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Abstract: Many studies suggest a significant association between individual essential trace elements
(ETEs) and cognitive impairment in older adults, but evidence of the synchronized effect of multiple
ETEs on cognitive function is lacking. We investigated the association betweenmultiple ETEs, cogni‑
tive impairment with no dementia (CIND), and executive function in older Korean adults, using the
Bayesian kernel machine regression (BKMR) model. Three hundred and thirty‑six older adults were
included as the study population and classified as the CIND and control groups. Blood manganese
(Mn), copper (Cu), zinc (Zn), selenium (Se), andmolybdenum (Mo) were measured as relevant ETEs.
The frontal/executive tests included digit symbol coding (DSC), the Korean color word Stroop test
(K‑CWST), a controlled oral word association test (COWAT), and a trial‑making test (TMT). Overall,
the BKMR showed a negative association between multiple ETEs and the odds of CIND. Mn was
designated as the most dominant element associated with the CIND (PIP = 0.6184), with a U‑shaped
relationship. Cu and Se levels were positively associated with the K‑CWST percentiles (β = 31.78;
95% CI: 13.51, 50.06) and DSC percentiles (β = 25.10; 95% CI: 7.66, 42.53), respectively. Our results
suggest that exposure to multiple ETEs may be linked to a protective mechanism against cognitive
impairment in older adults.

Keywords: trace element; cognitive performance; executive function; Bayesian kernel machine
regression

1. Introduction
Aging is a prominent public health challenge facing humanity today, where the pro‑

portion of the population aged 65 or older is projected to rise from 8.5 to 16.7 percent
(2015~2050) [1]. As survival rates and life expectancy among the elderly continue increas‑
ing, age‑related neurodegenerative diseases have emerged as a significant healthcare prob‑
lem [2,3]. In particular, Alzheimer’s disease (AD) or related dementia causes irreversible
functional impairment and jeopardizes the daily lives of patients’ families. Contemporar‑
ily, there is no curative treatment available for dementia; thus, early prevention in the pre‑
clinical stage is essential [4]. Cognitive impairment with no dementia (CIND) denotes a
decline in cognitive function beyond the typical age‑related deterioration, yet not reaching
the severity required for a dementia diagnosis [5]. Besides the increased risk of developing
dementia, patients with CIND experience higher rates of disability or mortality, highlight‑
ing the importance of identifying risk factors in this population [6,7].

Essential trace elements (ETEs) are imperative nutrients linked to cognitive impair‑
ment. ETEs are constituents of normal human physiology, of which both deficiency and
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excess can induce toxic effects [8]. For instance, overflowing accumulation andminimal ab‑
sorption of copper (Cu) due to a transporter mutation cause severe genetic syndromes [9].
Despite the small recommended daily intake (<100mg), ETEs are indispensable as enzyme
cofactors or structural stabilizers of the large molecule [10]. Prior studies have observed
that multiple ETEs influence the neuropathological process. A partial deficiency in a man‑
ganese (Mn)‑dependent antioxidant enzyme increased brain amyloid‑beta (Aβ) levels and
Aβ plaque burden in vivo, which is an underlying mechanism of dementia [11]. Likewise,
ADmodelmice with downgraded copper/zinc (Zn) superoxide dismutase (SOD1) showed
accelerated Aβ synthesis and memory impairment [12]. Among the AD model mice, a
higher level of cortex DNA damage was found in the Se‑deficient diet group compared to
the control [13]. Molybdenum (Mo) exposure to murine microglial cells triggered reactive
oxygen species generation and pyroptosis [14]. Epidemiological evidence has been accu‑
mulated regarding the relationship between each ETE and cognitive abilities. For example,
Tong et al. (2014) reported that low bloodMn levels were correlatedwith cognitive decline
and clinical dementia scores in Chinese older adults [15]. An Italian cohort found that
blood Se in CIND and AD patients was lower than in the control group [16]. A longitudi‑
nal study identified the role of Se, reporting a reduction in cognitive scores with increasing
fingernail Se in the Portuguese elderly [17]. A dietary survey of a large Chinese population
observed that intake of Cuwas negatively associatedwith cognitive function, while Zn and
Mn showed no significance [18]. However, findings on the relationship between ETE and
cognitive function are inconsistent, and this may arise from variations in ETE exposure
among samples due to a lack of consideration for co‑exposure to multiple ETEs.

