Dietary Habits and Depression in Community-Dwelling Chinese Older Adults: Cross-Sectional Analysis of the Moderating Role of Physical Exercise
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Measurements
2.2.1. Physical Exercise
2.2.2. Depression
2.2.3. Dietary Habits
2.2.4. Covariates
2.3. Statistical Analysis
3. Results
3.1. Baseline Characteristics by Physical Exercise and Depression
3.2. The Associations between Physical Exercise and Dietary Habits with Depression
3.3. The Role of Physical Exercise in the Associations between Dietary Habits and Depression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, Y.; Wang, Y.; Wang, H.; Liu, Z.; Yu, X.; Yan, J.; Yu, Y.; Kou, C.; Xu, X.; Lu, J.; et al. Prevalence of mental disorders in China: A cross-sectional epidemiological study. Lancet Psychiatry 2019, 6, 211–224. [Google Scholar] [CrossRef] [PubMed]
- COVID-19 Mental Disorders Collaborators. Global prevalence and burden of depressive and anxiety disorders in 204 countries and territories in 2020 due to the COVID-19 pandemic. Lancet 2021, 398, 1700–1712. [Google Scholar] [CrossRef] [PubMed]
- Magzal, F.; Turroni, S.; Fabbrini, M.; Barone, M.; Schorr, A.V.; Ofran, A.; Tamir, S. A personalized diet intervention improves depression symptoms and changes microbiota and metabolite profiles among community-dwelling older adults. Front. Nutr. 2023, 10, 1234549. [Google Scholar] [CrossRef] [PubMed]
- Miller, K.J.; Gonçalves-Bradley, D.C.; Areerob, P.; Hennessy, D.; Mesagno, C.; Grace, F. Comparative effectiveness of three exercise types to treat clinical depression in older adults: A systematic review and network meta-analysis of randomised controlled trials. Ageing Res. Rev. 2020, 58, 100999. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Guo, J.; Liu, H.; Zhao, T.; Li, H.; Wang, T. Impact of Social Participation Types on Depression in the Elderly in China: An Analysis Based on Counterfactual Causal Inference. Front. Public Health 2022, 10, 792765. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, J.; Cuijpers, P.; Wu, S.; Wu, Z. Prevalence and correlates of depressive symptoms in Chinese older adults: A population-based study. Int. J. Geriatr. Psychiatry 2012, 27, 305–312. [Google Scholar] [CrossRef]
- Ponte, C.; Almeida, V.; Fernandes, L. Suicidal Ideation, Depression and Quality of Life in the Elderly: Study in a Gerontopsychiatric Consultation. Span. J. Psychol. 2014, 17, E14. [Google Scholar] [CrossRef]
- Trivedi, M.H.; Rush, A.J.; Wisniewski, S.R.; Nierenberg, A.A.; Warden, D.; Ritz, L.; Norquist, G.; Howland, R.H.; Lebowitz, B.; McGrath, P.J.; et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: Implications for clinical practice. Am. J. Psychiatry 2006, 163, 28–40. [Google Scholar] [CrossRef]
- Rossom, R.C.; Shortreed, S.; Coleman, K.J.; Beck, A.; Waitzfelder, B.E.; Stewart, C.; Ahmedani, B.K.; Zeber, J.E.; Simon, G.E. Antidepressant adherence across diverse populations and healthcare settings. Depress. Anxiety 2016, 33, 765–774. [Google Scholar] [CrossRef]
