meramat, A.; Rajab, N.; Shahar, S.; Sharif, R.A. DNA damage, copper and lead associates with cognitive function among older adults. J. Nutr. Health Aging 2017, 21, 539–545. [Google Scholar] [CrossRef]
- Gao, S.; Jin, Y.; Hall, K.S.; Liang, C.; Unverzagt, F.W.; Ji, R.; Murrell, J.R.; Cao, J.; Shen, J.; Ma, F. Selenium level and cognitive function in rural elderly Chinese. Am. J. Epidemiol. 2007, 165, 955–965. [Google Scholar] [CrossRef]
- Yan, X.; Liu, K.; Sun, X.; Qin, S.; Wu, M.; Qin, L.; Wang, Y.; Li, Z.; Zhong, X.; Wei, X. A cross-sectional study of blood selenium concentration and cognitive function in elderly Americans: National Health and Nutrition Examination Survey 2011–2014. Ann. Hum. Biol. 2020, 47, 610–619. [Google Scholar] [CrossRef]
- Cardoso, B.R.; Szymlek-Gay, E.A.; Roberts, B.R.; Formica, M.; Gianoudis, J.; O’connell, S.; Nowson, C.A.; Daly, R.M. Selenium status is not associated with cognitive performance: A cross-sectional study in 154 older Australian adults. Nutrients 2018, 10, 1847. [Google Scholar] [CrossRef]
- Scheiber, I.F.; Mercer, J.F.; Dringen, R. Metabolism and functions of copper in brain. Prog. Neurobiol. 2014, 116, 33–57. [Google Scholar] [CrossRef]
- Sharma, K.K.; Singh, D.; Mohite, S.V.; Williamson, P.R.; Kennedy, J.F. Metal manipulators and regulators in human pathogens: A comprehensive review on microbial redox copper metalloenzymes “multicopper oxidases and superoxide dismutases”. Int. J. Biol. Macromol. 2023, 233, 123534. [Google Scholar] [CrossRef]
- Cater, M.A.; McInnes, K.T.; Li, Q.-X.; Volitakis, I.; La Fontaine, S.; Mercer, J.F.; Bush, A.I. Intracellular copper deficiency increases amyloid-β secretion by diverse mechanisms. Biochem. J. 2008, 412, 141–152. [Google Scholar] [CrossRef]
- Staneviciene, I.; Sulinskiene, J.; Sadauskiene, I.; Liekis, A.; Ruzgaite, A.; Naginiene, R.; Baranauskiene, D.; Simakauskiene, V.; Krusnauskas, R.; Viezeliene, D. Effect of selenium on the iron homeostasis and oxidative damage in brain and liver of mice. Antioxidants 2022, 11, 1216. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wang, H.; Zhang, F.; Cui, Y.; Zhang, D.; Shen, X. Threshold effects and interactive effects of total zinc and selenium intake on cognitive function in older adults. Clin. Nutr. ESPEN 2022, 47, 383–390. [Google Scholar] [CrossRef] [PubMed]
- Rayman, M.P. Selenium intake, status, and health: A complex relationship. Hormones 2020, 19, 9–14. [Google Scholar] [CrossRef]
- Snyder, H.M.; Carare, R.O.; DeKosky, S.T.; de Leon, M.J.; Dykxhoorn, D.; Gan, L.; Gardner, R.; Hinds II, S.R.; Jaffee, M.; Lamb, B.T. Military-related risk factors for dementia. Alzheimer’s Dement. 2018, 14, 1651–1662. [Google Scholar] [CrossRef]
- Feng, L.; Zheng, Y.; Liu, Y.; Zhao, Y.; Lei, M.; Li, Z.; Fu, S. Hair Zinc and Chromium Levels Were Associated with a Reduced Likelihood of Age Related Cognitive Decline in Centenarians and Oldest-Old Adults. J. Nutr. Health Aging 2023, 27, 1012–1017. [Google Scholar] [CrossRef]
Characteristics | CIND | Normal Control | p-Value | |||
---|---|---|---|---|---|---|
(n = 199) | (n = 137) | |||||
Age | ||||||
60–64 | 14 | (7.04) | 6 | (4.38) | 0.5561 | |
65–69 | 16 | (8.04) | 16 | (11.68) | ||
70–74 | 56 | (28.14) | 40 | (29.20) | ||
75–79 | 79 | (39.70) | 57 | (41.61) | ||
≥80 | 34 | (17.09) | 18 | (13.14) | ||
Gender | ||||||
Male | 86 | (43.22) | 67 | (48.91) | 0.3035 | |
Female | 113 | (56.78) | 70 | (51.09) | ||
Education | ||||||
Below middle school | 55 | (27.64) | 46 | (33.58) | 0.2377 | |
Middle or high school | 80 | (40.20) | 58 | (42.34) | ||
College | 64 | (32.16) | 33 | (24.09) | ||
Smoking (current) | ||||||
No | 190 | (95.48) | 133 | (97.08) | 0.4541 | |
Yes | 9 | (4.52) | 4 | (2.92) | ||
Drinking (within the past year) | ||||||