Various statistical methods have been developed to examine the relationship between
multiple exposures and public health. Dimensional reduction methods, including princi‑
pal component analysis or observation groupingmethods such as classification and regres‑
sion trees, have been utilized, yet several challenges in estimating multiple exposure ef‑
fects remain unresolved [19]. Recently, a new approach for estimating the health effects of
multiple exposures, machine learning‑based Bayesian kernel regression (BKMR), has been
introduced [20]. This method uncovers non‑linear relationships across multiple exposure
components and analyzes integrated independent variables simultaneously [20]. Similarly,
it can model the interaction effects between exposures and address the multicollinearity of
mixture components by hierarchical variable selection [20]. Bobb et al. performed a sim‑
ulation analysis and successfully demonstrated the robustness of the statistical method in
predicting the exposure mixture–health outcome function [20]. BKMR has been applied
to dementia research, yet scarce evidence on its association with ETEs exists, with most
studies focusing on single screening tests [21–24]. This study examined the associations
between multiple ETEs and cognitive function. Cognitive function was assessed based on
the presence of CIND and executive performance. Impaired executive functions such as
inhibition, planning, or decision‑making precluded patients’ independence in their daily
activities [25,26]. Impaired executive functions were known to be an early predictor of
progression fromMCI to dementia [27]. We conducted a BKMR analysis to investigate the
associations between multiple ETEs, CIND, and executive function in older Korean adults.

2. Materials and Methods
2.1. Study Population

The Korea Dementia Initiative Veteran’s Affairs (KODIVA) is an ongoing study of pa‑
tients who visited the Department of Neurology at the Veterans Health Service Medical
Center in Seoul, South Korea. During 2021–2022, 600 veterans aged 60 years and older
were voluntarily enrolled via convenience sampling and participated in clinical examina‑
tion, neuropsychological evaluation, and face‑to‑face questionnaire surveys. The inclusion
criteria were as follows: (1) those with a subjective sense or experience of cognitive decline,
(2) those able to receive clinical tests and answer survey questionnaires, and (3) those who
couldprovide informed consent to participate in the study. The participantswere excluded
if board‑certified neurologists diagnosed the following sets of diseases: (1) dementia (In‑
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ternational Classification of Disease, 10th Revision, code F00–F09, and G30); (2) brain in‑
farction, cerebral hemorrhage, or Parkinson’s disease; and (3) severe medical conditions
(e.g., cancer, intellectual disability, or psychiatric illnesses).

Clinical assessment was designed to confirm the presence or absence of cognitive im‑
pairment and provide a diagnosis of Alzheimer’s and dementia. Clinical examination in‑
cluded a clinical interview, neuropsychological evaluation, standard laboratory testing,
and brain imaging, which physicians, neuropsychologists, and nurses conducted. Physi‑
cians performed a clinical interview of general medical, neurological, and family history;
neurological signs (i.e., focal signs and Parkinsonism); and laboratory testing of vitamin
B12, thyroid‑stimulating hormone, and cholesterol levels. They also analyzed a CT orMRI
scan of the brain of electronic medical records when evaluating patients with suspected
dementia. Neuropsychologists assessed cognitive function with a neuropsychological test
battery and daily functioning with instrumental activities of daily living. Nurses collected
participants’ data on socio‑demographic information, lifestyle, and personal factors. The
clinical staff diagnosed CIND, referring to all available data from clinical examinations and
neuropsychological evaluations [28]. Individuals with CIND are defined as those without
dementia and with cognitive impairment.

This study conducted a cross‑sectional analysis of blood ETEs, CIND, and executive
function. Among 600 study participants, 336 whowere tested for blood ETEs were eligible
participants for the current study. Of them, 199 participants were designated as those with
CIND, and 137 were those with normal cognition.

2.2. Sample Collection and Measurement of Blood ETEs
Whole blood or serum samples were collected from all participants and measured

by an inductively coupled plasma mass spectrometer, Agilent ICP‑MS 7900 (Agilent Tech‑
nologies, Tokyo, Japan), equipped with standard Ni sampling and skimmer cones and an
Ultra HighMatrix Introduction system. Calibration standards were prepared from anAgi‑
lent multi‑element environmental calibration standard (p/n 5183‑4688) containing 10 ppm
each of Cu, Mn, Mo, Se, and Zn. The internal standard (Sc, Ge, Rh, In, and Bi) for the
quantitative analysis was made in 1% HNO3 and 0.5% HCl for the diluted sample. Triton
C‑X‑100, Butanol, EDTA, ammonium hydroxide, and water were added to the alkaline so‑
lution. Dilution and sample preparation were performed under a clean hood to prevent
contamination by atmospheric particulates. An amount of 100 µL of the standard was
added to a 15 mL polypropylene tube, and then 22 mL of diluent was added with a dis‑
penser. Next, 100 µL of samples and the control were dispersed in the dispensed diluent.
Diluted samples were vortex‑mixed and analyzed with Agilent ICP‑MS.