- Chen, H.-L.; Xiao, Y.; Liu, Y.-J.; Zhang, T.-M.; Luo, W.; Zeng, Y.; Hu, S.-H.; Yang, H.-J.; Yang, X.; Liu, B.; et al. Treatment status of elderly patients with severe mental disorders in rural China. J. Geriatr. Psychiatry Neurol. 2019, 32, 291–297. [Google Scholar] [CrossRef]
- Liu, Q.; Ni, W.; Zhang, L.; Zhao, M.; Bai, X.; Zhang, S.; Ding, Y.; Yin, H.; Chen, L. Comparative efficacy of various exercise interventions on depression in older adults with mild cognitive impairment: A systematic review and network meta-analysis. Ageing Res. Rev. 2023, 91, 102071. [Google Scholar] [CrossRef]
- Chen, J.; Lai, T.-F.; Lin, L.-J.; Park, J.-H.; Liao, Y. Is overall and timing-specific physical activity associated with depression in older adults? Front. Public Health 2023, 11, 1241170. [Google Scholar] [CrossRef] [PubMed]
- Lima, R.A.; Condominas, E.; Sanchez-Niubo, A.; Olaya, B.; Koyanagi, A.; de Miquel, C.; Haro, J.M. Physical Activity Participation Decreases the Risk of Depression in Older Adults: The ATHLOS Population-Based Cohort Study. Sports Med. Open 2024, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Lopresti, A.L. It is time to investigate integrative approaches to enhance treatment outcomes for depression? Med. Hypotheses 2019, 126, 82–94. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Batty, G.D.; Baghdadli, A.; Jacka, F.; Sánchez-Villegas, A.; Kivimäki, M.; Akbaraly, T. Healthy dietary indices and risk of depressive outcomes: A systematic review and meta-analysis of observational studies. Mol. Psychiatry 2019, 24, 965–986. [Google Scholar] [CrossRef] [PubMed]
- Gianfredi, V.; Dinu, M.; Nucci, D.; Eussen, S.J.P.M.; Amerio, A.; Schram, M.T.; Schaper, N.; Odone, A. Association between dietary patterns and depression: An umbrella review of meta-analyses of observational studies and intervention trials. Nutr. Rev. 2023, 81, 346–359. [Google Scholar] [CrossRef] [PubMed]
- Pei, Z.; Zhang, J.; Qin, W.; Hu, F.; Zhao, Y.; Zhang, X.; Cong, X.; Liu, C.; Xu, L. Association between Dietary Patterns and Depression in Chinese Older Adults: A Longitudinal Study Based on CLHLS. Nutrients 2022, 14, 5230. [Google Scholar] [CrossRef] [PubMed]
- Rajaie, S.H.; Soltani, S.; Yazdanpanah, Z.; Zohrabi, T.; Beigrezaei, S.; Mohseni-Takalloo, S.; Kaviani, M.; Forbes, S.C.; Baker, J.S.; Salehi-Abargouei, A. Effect of exercise as adjuvant to energy-restricted diets on quality of life and depression outcomes: A meta-analysis of randomized controlled trials. Qual. Life Res. 2022, 31, 3123–3137. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, S.; Jiang, N.; Kakaer, A.; Chen, Y.; Liu, M.; Pu, Y.; Huang, S.; Pu, X.; Zhao, Y.; et al. Association Between Joint Physical Activity and Dietary Quality and Lower Risk of Depression Symptoms in US Adults: Cross-sectional NHANES Study. JMIR Public Health Surveill. 2023, 9, e45776. [Google Scholar] [CrossRef]
