Association between Beverage Consumption and Environmental Sustainability in an Adult Population with Metabolic Syndrome
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants, Recruitment, Randomization, and Ethics
2.3. Assessment of Food and Beverage Intake
2.4. GHGs, Energy, Water, and Land Use per kg of Food
2.5. Environmental Score Calculations
2.6. Sociodemographic Characteristics
2.7. Statistical Analyses
3. Results
4. Discussion
Strengths and Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Singh, G.M.; Micha, R.; Khatibzadeh, S.; Shi, P.; Lim, S.; Andrews, K.G.; Engell, R.E.; Ezzati, M.; Mozaffarian, D.; Global Burden of Diseases Nutrition and Chronic Diseases Expert Group (NutriCoDE). Global, Regional, and National Consumption of Sug-ar-Sweetened Beverages, Fruit Juices, and Milk: A Systematic Assessment of Beverage Intake in 187 Countries. PLoS ONE 2015, 10, e0124845, Correction in PLoS ONE 2019, 14, e0214344. [Google Scholar]
- Castetbon, K.; Assakali, W.; Thiébaut, I.; Desbouys, L. Decreasing consumption of sugar-sweetened beverages and Raising tap water consumption through Interventions based on Nutrition and sustainability for Kids: Study protocol of the “DRINK” cluster randomised controlled trial. Trials 2023, 24, 611. [Google Scholar] [CrossRef]
- Vellinga, R.E.; van den Boomgaard, I.; Boer, J.M.; van der Schouw, Y.T.; Harbers, M.C.; Verschuren, W.M.; van’t Veer, P.; Temme, E.H.; Biesbroek, S. Different Levels of Ultraprocessed Food and Beverage Consumption and Associations with Environmental Sustainability and All-cause Mortality in EPIC-NL. Am. J. Clin. Nutr. 2023, 118, 103–113. [Google Scholar] [CrossRef]
- Pasqualino, J.; Meneses, M.; Castells, F. The carbon footprint and energy consumption of beverage packaging selection and dis-posal. J. Food Eng. 2011, 103, 357–365. [Google Scholar] [CrossRef]
- Smedman, A.; Lindmark-Månsson, H.; Drewnowski, A.; Edman, A.-K.M. Nutrient density of beverages in relation to climate impact. Food Nutr. Res. 2010, 54, 5170. [Google Scholar] [CrossRef]
- Von Philipsborn, P.; Stratil, J.M.; Burns, J.; Busert, L.K.; Pfadenhauer, L.M.; Polus, S.; Holzapfel, C.; Hauner, H.; Rehfuess, E. Environmental interventions to reduce the consumption of sugar-sweetened beverages and their effects on health. Cochrane Database Syst. Rev. 2019, 6, CD012292. [Google Scholar] [CrossRef]
- Hendriks, H.F. Alcohol and Human Health: What Is the Evidence? Annu. Rev. Food Sci. Technol. 2020, 11, 1–21. [Google Scholar] [CrossRef]
- English, L.K.; Ard, J.D.; Bailey, R.L.; Bates, M.; Bazzano, L.A.; Boushey, C.J.; Brown, C.; Butera, G.; Callahan, E.H.; De Jesus, J.; et al. Evaluation of Dietary Patterns and All-Cause Mortality: A Systematic Review. JAMA Netw. Open. 2021, 4, e2122277. [Google Scholar] [CrossRef] [PubMed]
- Bordoni, A.; Danesi, F.; Dardevet, D.; Dupont, D.; Fernandez, A.S.; Gille, D.; Nunes dos Santos, C.; Pinto, P.; Re, R.; Rémond, D.; et al. Dairy products and inflammation: A review of the clinical evidence. Crit. Rev. Food Sci. Nutr. 2017, 57, 2497–2525. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.; Bhupathiraju, S.; Satija, A. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation 2014, 129, 643–659. [Google Scholar] [CrossRef] [PubMed]
- Malik, V.S.; Popkin, B.M.; Bray, G.A.; Després, J.P.; Willett, W.C.; Hu, F.B. Sugar-sweetened beverages and risk of metabolic syndrome and type 2 diabetes: A meta-analysis. Diabetes Care 2010, 33, 2477–2483. [Google Scholar] [CrossRef] [PubMed]
- Baspinar, B.; Eskici, G.; Ozcelik, A.O. How coffee affects metabolic syndrome and its components. Food Funct. 2017, 8, 2089–2101. [Google Scholar] [CrossRef]
- Rochlani, Y.; Pothineni, N.V.; Kovelamudi, S.; Mehta, J.L. Metabolic syndrome: Pathophysiology, management, and modulation by natural compounds. Ther. Adv. Cardiovasc. Dis. 2017, 11, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- United Nations (UN). Sustainable Development Goals. Available online: https://sdgs.un.org/es/goals (accessed on 3 February 2023).