2.3. Assessment of Frontal/Executive Function
Frontal/executive function was assessed by the Seoul Neuropsychological Screening

Battery (SNSB)‑Core (SNSB‑C). The SNSB is a representative comprehensive neuropsycho‑
logical evaluation tool in Korea and is widely used by dementia experts [29]. SNSB‑C has
proven to be an effective replacement for the original version, showing comparable sensi‑
tivity, specificity, andpositive predictive valuewith a shorter test time (around 40min) [30].
The frontal/executive domain is assessed by four tests: digit symbol coding (DSC), the Ko‑
rean color word Stroop test: 60 s (K‑CWST: 60 s), the controlled oral word association test:
animal + ‘
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betes (yes, no), and dyslipidemia (yes, no) were obtained by self‑report during the previ‑
ous diagnosis.

2.5. Statistical Analysis
Adescriptive analysiswas conducted to show the distribution of the participants’ gen‑

eral characteristics. The difference in the prevalence of variables was identified using the
Chi‑squared or Fisher’s exact test. Concentrations of blood ETEs were natural log (ln)‑
transformed to satisfy a normal distribution. General linear and multivariable regression
analyses investigated the association between blood ETEs, CIND, and executive function.
The categorical variable for the status of ‘CIND’ and the continuous percentile value of
each executive test were used as dependent variables. First, single‑element regression
models with one ETE as an independent variable were applied. Second, multi‑element
regression models were involved with all five ETEs as independent variables. Both single‑
and multi‑element regression models were adjusted for age, sex, and education level, as
previous studies have identified three confounding factors strongly associated with the
development of mild cognitive impairment [31,32].

The BKMR model was constructed to explore the joint associations of the ETE mix‑
ture with cognitive scores. To analyze the binary outcome (odds for being CIND), a Probit
extension of the Bayesian kernel machine regression (BKMR‑P) model was additionally
built. BKMR is a novel non‑parametric method developed to estimate multiple exposure–
response functions and investigates these exposures’ cumulative, non‑linear, or interactive
effects [20,33]. By employing a kernel function, this method flexibly estimates the mul‑
tivariable exposure–response relationship, accommodating non‑linear and non‑additive
effects, with potential confounding factors adjusted [33]. To tackle the multicollinearity is‑
sue, hierarchal variable selection was incorporated. The model initially categorizes highly
correlated exposures into groups and subsequently performsvariable selection on the groups
of correlated exposures and the individual exposures within each group concurrently [33].

After the model fitting, posterior inclusion probabilities (PIPs) ranging from 0 to 1
were calculated to assess the contribution of each ETE to the BKMR models. The overall
impact of the exposure set was measured by comparing the difference in cognitive out‑
comes when all of the ETEs were placed at a specific quantile, compared with the median.
The individual effect of each exposure component was estimated by calculating the differ‑
ence in cognitive outcomes when one ETE concentration varied from the 25th percentile
to the 75th percentile under all the other ETE concentrations placed at their 25th, 50th,
and 75th percentile. In addition, univariate exposure–outcome functions were visualized
when all the other ETEs were fixed at the median to investigate the dose–response or non‑
linear relationships between each exposure and cognitive outcome. Lastly, the bivariate
exposure–outcome functions for one varying ETE on cognitive outcomes at different quan‑
tiles of the second ETE concentration (10th, 50th, and 90th percentiles) while the other ETEs
were fixed at their median were visualized to observe the interactive effects of ETE pairs.

To confirm the robustness of these findings, sensitivity analyses were conducted af‑
ter excluding subpopulations of the sample. Among the 199 participants diagnosed with
CIND, medical experts further identified 13 participants at a high risk of dementia based
on clinical examination. The conventional regression analyses were performed as sensitiv‑
ity analyses on the sample without high‑risk participants.