- Andresen, E.M.; Malmgren, J.A.; Carter, W.B.; Patrick, D.L. Screening for depression in well older adults: Evaluation of a short form of the CES-D (Center for Epidemiologic Studies Depression Scale). Am. J. Prev. Med. 1994, 10, 77–84. [Google Scholar] [CrossRef]
- Jia, Q.; Duan, Y.; Gong, R.; Jiang, M.; You, D.; Qu, Y. Living arrangements and depression of the older adults—Evidence from the Chinese longitudinal healthy longevity survey. BMC Public Health 2023, 23, 1870. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Zhang, J.; Smith, R.D.; Cheung, T.; Su, Z.; Ng, C.H.; Zhang, Q.; Xiang, Y.-T. Inter-relationship between cognitive performance and depressive symptoms and their association with quality of life in older adults: A network analysis based on the 2017–2018 wave of Chinese Longitudinal Healthy Longevity Survey (CLHLS). J. Affect. Disord. 2023, 320, 621–627. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Yang, J.; Lin, S.; Mei, Y.; An, N.; Cao, X.; Jiang, L.; Liu, C.; Li, C. Dietary Habits Modify the Association of Physical Exercise with Cognitive Impairment in Community-Dwelling Older Adults. J. Clin. Med. 2022, 11, 5122. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.; Qiu, C.; Zeng, Y.; Li, J. Leisure activities, education, and cognitive impairment in Chinese older adults: A population-based longitudinal study. Int. Psychogeriatr. 2017, 29, 727–739. [Google Scholar] [CrossRef]
- Uher, R.; Payne, J.L.; Pavlova, B.; Perlis, R.H. Major Depressive Disorder in Dsm-5: Implications for Clinical Practice and Research of Changes from DSM-IV. Depress. Anxiety 2014, 31, 459–471. [Google Scholar] [CrossRef]
- Rezin, G.T.; Amboni, G.; Zugno, A.I.; Quevedo, J.; Streck, E.L. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res. 2009, 34, 1021–1029. [Google Scholar] [CrossRef]
- La Forge, R. Mind-Body Fitness: Encouraging Prospects for Primary and Secondary Prevention. J. Cardiovasc. Nurs. 1997, 11, 53–65. [Google Scholar] [CrossRef]
- Nieuwenhuijsen, K.; Verbeek, J.H.; Neumeyer-Gromen, A.; Verhoeven, A.C.; Bültmann, U.; Faber, B. Interventions to improve return to work in depressed people. Cochrane Database Syst. Rev. 2014, 2020, CD006237. [Google Scholar] [CrossRef]
- Khorvash, M.; Askari, A.; Rafiemanzelat, F.; Botshekan, M.; Khorvash, F. An investigation on the effect of strength and endurance training on depression, anxiety, and C-reactive protein’s inflammatory biomarker changes. J. Res. Med. Sci. 2012, 17, 1072–1076. [Google Scholar]
- Broadhouse, K.M.; Singh, M.F.; Suo, C.; Gates, N.; Wen, W.; Brodaty, H.; Jain, N.; Wilson, G.C.; Meiklejohn, J.; Singh, N.; et al. Hippocampal plasticity underpins long-term cognitive gains from resistance exercise in MCI. NeuroImage Clin. 2020, 25, 102182. [Google Scholar] [CrossRef]
- Firth, J.; Marx, W.; Dash, S.; Carney, R.; Teasdale, S.B.; Solmi, M.; Stubbs, B.; Schuch, F.B.; Carvalho, A.F.; Jacka, F.; et al. The effects of dietary improvement on symptoms of depression and anxiety: A meta-analysis of randomized controlled trials. Psychosom. Med. 2019, 81, 265–280. [Google Scholar] [CrossRef]