- Rodriguez-Sanchez, C.; Sellers-Rubio, R. Sustainability in the Beverage Industry: A Research Agenda from the Demand Side. Sustainability 2021, 13, 186. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Buil-Cosiales, P.; Corella, D.; Bulló, M.; Fitó, M.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Wärnberg, J.; López-Miranda, J.; et al. Cohort profile: Design and methods of the PREDIMED-Plus randomized trial. Int. J. Epidemiol. 2019, 48, 387–388. [Google Scholar] [CrossRef]
- Alberti, K.G.; Eckel, R.H.; Grundy, S.M.; Zimmet, P.Z.; Cleeman, J.I.; Donato, K.A.; Fruchart, J.C.; James, W.P.T.; Loria, C.M.; Smith, S.C., Jr. Harmonizing the metabolic syndrome: A joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity. Circulation 2009, 120, 1640–1645. [Google Scholar]
- Fernández-Ballart, J.D.; Piñol, J.L.; Zazpe, I.; Corella, D.; Carrasco, P.; Toledo, E.; Perez-Bauer, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Martín-Moreno, J.M. Relative validity of a semi-quantitative food-frequency questionnaire in an elderly Mediterranean population of Spain. Br. J. Nutr. 2010, 103, 1808–1816. [Google Scholar] [CrossRef]
- De La Fuente-Arrillaga, C.; Ruiz, Z.V.; Bes-Rastrollo, M.; Sampson, L.; Martinez-González, M.A. Reproducibility of an FFQ validated in Spain. Public. Health Nutr. 2010, 13, 1364–1372. [Google Scholar] [CrossRef]
- Moreiras, O.; Carbajal, A.; Cabrera, L.; Cuadrado, C. Tablas de Composición de Alimentos, Guía de Prácticas (Spanish Food Com-Position Tables), 17th ed.; Pirámide: Madrid, Spain, 2015. [Google Scholar]
- Mataix, J.; Mañas, M.; Llopis, J.; Martínez de Victoria, E.; Juan, J.; Borregón, A. Tablas de Composición de Alimentos (Spanish Food Composition Tables), 5th ed.; Universidad de Granada: Granada, Spain, 2013. [Google Scholar]
- Ferreira-Pêgo, C.; Nissensohn, M.; Kavouras, S.A.; Babio, N.; Serra-Majem, L.; Martín Águila, A.; Mauromoustakos, A.; Álvarez Pérez, J.; Salas-Salvadó, J. Beverage Intake Assessment Questionnaire: Relative Validity and Repeatability in a Spanish Population with Metabolic Syndrome from the PREDIMED-PLUS Study. Nutrients 2016, 8, 475. [Google Scholar] [CrossRef]
- AGRIBALYSE Database of Environmental Impact Indicators for Food Items Produced and Consumed in France. 2013. Updated on 2021. Available online: https://agribalyse.ademe.fr/app/aliments (accessed on 11 May 2022).
- Colomb, V.; Ait-Amar, S.; Basset-Mens, C.; Gac, A.; Gaillard, G.; Koch, P.; Mousset, J.; Salou, T.; Tailleur, A.; Van Der Werf, H.M. AGRIBALYSE: The French Public LCI Database for Agricultural Products. 2015. Available online: http://rgdoi.net/10.13140/RG.2.1.2586.0240 (accessed on 2 May 2023).