The statistical analyses were conducted with SAS 9.4 software (SAS Institute, Cary,
NC, USA), and the BKMR analysis was performed in R software (version 4.3.2; R Devel‑
opment Core Team) using the ‘bkmr’ package [33]. Statistical significance set to a p‑value
threshold of 0.05 was used.

3. Results
The general characteristics of 336 elderly populations are displayed in Table 1. The

distribution of the covariates was slightly different between the CIND group and the con‑
trol group but not statistically significant. The mean age (74.93) and the proportion of
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women (56.78%) were higher in the CIND group. The control group showed a lower de‑
gree of education, with a lower proportion of college‑educated participants (24.09%). The
percentage of current smokers was higher in the CIND group (4.52%), though most par‑
ticipants have quit or never smoked. The CIND group had a higher prevalence of recent
alcohol consumption (37.19%), hypertension (56.28%), and diabetes (26.13%), but not of
dyslipidemia (45.73%).

Table 1. General characteristics and medical conditions of the participants.

Characteristics
CIND Normal Control

p‑Value
(n = 199) (n = 137)

Age
60–64 14 (7.04) 6 (4.38) 0.5561
65–69 16 (8.04) 16 (11.68)
70–74 56 (28.14) 40 (29.20)
75–79 79 (39.70) 57 (41.61)
≥80 34 (17.09) 18 (13.14)

Gender
Male 86 (43.22) 67 (48.91) 0.3035
Female 113 (56.78) 70 (51.09)

Education
Below middle school 55 (27.64) 46 (33.58) 0.2377
Middle or high school 80 (40.20) 58 (42.34)

College 64 (32.16) 33 (24.09)

Smoking (current)
No 190 (95.48) 133 (97.08) 0.4541
Yes 9 (4.52) 4 (2.92)

Drinking (within the past year)
No 125 (62.81) 87 (63.50) 0.8976
Yes 74 (37.19) 50 (36.50)

Hypertension
No 87 (43.72) 71 (51.82) 0.1435
Yes 112 (56.28) 66 (48.18)

Diabetes
No 147 (73.87) 105 (76.64) 0.5640
Yes 52 (26.13) 32 (23.36)

Dyslipidemia
No 108 (54.27) 69 (50.36) 0.4810
Yes 91 (45.73) 68 (49.64)

Values are presented as numbers (%).

Table 2 shows the results of the multivariable logistic regression analysis with the
status of CIND as the dichotomous outcome. The odds ratio for Zn was significant in the
single‑element model within a 95% confidence interval (OR = 0.26, 95% CI: 0.07 to 0.99).
However, no exposure variable was found significant in the multiple‑elements model.

Coefficients from the general linear regression analysis are collected in Table 3. Sewas
positively associated with DSC score percentiles in both the single‑element (β = 25.57, 95%
CI: 8.69 to 42.45) and multiple‑element models (β = 25.10, 95% CI: 7.66 to 42.53). Of the
other ETEs, only Cu had positive associations with K‑CWST: 60 s score percentiles in both
single‑element (β = 30.90, 95% CI: 13.19 to 48.62) and multiple‑element models (β = 31.78,
95% CI: 13.51 to 50.06).



Nutrients 2024, 16, 1001 6 of 12

Table 2. Association between blood ETEs (natural log‑transformed) and CIND based on multivari‑
able logistic regression.

ETEs
Single Element a Multiple Elements a

OR (95% CI) OR (95% CI)

Mn 0.62 (0.26, 1.48) 0.72 (0.30, 1.73)
Cu 0.84 (0.25, 2.86) 1.05 (0.29, 3.80)
Zn 0.26 (0.07, 0.99) 0.29 (0.07, 1.18)
Se 0.55 (0.17, 1.82) 0.73 (0.21, 2.52)
Mo 0.90 (0.58, 1.42) 0.84 (0.53, 1.33)

OR, odds ratio; CI, confidence interval. a adjusted to age, sex, and education level.

Table 3. Association between blood ETEs and executive function tests based on general linear
regression.