- Masana, M.F.; Haro, J.M.; Mariolis, A.; Piscopo, S.; Valacchi, G.; Bountziouka, V.; Anastasiou, F.; Zeimbekis, A.; Tyrovola, D.; Gotsis, E.; et al. Mediterranean diet and depression among older individuals: The multinational MEDIS study. Exp. Gerontol. 2018, 110, 67–72. [Google Scholar] [CrossRef]
- Rasmus, P.; Kozłowska, E. Antioxidant and anti-inflammatory effects of carotenoids in mood disorders: An overview. Antioxidants 2023, 12, 676. [Google Scholar] [CrossRef]
- Oriach, C.S.; Robertson, R.C.; Stanton, C.; Cryan, J.F.; Dinan, T.G. Food for thought: The role of nutrition in the microbiota-gut–brain axis. Clin. Nutr. Exp. 2016, 6, 25–38. [Google Scholar] [CrossRef]
- Taylor, A.M.; Holscher, H.D. A review of dietary and microbial connections to depression, anxiety, and stress. Nutr. Neurosci. 2020, 23, 237–250. [Google Scholar] [CrossRef]
- Horn, J.; Mayer, D.E.; Chen, S.; Mayer, E.A. Role of diet and its effects on the gut microbiome in the pathophysiology of mental disorders. Transl. Psychiatry 2022, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Eroglu, A.; Al’abri, I.S.; Kopec, R.E.; Crook, N.; Bohn, T. Carotenoids and their health benefits as derived via their interactions with gut microbiota. Adv. Nutr. Int. Rev. J. 2022, 14, 238–255. [Google Scholar] [CrossRef]
- Frankenfeld, C.L.; Hullar, M.A.; Maskarinec, G.; Monroe, K.R.; Shepherd, J.A.; Franke, A.A.; Randolph, T.W.; Wilkens, L.R.; Boushey, C.J.; Le Marchand, L.; et al. The gut microbiome is associated with circulating dietary biomarkers of fruit and vegetable intake in a multiethnic cohort. J. Acad. Nutr. Diet. 2022, 122, 78–98. [Google Scholar] [CrossRef]
- Shafiei, F.; Keshteli, A.H.; Pouraram, H.; Afshar, H.; Salari-Moghaddam, A.; Esmaillzadeh, A.; Adibi, P. Egg Consumption and Prevalence of Psychological Disorders in Adults. Eur. J. Nutr. 2019, 58, 1923–1932. [Google Scholar] [CrossRef]
- Alavi, N.M.; Khademalhoseini, S.; Vakili, Z.; Assarian, F. Effect of Vitamin D Supplementation on Depression in Elderly Patients: A Randomized Clinical Trial. Clin. Nutr. 2019, 38, 2065–2070. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- Bolling, B.W.; Chen, C.-Y.O.; McKay, D.L.; Blumberg, J.B. Tree nut phytochemicals: Composition, antioxidant capacity, bioactivity, impact factors. A systematic review of almonds, Brazils, cashews, hazelnuts, macadamias, pecans, pine nuts, pistachios and walnuts. Nutr. Res. Rev. 2011, 24, 244–275. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Rodríguez, R.; Ortolá, R.; Martínez-Vizcaíno, V.; Bizzozero-Peroni, B.; Rodríguez-Artalejo, F.; García-Esquinas, E.; López-García, E.; Mesas, A.E. Nut Consumption and Depression: Cross-Sectional and Longitudinal Analyses in Two Cohorts of Older Adults. J. Nutr. Health Aging 2023, 27, 448–456. [Google Scholar] [CrossRef] [PubMed]