- ISO 14040:2006 (fr). Management Environnemental—Analyse du Cycle de Vie—Principes et Cadre. Available online: https://www.iso.org/obp/ui/fr/#iso:std:iso:14040:ed-2:v1:fr (accessed on 2 May 2023).
- ISO 14044:2006 (fr). Management Environnemental—Analyse du Cycle de vie Exigences et Lignes Directrices. Available online: https://www.iso.org/obp/ui/fr/#iso:std:iso:14044:ed-1:v1:fr (accessed on 2 May 2023).
- Livestock Environmental Assessment and Performance (LEAP) Partnership—Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/partnerships/leap/overview/the-partnership/en/ (accessed on 2 May 2023).
- Kesse-Guyot, E.; Allès, B.; Brunin, J.; Fouillet, H.; Dussiot, A.; Berthy, F.; Perraud, E.; Hercberg, S.; Julia, C.; Mariotti, F.; et al. Environmental impacts along the value chain from the consumption of ultra-processed foods. Nat. Sustain. 2023, 6, 192–202. [Google Scholar] [CrossRef]
- Grosso, G.; Fresán, U.; Bes-Rastrollo, M.; Marventano, S.; Galvano, F. Environmental Impact of Dietary Choices: Role of the Medi-terranean and Other Dietary Patterns in an Italian Cohort. Int. J. Environ. Res. Public. Health 2020, 17, 1468. [Google Scholar] [CrossRef] [PubMed]
- Feil, A.A.; Schreiber, D.; Haetinger, C.; Haberkamp, M.; Kist, J.I.; Rempel, C.; Maehler, A.E.; Gomes, M.C.; da Silva, G.R. Sustainability in the dairy industry: A systematic literature review. Environ. Sci. Pollut. Res. 2020, 27, 33527–33542. [Google Scholar] [CrossRef] [PubMed]
- Kasmi, M. Biological processes as promoting way for both treatment and valorization of dairy industry effluents. Waste Biomass Valorization 2018, 9, 195–209. [Google Scholar] [CrossRef]
- Vourch, M.; Balannec, B.; Chaufer, B.; Dorange, G. Treatment of dairy industry wastewater by reverse osmosis for water re-use. Desalination 2008, 219, 190–202. [Google Scholar] [CrossRef]
- Zhu, L.; Lansink, A.O. Dynamic sustainable productivity growth of Dutch dairy farming. PLoS ONE 2022, 17, e0264410. [Google Scholar] [CrossRef]
- Luthra, S.; Govindan, K.; Kannan, D.; Mangla, S.K.; Garg, C.P. An integrated framework for sustainable supplier selection and evaluation in supply chains. J. Clean. Prod. 2017, 140, 1686–1698. [Google Scholar] [CrossRef]
- Fresán, U.; Sabaté, J. Vegetarian Diets: Planetary Health and Its Alignment with Human Health. Adv. Nutr. Int. Rev. J. 2019, 10, S380–S388. [Google Scholar] [CrossRef]
- García, S.; Bouzas, C.; Mateos, D.; Pastor, R.; Álvarez, L.; Rubín, M.; Martínez-González, M.Á.; Salas-Salvadó, J.; Corella, D.; Goday, A.; et al. Carbon dioxide (CO2) emissions and adherence to Medi-terranean diet in an adult population: The Mediterranean diet index as a pollution level index. Environ. Health 2023, 22, 1. [Google Scholar] [CrossRef]
- Euvepro. The Use of Plant-Based Proteins in Foods and Beverages in the EU. A 10- Year Review of New Product Launches con-taining Plant-Based Proteins across EU Brusseles. 2019. Available online: https://euvepro.eu/_library/_files/INNOVA_2018_report_summary_THE_USE_OF_PLANT-BASED_PROTEINS_IN_FOOD_AND_BEVERAGES_IN_THE_EU.pdf (accessed on 8 March 2023).