ETEs
DSC K−CWST: 60 s COWAT (
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β (95% CI) β (95% CI) β (95% CI) β (95% CI) β (95% CI)

Single element a
Mn 0.49 (−11.65, 12.63) −0.66 (−13.05, 11.72) −3.57 (−15.81, 8.67) 2.98 (−8.95, 14.90) 3.45 (−6.39, 13.28)
Cu 15.82 (−1.78, 33.41) 30.90 (13.19, 48.62) † 9.04 (−8.76, 26.84) 2.82 (−14.54, 20.19) 1.02 (−13.27, 15.30)
Zn 10.45 (−8.34, 29.24) 11.53 (−7.63, 30.69) −11.84 (−30.78, 7.11) −9.30 (−27.78, 9.17) 5.72 (−9.34, 20.78)
Se 25.57 (8.69, 42.45) † 12.47 (−4.92, 29.86) 6.17 (−11.07, 23.41) 3.95 (−12.85, 20.75) 8.93 (−4.89, 22.74)
Mo −4.73 (−11.14, 1.67) −1.12 (−7.67, 5.43) 0.12 (−6.36, 6.60) 0.61 (−5.70, 6.92) 2.48 (−2.69, 7.65)

Multiple elements a
Mn −4.02 (−16.41, 8.37) −6.12 (−18.73, 6.50) −3.98 (−16.65, 8.68) 3.62 (−8.76, 16.01) 2.60 (−7.58, 12.78)
Cu 15.49 (−2.46, 33.45) 31.78 (13.51, 50.06) † 12.36 (−5.99, 30.71) 3.87 (−14.07, 21.81) 0.44 (−14.32, 15.20)
Zn 1.09 (−18.59, 20.77) 4.83 (−15.20, 24.87) −15.37 (−35.48, 4.74) −12.45 (−32.12, 7.21) 3.93 (−12.06, 19.92)
Se 25.10 (7.66, 42.53) † 12.25 (−5.50, 30.00) 10.00 (−7.82, 27.83) 6.12 (−11.31, 23.54) 8.10 (−6.19, 22.39)
Mo −3.48 (−9.91, 2.94) 0.44 (−6.10, 6.98) 0.04 (−6.52, 6.61) 0.50 (−5.92, 6.92) 2.93 (−2.33, 8.19)

β, coefficient from linear regression; CI, confidence interval, † p < 0.01. a adjusted to age, sex, and education level.
b analyzed except for 5 participants who were unable to perform the test.

The contribution of each ETE in an individual BKMR model is quantitatively pre‑
sented as a PIP in Table 4. Regarding the odds of CIND, Mnwas identified as the most con‑
tributing variable (PIP = 0.6184), followed by Zn (PIP = 0.3756). Consistent with the conven‑
tional regression analyses, Sewas thedominant variable for theDSCpercentiles (PIP = 0.9982),
while Cu was the largest contributor for K‑CWST: 60 s percentiles (PIP = 0.9054).

Table 4. Posterior inclusion probabilities of essential trace elements in each BKMR model.

Cognitive Function
Essential Trace Elements

Mn Cu Zn Se Mo

CIND 0.6184 0.2388 0.3756 0.2874 0.2296
Executive function

DSC 0.0180 0.2360 0.0406 0.9982 0.0402
K‑CWST: 60 s 0.0812 0.9054 0.0642 0.2808 0.0420
COWAT (
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Figure 1 shows the collective results of the BKMR‑P analysis. The odds of CIND
were negatively associated with the increasing concentration of ETEs in the exposure set
(Figure 1A). The odds of CIND significantly decreased as the Mn concentration varied
from the 25th to the 75th percentile when the concentration percentiles of other ETEs were
fixed at the median or 75th percentile (Figure 1B). The univariate exposure–response anal‑
ysis suggested a U‑shaped relationship between blood Mn and CIND risk (Figure 1C).
Visual inspection of the bivariate exposure–response functions indicated that as the Mn
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quantile increased, the intercepts of other elements decreased, with the slopes remaining
relatively consistent (Figure 1D). This alteration suggests Mn only had an additive interac‑
tion with other ETEs.
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Figure 1. Joint associations between ETEs and CIND using BKMR. The model was adjusted for age,
sex, and education. (A) Joint association of the ETEs mixture and 95% CIs on CNID risk when all
ETEs at particular percentiles were compared to all ETEs at their 50th percentile. (B) Univariate
exposure effect on CIND with 95% CIs defined as the response difference when each ETE changes
from its 25th to 75th percentiles where the remaining ETEs are fixed at a particular level (25th, 50th,
and 75th percentiles). (C) Univariate exposure−response functions and 95%CIs for individual ETEs,
when other ETEs were fixed at their medians. (D) Bivariate exposure−response functions for each
ETE when the second ETE was fixed at a different level (10th, 50th, and 90th percentiles) and the
remaining ETEs were fixed at their medians.