- Ba, D.M.; Gao, X.; Al-Shaar, L.; Muscat, J.E.; Chinchilli, V.M.; Beelman, R.B.; Richie, J.P. Mushroom intake and depression: A population-based study using data from the US National Health and Nutrition Examination Survey (NHANES), 2005–2016. J. Affect. Disord. 2021, 294, 686–692. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.-S.; Byeon, S.; Shin, D.-M. Sources of Dietary Fiber Are Differently Associated with Prevalence of Depression. Nutrients 2020, 12, 2813. [Google Scholar] [CrossRef]
- Marx, W.; Lane, M.; Hockey, M.; Aslam, H.; Berk, M.; Walder, K.; Borsini, A.; Firth, J.; Pariante, C.M.; Berding, K.; et al. Diet and depression: Exploring the biological mechanisms of action. Mol. Psychiatry 2021, 26, 134–150. [Google Scholar] [CrossRef]
- Cespedes, E.M.; Hu, F.B. Dietary Patterns: From Nutritional Epidemiologic Analysis to National Guidelines. Am. J. Clin. Nutr. 2015, 101, 899–900. [Google Scholar] [CrossRef]
Characteristics | Total Sample | No PE | PE | p | NC | Depression | p |
---|---|---|---|---|---|---|---|
(N = 12,708) | 8295 (66.3) | 4220 (33.7) | 10,854 (85.4) | 1854 (14.6) | |||
Sociodemographic | |||||||
Age (years) * | 83.5 (11.1) | 85.1 (11.3) | 80.3 (10.0) | <0.001 | 83.3 (11.1) | 85.0 (11.0) | <0.001 |
Gender (female) | 6829 (53.7) | 4765 (57.4) | 1947 (46.1) | <0.001 | 5670 (52.2) | 1159 (62.5) | <0.001 |
Race (minority) | 660 (6.0) | 500 (7.0) | 154 (4.2) | <0.001 | 548 (5.9) | 112 (6.9) | 0.097 |
Marital status (SDW) | 6905 (54.9) | 4853 (59.1) | 1928 (46.1) | <0.001 | 5734 (53.3) | 1171 (64.0) | <0.001 |
Residence (rural) | 5714 (45.0) | 4149 (50.0) | 1488 (35.3) | <0.001 | 4855 (44.7) | 859 (46.3) | 0.200 |
Occupation (professional) | 1231 (11.4) | 536 (7.7) | 674 (18.4) | <0.001 | 1133 (12.3) | 98 (6.2) | <0.001 |
Education (≥1 year) | 5896 (54.4) | 3265 (46.5) | 2562 (69.7) | <0.001 | 5203 (56.2) | 693 (43.6) | <0.001 |
BMI (kg/m2) * | 22.6 (5.8) | 22.3 (6.0) | 23.3 (5.4) | <0.001 | 22.7 (5.5) | 22.2 (7.4) | <0.001 |
Current smoker | 2046 (16.3) | 1253 (15.2) | 761 (18.3) | <0.001 | 1796 (16.7) | 250 (13.6) | 0.001 |
Current alcohol drinker | 1939 (15.5) | 1184 (14.5) | 752 (18.1) | <0.001 | 1743 (16.3) | 196 (10.8) | <0.001 |
Living alone | 2179 (17.4) | 1427 (17.5) | 709 (17.0) | 0.494 | 1762 (16.5) | 417 (22.9) | <0.001 |
Prefer living alone | 6295 (50.9) | 3825 (47.4) | 2376 (57.7) | <0.001 | 5458 (51.6) | 837 (46.9) | <0.001 |
Socioeconomic status | |||||||
Sufficient financial support | 10,908 (86.4) | 6977 (84.7) | 3777 (90.0) | <0.001 | 9617 (89.2) | 1291 (70.3) | <0.001 |
Economic independence | 4433 (35.9) | 2423 (29.9) | 1952 (48.1) | <0.001 | 3966 (37.6) | 467 (25.9) | <0.001 |
Adequate medical service | 12,239 (97.4) | 7970 (97.1) | 4098 (98.1) | 0.001 | 10,514 (98.2) | 1725 (93.7) | <0.001 |
Public medical payment | 7028 (57.4) | 4465 (56.0) | 2446 (59.9) | <0.001 | 6053 (57.9) | 975 (54.6) | 0.009 |
Dietary habits | |||||||
Fruits | 5854 (46.2) | 3449 (41.7) | 2308 (54.8) | <0.001 | 5266 (48.6) | 588 (31.8) | <0.001 |
Vegetables | 11,448 (90.3) | 7327 (88.5) | 3952 (93.8) | <0.001 | 9916 (91.5) | 1532 (82.8) | <0.001 |
Animal oil | 1315 (10.4) | 1013 (12.2) | 278 (6.6) | <0.001 | 1023 (9.5) | 292 (15.8) | <0.001 |