No | 125 | (62.81) | 87 | (63.50) | 0.8976 | |
Yes | 74 | (37.19) | 50 | (36.50) | ||
Hypertension | ||||||
No | 87 | (43.72) | 71 | (51.82) | 0.1435 | |
Yes | 112 | (56.28) | 66 | (48.18) | ||
Diabetes | ||||||
No | 147 | (73.87) | 105 | (76.64) | 0.5640 | |
Yes | 52 | (26.13) | 32 | (23.36) | ||
Dyslipidemia | ||||||
No | 108 | (54.27) | 69 | (50.36) | 0.4810 | |
Yes | 91 | (45.73) | 68 | (49.64) |
ETEs | Single Element a | Multiple Elements a |
---|---|---|
OR (95% CI) | OR (95% CI) | |
Mn | 0.62 (0.26, 1.48) | 0.72 (0.30, 1.73) |
Cu | 0.84 (0.25, 2.86) | 1.05 (0.29, 3.80) |
Zn | 0.26 (0.07, 0.99) | 0.29 (0.07, 1.18) |
Se | 0.55 (0.17, 1.82) | 0.73 (0.21, 2.52) |
Mo | 0.90 (0.58, 1.42) | 0.84 (0.53, 1.33) |
ETEs | DSC | K−CWST: 60 s | COWAT (ㄱ) | COWAT (Animal + ㄱ) | TMT−E: B b |
---|---|---|---|---|---|
β (95% CI) | β (95% CI) | β (95% CI) | β (95% CI) | β (95% CI) | |
Single element a | |||||
Mn | 0.49 (−11.65, 12.63) | −0.66 (−13.05, 11.72) | −3.57 (−15.81, 8.67) | 2.98 (−8.95, 14.90) | 3.45 (−6.39, 13.28) |
Cu | 15.82 (−1.78, 33.41) | 30.90 (13.19, 48.62) † | 9.04 (−8.76, 26.84) | 2.82 (−14.54, 20.19) | 1.02 (−13.27, 15.30) |
Zn | 10.45 (−8.34, 29.24) | 11.53 (−7.63, 30.69) | −11.84 (−30.78, 7.11) | −9.30 (−27.78, 9.17) | 5.72 (−9.34, 20.78) |
Se | 25.57 (8.69, 42.45) † | 12.47 (−4.92, 29.86) | 6.17 (−11.07, 23.41) | 3.95 (−12.85, 20.75) | 8.93 (−4.89, 22.74) |
Mo | −4.73 (−11.14, 1.67) | −1.12 (−7.67, 5.43) | 0.12 (−6.36, 6.60) | 0.61 (−5.70, 6.92) | 2.48 (−2.69, 7.65) |
Multiple elements a | |||||
Mn | −4.02 (−16.41, 8.37) | −6.12 (−18.73, 6.50) | −3.98 (−16.65, 8.68) | 3.62 (−8.76, 16.01) | 2.60 (−7.58, 12.78) |
Cu | 15.49 (−2.46, 33.45) | 31.78 (13.51, 50.06) † | 12.36 (−5.99, 30.71) | 3.87 (−14.07, 21.81) | 0.44 (−14.32, 15.20) |
Zn | 1.09 (−18.59, 20.77) | 4.83 (−15.20, 24.87) | −15.37 (−35.48, 4.74) | −12.45 (−32.12, 7.21) | 3.93 (−12.06, 19.92) |
Se | 25.10 (7.66, 42.53) † | 12.25 (−5.50, 30.00) | 10.00 (−7.82, 27.83) | 6.12 (−11.31, 23.54) | 8.10 (−6.19, 22.39) |
Mo | −3.48 (−9.91, 2.94) | 0.44 (−6.10, 6.98) | 0.04 (−6.52, 6.61) | 0.50 (−5.92, 6.92) | 2.93 (−2.33, 8.19) |
Cognitive Function | Essential Trace Elements | ||||
---|---|---|---|---|---|
Mn | Cu | Zn | Se | Mo | |
CIND | 0.6184 | 0.2388 | 0.3756 | 0.2874 | 0.2296 |
Executive function | |||||
DSC | 0.0180 | 0.2360 | 0.0406 | 0.9982 | 0.0402 |
K-CWST: 60 s | 0.0812 | 0.9054 | 0.0642 | 0.2808 | 0.0420 |
COWAT (ㄱ) | 0.0910 | 0.1208 | 0.0830 | 0.3766 | 0.0434 |
COWAT (animal + ㄱ) | 0.0744 | 0.0414 | 0.0808 | 0.2834 | 0.0310 |
TMT-E: B | 0.0194 | 0.0348 | 0.0334 | 0.1558 | 0.0670 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryoo, S.-W.; Choi, B.-Y.; Son, S.-Y.; Oh, K.-H.; Min, J.-Y.; Min, K.-B. Association between Multiple Trace Elements, Executive Function, and Cognitive Impairment with No Dementia in Older Adults. Nutrients 2024, 16, 1001. https://doi.org/10.3390/nu16071001
Ryoo S-W, Choi B-Y, Son S-Y, Oh K-H, Min J-Y, Min K-B. Association between Multiple Trace Elements, Executive Function, and Cognitive Impairment with No Dementia in Older Adults. Nutrients. 2024; 16(7):1001. https://doi.org/10.3390/nu16071001
Chicago/Turabian StyleRyoo, Seung-Woo, Baek-Yong Choi, Seok-Yoon Son, Kun-Hee Oh, Jin-Young Min, and Kyoung-Bok Min. 2024. "Association between Multiple Trace Elements, Executive Function, and Cognitive Impairment with No Dementia in Older Adults" Nutrients 16, no. 7: 1001. https://doi.org/10.3390/nu16071001
APA StyleRyoo, S. -W., Choi, B. -Y., Son, S. -Y., Oh, K. -H., Min, J. -Y., & Min, K. -B. (2024). Association between Multiple Trace Elements, Executive Function, and Cognitive Impairment with No Dementia in Older Adults. Nutrients, 16(7), 1001. https://doi.org/10.3390/nu16071001