Sensitivity analyses after excluding participants at high risk for dementia produced
findings similar to those of the main analyses. No significant association was observed
between blood ETEs and CIND. In contrast, blood Cu and Se were positively associated
with K‑CWST: 60 s (β = 33.26; 95% CI: 14.88 to 51.64) and DSC score percentiles (β = 24.64;
95% CI: 6.68 to 42.60), respectively, in the multiple‑element model (Tables S1 and S2).

4. Discussion
This study investigated the association between multiple ETEs, CIND, and executive

function in older adults using the BKMR model. The BKMR‑P showed a negative associ‑
ation between the ETE mixture and CIND risk, and Mn contributed to the largest portion
of the model. Additionally, Mn exhibited a non‑linear relationship with the outcome vari‑
able. The conventional regression showed the dominant role of Cu and Se in altering the
specific domains of executive function.
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As far as we know, no study identifies the potential link between multi‑element expo‑
sure and executive function. Some studies have suggested a positive association of com‑
bined multi‑element exposure with better cognitive function [23,24,34]. A recent BKMR
study conducted on 2181 Chinese elderly participants analyzed the joint association be‑
tween blood ETE mixture (Mn, Se, Cu, chromium) and cognition function assessed by the
Mini‑Mental State Examination (MMSE) [23]. They found that the ETE mixture was posi‑
tively associated withMMSE scores, and Se (posterior inclusion probabilities, PIPs = 0.915)
was the most important contributor within the ETE mixture. Cheng et al. (2022) explored
an association between multiple urine ETEs and MMSE in 3815 adults aged over 60 [24].
From the analysis of BKMR, higher urinary concentrations of ETEs were related to MMSE
scores in a dose–response manner. Se levels showed the highest PIP (0.56) among the five
elements (Se, Mo, vanadium, cobalt, strontium). Duan et al. (2023) applied minor absolute
shrinkage and selection operator regression to investigate the effect of multi‑element com‑
bined exposure (Se, Cu, Zn, iron, lead, calcium) on cognitive function in 416 elderly par‑
ticipants [34]. Log‑transformed levels of Se (β = 0.32; p = 0.007) and Cu (β = 0.75; p = 0.048)
were positively associated with a composite z score from nine cognitive tests.

Our findings showed a downward trend of cognitive impairment odds as the mixed
ETE concentration increased through the visual exploration of BKMR‑P.We found thatMn
in the multi‑exposure model was the most significant contributor to CIND, showing a U‑
shaped relationship between them. Previous studies have shown a considerable effect of
Mn on cognitive impairment [35,36]. Larvie et al. (2022) analyzed the 2013–2013 NHANES
data and found that the digit symbol substitution test score was inversely associated with
blood Mn among the subjects in the highest quartile (p = 0.003) [35]. A meta‑analysis of
17 epidemiologic studies found a significant decrease in serum Mn concentration in the
cognitive impairment group (AD orMCI patients) compared to healthy controls (standard‑
ized mean difference: −0.37; 95% CI: −0.6 to −0.13) [36]. Contrarily, excess exposure to
Mnwas also a risk factor for neurodegeneration, thus explaining theU‑shaped relationship
found in our results [35].

While this is the first study to report the importance of Mn in cognitive impairment
through the estimation ofmultiple elementary exposures in BKMR, our finding is plausible
given the biological reactions ofMn inmediating the physiological and toxic actions of neu‑
ronal degeneration. Mn is an essential metallic element for human physiology, in which
Mn mediates proper neuronal function via its role as a cofactor in myriad enzymatic pro‑
cesses [37]. Mn‑dependent superoxide dismutase/superoxide dismutase 2 (MnSOD/SOD2)
diminishes neuronal oxidative stress by catalyzing the degradation of superoxide anion
radicals, balancing neuronal apoptosis and neurodegeneration [38,39]. Depletion of argi‑
nine by Arginase1, another Mn‑dependent enzyme, inhibits the synthesis of nitric oxide
and assists neuronal survival [40]. Ironically, excessiveMn accumulation impedesMnSOD
activity, while high levels of Mn could also induce Aβ‑related neurotoxicity in vitro and
in vivo [15,41].