Meat | 9798 (78.1) | 6292 (76.7) | 3364 (80.7) | <0.001 | 8462 (78.9) | 1336 (73.0) | <0.001 |
Fish | 6027 (48.0) | 3786 (46.2) | 2162 (51.9) | <0.001 | 5252 (49.0) | 775 (42.4) | <0.001 |
Eggs | 9134 (72.8) | 5809 (70.8) | 3211 (77.0) | <0.001 | 7941 (74.1) | 1139 (65.2) | <0.001 |
Food made from beans | 6510 (51.9) | 4094 (49.9) | 2330 (55.9) | <0.001 | 5694 (53.2) | 816 (44.6) | <0.001 |
Salt-preserved vegetables | 3845 (30.7) | 2509 (30.6) | 1286 (30.9) | 0.773 | 3298 (30.8) | 574 (29.9) | 0.446 |
Sugar | 3637 (29.0) | 2373 (29.0) | 1210 (29.0) | 0.938 | 3136 (29.3) | 501 (27.4) | 0.099 |
Garlic | 5817 (46.4) | 3434 (41.9) | 2302 (55.3) | <0.001 | 5077 (47.4) | 740 (40.5) | <0.001 |
Milk products | 4907 (39.2) | 2813 (34.4) | 2022 (48.6) | <0.001 | 4281 (40.0) | 626 (34.3) | <0.001 |
Nut products | 2453 (19.6) | 1206 (14.7) | 1209 (29.0) | <0.001 | 2241 (20.9) | 212 (11.6) | <0.001 |
Mushroom or algae | 2446 (19.5) | 1191 (14.6) | 1221 (29.3) | <0.001 | 2217 (20.7) | 229 (12.5) | <0.001 |
Vitamins | 1592 (12.7) | 814 (10.0) | 753 (18.1) | <0.001 | 1416 (13.2) | 176 (9.6) | <0.001 |
Medicinal plants | 928 (7.4) | 394 (4.8) | 524 (12.6) | <0.001 | 837 (7.8) | 91 (5.0) | <0.001 |
Physical and cognitive health status | |||||||
Social/leisure activity score (point) * | 4.1 (3.3) | 3.5 (3.0) | 5.5 (3.4) | <0.001 | 4.3 (3.3) | 3.0 (2.9) | <0.001 |
Physical exercise | 4220 (33.7) | - | - | - | 3843 (35.9) | 377 (20.8) | <0.001 |
Poor self-reported health | 1673 (13.2) | 1259 (15.2) | 394 (9.3) | <0.001 | 978 (9.0) | 695 (37.6) | <0.001 |
Poor interviewer-rated health | 1533 (12.2) | 1296 (15.7) | 218 (5.2) | <0.001 | 925 (8.6) | 608 (33.1) | <0.001 |
Comorbidities (≥2) | 5724 (45.3) | 3540 (42.9) | 2104 (50.1) | <0.001 | 4755 (44.0) | 969 (52.5) | <0.001 |
Serious illness in the past 2 years | 3045 (25.1) | 1945 (24.6) | 1051 (26.0) | 0.097 | 2453 (23.7) | 592 (33.6) | <0.001 |
Hearing problem | 4302 (34.0) | 3092 (37.5) | 1138 (27.1) | <0.001 | 3496 (32.4) | 806 (43.8) | <0.001 |
Visual impairment | 1889 (15.0) | 1490 (18.1) | 364 (8.7) | <0.001 | 1426 (13.3) | 463 (25.2) | <0.001 |
Functional limitation | 5521 (43.5) | 4248 (51.2) | 1185 (28.2) | <0.001 | 4690 (40.5) | 1131 (61.1) | <0.001 |
Cognitive impairment | 1497 (13.8) | 1223 (17.4) | 257 (7.0) | <0.001 | 1135 (12.3) | 362 (22.8) | <0.001 |
Depression | 1854 (14.6) | 1439 (17.4) | 377 (8.9) | <0.001 | - | - | - |
N with/without Depression | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|
No physical exercise | 1439/6856 | 1.0 (reference) | 1.0 (reference) | 1.0 (reference) |
Physical exercise | 377/3843 | 0.47 (0.41–0.53) p < 0.001 | 0.68 (0.58–0.80) p < 0.001 | 0.73 (0.62–0.86) p < 0.001 |
Don’t Eat | Eat | OR (95% CI) for the Associations between Dietary Habits and Depression within Each Stratum of Physical Exercise | |||
---|---|---|---|---|---|
N with/without Depression | OR (95% CI) * | N with/without Depression | OR (95% CI) * | ||
Fruits | 1263/5561 | 1.0 (reference) | 588/5266 | 0.67 (0.58–0.78) p < 0.001 | |