- Munekata, P.E.S.; Domínguez, R.; Budaraju, S.; Roselló-Soto, E.; Barba, F.J.; Mallikarjunan, K.; Roohinejad, S.; Lorenzo, J.M. Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages. Foods 2020, 9, 288. [Google Scholar] [CrossRef]
- Haas, R.; Schnepps, A.; Pichler, A.; Meixner, O. Cow Milk versus Plant-Based Milk Substitutes: A Comparison of Product Image and Motivational Structure of Consumption. Sustainability 2019, 11, 5046. [Google Scholar] [CrossRef]
- Jaeger, S.R.; Giacalone, D. Barriers to consumption of plant-based beverages: A comparison of product users and non-users on emotional, conceptual, situational, conative and psychographic variables. Food Res. Int. 2021, 144, 110363. [Google Scholar] [CrossRef] [PubMed]
- D’Ammaro, D.; Capri, E.; Valentino, F.; Grillo, S.; Fiorini, E.; Lamastra, L. A multi-criteria approach to evaluate the sustainability performances of wines: The Italian red wine case study. Sci. Total Environ. 2021, 799, 149446. [Google Scholar] [CrossRef]
- Westenhoefer, J. Age and gender dependent profile of food choice. Forum Nutr. 2005, 57, 44–51. [Google Scholar]
- Van Meer, F.; Charbonnier, L.; Smeets, P.A.M. Food Decision-Making: Effects of Weight Status and Age. Curr. Diabetes Rep. 2016, 16, 84. [Google Scholar] [CrossRef] [PubMed]
- Chopik, W.J.; Bremner, R.H.; Johnson, D.J.; Giasson, H.L. Age Differences in Age Perceptions and Developmental Transitions. Front. Psychol. 2018, 9, 67. [Google Scholar] [CrossRef]
- Tresserra-Rimbau, A.; Medina-Remón, A.; Lamuela-Raventós, R.M.; Bulló, M.; Salas-Salvadó, J.; Corella, D.; Fitó, M.; Gea, A.; Gómez-Gracia, E.; Lapetra, J.; et al. Moderate red wine consumption is associated with a lower prevalence of the metabolic syndrome in the PREDIMED population. Br. J. Nutr. 2015, 113, S121–S130. [Google Scholar] [CrossRef]
- Rees, K.; Takeda, A.; Martin, N.; Ellis, L.; Wijesekara, D.; Vepa, A.; Das, A.; Hartley, L.; Stranges, S. Mediterranean-Style Diet for the Primary and Secondary Prevention of Cardiovascular Disease: A Cochrane Review. Glob. Heart 2020, 15, 56. [Google Scholar] [CrossRef]
- Schröder, H.; Zomeño, M.D.; Martínez-González, M.A.; Salas-Salvadó, J.; Corella, D.; Vioque, J.; Romaguera, D.; Martínez, J.A.; Tinahones, F.J.; Miranda, J.L.; et al. Validity of the energy-restricted Mediterranean Diet Adherence Screener. Clin. Nutr. 2021, 40, 4971–4979. [Google Scholar] [CrossRef]
- Baiano, A. Craft beer: An overview. Compr. Rev. Food Sci. Food Saf. 2021, 20, 1829–1856. [Google Scholar] [CrossRef]
- Van de Kamp, M.E.; Seves, S.M.; Temme, E.H.M. Reducing GHG emissions while improving diet quality: Exploring the potential of reduced meat, cheese and alcoholic and soft drinks consumption at specific moments during the day. BMC Public Health 2018, 18, 264. [Google Scholar] [CrossRef]
- Pérez-Bibbins, B.; Torrado-Agrasar, A.; Salgado, J.; Oliveira, R.P.d.S.; Domínguez, J. Potential of lees from wine, beer and cider manufacturing as a source of economic nutrients: An overview. Waste Manag. 2015, 40, 72–81. [Google Scholar] [CrossRef]
- Fleet, G.H. Wine yeasts for the future. FEMS Yeast Res. 2008, 8, 979–995. [Google Scholar] [CrossRef]
- Carley, S.; Yahng, L. Willingness-to-pay for sustainable beer. PLoS ONE 2018, 13, e0204917. [Google Scholar] [CrossRef]