Regarding executive function and ETEs, the contribution of Cu and Se was particu‑
larly noteworthy. Some studies have suggested significant associations of cognitive func‑
tion with Cu or Se in a single exposure model [42–46]. Wang et al. found a positive associ‑
ation between Cu intake and executive function test scores [42]. On the contrary, Meramat
et al. revealed that the copper level in the toenail is associated with cognitive impairment
determined by the Montreal Cognitive Assessment score (OR = 1.275; 95% CI: 1.047 to
1.552) [43]. Cu is a necessary micro‑element and plays essential roles in many biochem‑
ical processes by involving neuronal metabolism and moderate physiologic reactions at
the active site of multiple enzymes [47]. The reduction potency of the Cu2+/Cu+ complex
provides cuproenzymes that can oxidize their substrates, notably superoxide dismutase
1, converting superoxide into dioxygen and hydrogen peroxide [48]. Furthermore, Cu‑
dependent enzymes partake in neurotransmitter or neuropeptide synthesis [47,49].

Se had a significant relationship with executive function in our population. A Chi‑
nese elderly study showed a dose–response relationship between nail Se level and execu‑
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tive test (IU Token test) score (p < 0.001) [44]. A US study reported an inverted‑U‑shaped
association between serum Se and digit symbol substitute test scores [45]. However, a
cross‑sectional study of Australian older adults observed no association between plasma
Se and self‑reported executive function score (BRIEF‑A) (β = −0.015; 95% CI: −0.041 to
−0.011) [46]. In the biological process, Se participates in the redox mechanism in the form
of selenocysteine and is incorporated into the active site of selenoproteins such as glu‑
tathione peroxidases (GPX) and thioredoxin reductases (TXNRD).GPX is acknowledged as
the primary enzyme that counteracts ROS and reduces neuronal damage from oxidative
stress [50]. Though biological evidence explaining the reversed association of cognitive
performance with high levels of Se is scarce, previous studies have proposed the thresh‑
old range of protective Se and the possible toxicity of Se [51,52].

We investigated the effect of multiple ETEs on cognitive function in a large elderly
population, particularly using a comprehensive neuropsychological assessment tool with
high diagnostic validity. Our results are more clinically applicable than those drawn from
analyses with simple screening methods (e.g., MMSE). Our study may serve as a ratio‑
nale to persuade clinicians and health authorities to plan appropriate interventions. Our
study has several limitations to consider. First, it was a cross‑sectional study, and reverse
causation may exist. For instance, people with high cognitive function might be able to
learn health information better and thus adhere to nutritional supplements more. Further
analysis based on prospective follow‑up and repeated measurement samples may yield
different results. Second, since the study was based on visitors within a single tertiary
care center, selection bias could have distorted the result and weakened the external valid‑
ity. Our sample harbors a higher percentage of retired veterans, whichmay have increased
the baseline risk of dementia [53]. Third, residual confounding effects from covariates may
not be adjusted in the analyses. Indeed, to minimize the exclusion of participants due to
missing data, a few considerable variables, such as physical activity or income, were not in‑
volved. Fourth, our study does not include experimental findings to support the pathways
by which ETEs induce cognitive impairment. Re‑collection of blood samples and the mea‑
surement of pathologic changes (e.g., oxidative stress, DNA damage) at future follow‑ups
would shed light on the biological mechanism linking ETE exposure and CIND. Finally,
althoughwe have selected five exposures pertinent to cognitive function from a systematic
article review, other ETEs observed to influence human cognition (e.g., chromium) were
not included [54].

5. Conclusions
In conclusion, Mn was identified as the foremost element regarding the protective

mechanism of ETEs in preventing clinically declined cognition, while Se and Cu were pos‑
itively associated with executive function. However, the U‑shaped association of Mn with
CIND is indicative of the potential toxicity of extremely high exposure to ETEs in cognitive
health. Our study implies that proper levels of ETEs within the body’s metabolism may
contribute to preventing cognitive decline in the elderly population. Therefore, the pub‑
lic health bureau should prioritize monitoring ETE exposure to improve dementia‑related
interventions. Future research should focus on establishing the optimal level of ETEs to
maintain cognitive function. Moreover, prospective cohort studies, including additional
ETEs or other toxicants as exposure, will be needed to clarify the causal relationship be‑
tween multiple ETEs and cognitive function.
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//www.mdpi.com/article/10.3390/nu16071001/s1, Table S1: Association between blood ETEs (natu‑
ral log‑transformed) and CIND by multivariable logistic regression from the sensitivity analysis;
Table S2: Association between blood ETEs and executive function tests by general linear regression
from the sensitivity analysis.
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