No physical exercise | 989/3833 | 1.0 (reference) | 448/3001 | 0.70 (0.59–0.82) p < 0.001 | 0.66 (0.56–0.79) p < 0.001 |
Physical exercise | 245/1662 | 0.73 (0.60–0.90) p = 0.003 | 131/2177 | 0.45 (0.36–0.57) p < 0.001 | 0.70 (0.52–0.94) p = 0.016 |
Vegetables | 319/918 | 1.0 (reference) | 1532/9916 | 0.61 (0.50–0.74) p < 0.001 | |
No physical exercise | 266/687 | 1.0 (reference) | 1171/6156 | 0.64 (0.51–0.79) p < 0.001 | 0.64 (0.51–0.79) p < 0.001 |
Physical exercise | 45/216 | 0.84 (0.53–1.32) p = 0.448 | 331/3621 | 0.43 (0.33–0.55) p < 0.001 | 0.52 (0.33–0.81) p = 0.004 |
Animal oil | 1559/9801 | 1.0 (reference) | 292/1023 | 1.52 (1.24–1.86) p < 0.001 | |
No physical exercise | 1193/6069 | 1.0 (reference) | 244/769 | 1.59 (1.27–1.98) p < 0.001 | 1.67 (1.34–2.09) p < 0.001 |
Physical exercise | 333/3598 | 0.71 (0.60–0.84) p < 0.001 | 44/234 | 0.88 (0.54–1.41) p = 0.587 | 1.02 (0.61–1.72) p = 0.929 |
Meat | 494/2257 | 1.0 (reference) | 1336/8462 | 1.04 (0.88–1.22) p = 0.670 | |
No physical exercise | 395/1514 | 1.0 (reference) | 1025/5267 | 1.05 (0.87–1.26) p = 0.614 | 1.02 (0.85–1.23) p = 0.820 |
Physical exercise | 90/715 | 0.72 (0.52–0.99) p = 0.046 | 284/3080 | 0.72 (0.57–0.90) p = 0.004 | 1.02 (0.73–1.42) p = 0.925 |
Fish | 1055/5466 | 1.0 (reference) | 775/5252 | 1.08 (0.94–1.24) p = 0.276 | |
No physical exercise | 831/3584 | 1.0 (reference) | 590/3196 | 1.11 (0.94–1.30) p = 0.217 | 1.06 (0.91–1.25) p = 0.461 |
Physical exercise | 203/1804 | 0.72 (0.58–0.90) p = 0.003 | 170/1992 | 0.73 (0.58–0.92) p = 0.008 | 1.12 (0.85–1.49) p = 0.417 |
Eggs | 638/2779 | 1.0 (reference) | 1193/7941 | 0.81 (0.70–0.94) p = 0.005 | |
No physical exercise | 502/1894 | 1.0 (reference) | 919/4890 | 0.81 (0.68–0.96) p = 0.015 | 0.79 (0.67–0.94) p = 0.007 |
Physical exercise | 122/835 | 0.70 (0.53–0.93) p = 0.014 | 252/2959 | 0.56 (0.45–0.70) p < 0.001 | 0.91 (0.67–1.23) p = 0.532 |
Food made from beans | 1015/5061 | 1.0 (reference) | 816/5694 | 0.90 (0.79–1.04) p = 0.144 | |
No physical exercise | 790/3315 | 1.0 (reference) | 631/3463 | 0.92 (0.79–1.08) p = 0.302 | 0.90 (0.77–1.06) p = 0.209 |
Physical exercise | 205/1630 | 0.72 (0.58–0.89) p = 0.003 | 169/2161 | 0.61 (0.49–0.77) p < 0.001 | 0.96 (0.72–1.27) p = 0.764 |
Salt-preserved vegetables | 1283/7417 | 1.0 (reference) | 547/3298 | 0.97 (0.84–1.12) p = 0.690 | |
No physical exercise | 994/4698 | 1.0 (reference) | 427/2082 | 1.02 (0.86–1.20) p = 0.857 | 1.03 (0.87–1.22) p = 0.741 |
Physical exercise | 265/2618 | 0.73 (0.60–0.88) p = 0.001 | 109/1177 | 0.62 (0.47–0.81) p = 0.001 | 0.83 (0.61–1.12) p = 0.215 |
Sugar | 1329/7577 | 1.0 (reference) | 501/3136 | 1.02 (0.88–1.18) p = 0.803 | |
No physical exercise | 1030/4794 | 1.0 (reference) | 390/1983 | 1.03 (0.86–1.22) p = 0.774 | 1.03 (0.87–1.23) p = 0.721 |
Physical exercise | 273/2687 | 0.70 (0.58–0.84) p < 0.001 | 101/1109 | 0.70 (0.53–0.92) p = 0.010 | 0.98 (0.72–1.34) p = 0.911 |
Garlic | 1088/5638 | 1.0 (reference) | 740/5077 | 0.95 (0.83–1.10) p = 0.509 | |
No physical exercise | 878/3889 | 1.0 (reference) | 540/2894 | 0.92 (0.78–1.08) p = 0.295 | 0.93 (0.79–1.09) p = 0.385 |
Physical exercise | 184/1680 | 0.65 (0.52–0.81) p < 0.001 | 190/2112 | 0.69 (0.55–0.86) p = 0.001 | 1.09 (0.82–1.44) p = 0.555 |
Milk products | 1200/6423 | 1.0 (reference) | 626/4281 | 0.96 (0.83–1.12) p = 0.598 | |
No physical exercise | 960/4417 | 1.0 (reference) | 456/2357 | 1.01 (0.85–1.20) p = 0.932 | 0.95 (0.80–1.14) p = 0.603 |
Physical exercise | 219/1923 | 0.75 (0.61–0.92) p = 0.006 | 155/1867 | 0.63 (0.50–0.80) p < 0.001 | 0.97 (0.72–1.30) p = 0.848 |
Nut products | 1614/8462 | 1.0 (reference) | 212/2241 | 0.71 (0.58–0.87) p = 0.001 | |
No physical exercise | 1285/5697 | 1.0 (reference) | 131/1075 | 0.71 (0.55–0.91) p = 0.006 | 0.68 (0.53–0.88) p = 0.003 |
Physical exercise | 299/2658 | 0.71 (0.59–0.85) p < 0.001 | 75/1134 | 0.51 (0.37–0.69) p < 0.001 | 0.80 (0.56–1.12) p = 0.193 |
Mushroom or algae | 1597/8486 | 1.0 (reference) | 229/2217 | 0.80 (0.66–0.97) p = 0.025 | |
No physical exercise | 1261/5734 | 1.0 (reference) | 155/1036 | 0.87 (0.69–1.10) p = 0.237 | 0.78 (0.65–1.04) p = 0.107 |
Physical exercise | 305/2642 | 0.74 (0.62–0.88) p = 0.001 | 69/1152 | 0.51 (0.37–0.69) p < 0.001 | 0.76 (0.53–1.07) p = 0.115 |
Vitamins | 1649/9277 | 1.0 (reference) | 176/1416 | 0.71 (0.57–0.90) p = 0.004 | |
No physical exercise | 1299/6066 | 1.0 (reference) | 116/689 | 0.65 (0.49–0.87) p = 0.004 | 0.63 (0.47–0.85) p = 0.002 |
Physical exercise | 315/3097 | 0.68 (0.58–0.81) p < 0.001 | 59/694 | 0.57 (0.40–0.81) p = 0.002 | 0.93 (0.64–1.35) p = 0.702 |
Medicinal plants | 1735/9858 | 1.0 (reference) | 91/837 | 0.96 (0.72–1.28) p = 0.773 | |
No physical exercise | 1358/6429 | 1.0 (reference) | 58/336 | 0.99 (0.68–1.45) p = 0.975 | 0.92 (0.63–1.34) p = 0.666 |
Physical exercise | 341/3300 | 0.70 (0.59–0.83) p < 0.001 | 33/491 | 0.64 (0.42–0.98) p = 0.039 | 1.06 (0.68–1.67) p = 0.797 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, K.; Lin, S.; Yang, J.; Li, C. Dietary Habits and Depression in Community-Dwelling Chinese Older Adults: Cross-Sectional Analysis of the Moderating Role of Physical Exercise. Nutrients 2024, 16, 740. https://doi.org/10.3390/nu16050740
Wei K, Lin S, Yang J, Li C. Dietary Habits and Depression in Community-Dwelling Chinese Older Adults: Cross-Sectional Analysis of the Moderating Role of Physical Exercise. Nutrients. 2024; 16(5):740. https://doi.org/10.3390/nu16050740
Chicago/Turabian StyleWei, Kai, Shaohui Lin, Junjie Yang, and Chunbo Li. 2024. "Dietary Habits and Depression in Community-Dwelling Chinese Older Adults: Cross-Sectional Analysis of the Moderating Role of Physical Exercise" Nutrients 16, no. 5: 740. https://doi.org/10.3390/nu16050740
APA StyleWei, K., Lin, S., Yang, J., & Li, C. (2024). Dietary Habits and Depression in Community-Dwelling Chinese Older Adults: Cross-Sectional Analysis of the Moderating Role of Physical Exercise. Nutrients, 16(5), 740. https://doi.org/10.3390/nu16050740