- Bijla, L.; Aissa, R.; Laknifli, A.; Bouyahya, A.; Harhar, H.; Gharby, S. Spent coffee grounds: A sustainable approach toward novel perspectives of valorization. J. Food Biochem. 2022, 46, e14190. [Google Scholar] [CrossRef] [PubMed]
- Debnath, B.; Haldar, D.; Purkait, M.K. Environmental remediation by tea waste and its derivative products: A review on present status and technological advancements. Chemosphere 2022, 300, 134480. [Google Scholar] [CrossRef] [PubMed]
- Milder, J.C.; Arbuthnot, M.; Blackman, A.; Brooks, S.E.; Giovannucci, D.; Gross, L.; Kennedy, E.T.; Komives, K.; Lambin, E.F.; Lee, A.; et al. An agenda for assessing and improving conservation impacts of sustainability standards in tropical agriculture. Conserv. Biol. 2014, 29, 309–320. [Google Scholar] [CrossRef]
- Ul Haq, S.; Boz, I.; Shahbaz, P. Sustainability assessment of different land tenure farming systems in tea farming: The effect of decisional and structural variables. Integr. Environ. Assess. Manag. 2021, 17, 814–834. [Google Scholar] [CrossRef]
- Vogt, M.A.B. Developing stronger association between market value of coffee and functional biodiversity. J. Environ. Manag. 2020, 269, 110777. [Google Scholar] [CrossRef]
- Roy, S.; Muraleedharan, N. Microbial management of arthropod pests of tea: Current state and prospects. Appl. Microbiol. Biotechnol. 2014, 98, 5375–5386. [Google Scholar] [CrossRef] [PubMed]
- Khanali, M.; Mobli, H.; Hosseinzadeh-Bandbafha, H. Modeling of yield and environmental impact categories in tea processing units based on artificial neural networks. Environ. Sci. Pollut. Res. 2017, 24, 26324–26340. [Google Scholar] [CrossRef] [PubMed]
- Czernicka, M.; Zaguła, G.; Bajcar, M.; Saletnik, B.; Puchalski, C. Study of nutritional value of dried tea leaves and infusions of black, green and white teas from Chinese plantations. Rocz. Państwowego Zakładu Hig. 2017, 68, 237–245. [Google Scholar]
- Huse, O.; Reeve, E.; Bell, C.; Sacks, G.; Baker, P.; Wood, B.; Backholer, K. Strategies used by the soft drink industry to grow and sustain sales: A case-study of The Coca-Cola Company in East Asia. BMJ Glob. Heart 2022, 7, e010386. [Google Scholar] [CrossRef] [PubMed]
- Malan, H.; Amsler Challamel, G.; Silverstein, D.; Hoffs, C.; Spang, E.; Pace, S.A.; Malagueño, B.L.R.; Gardner, C.D.; Wang, M.C.; Slusser, W.; et al. Impact of a Scalable, Multi-Campus “Foodprint” Seminar on College Students’ Dietary Intake and Dietary Carbon Footprint. Nutrients 2020, 12, 2890. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Saenz, L.; Irigoyen, M.; Benavides, J.; Mendoza, M. Tap or bottled water: Drinking preferences among urban minority children and adolescents. J. Community Health 2012, 37, 54–58. [Google Scholar] [CrossRef]
- Platikanov, S.; Hernández, A.; González, S.; Cortina, J.L.; Tauler, R.; Devesa, R. Predicting consumer preferences for mineral composition of bottled and tap water. Talanta 2017, 162, 1–9. [Google Scholar] [CrossRef]
- Etale, A.; Jobin, M.; Siegrist, M. Tap versus bottled water consumption: The influence of social norms, affect and image on consumer choice. Appetite 2018, 121, 138–146. [Google Scholar] [CrossRef]
- Geerts, R.; Vandermoere, F.; Van Winckel, T.; Halet, D.; Joos, P.; Steen, K.V.D.; Van Meenen, E.; Blust, R.; Borregán-Ochando, E.; Vlaeminck, S.E. Bottle or tap? Toward an integrated approach to water type consumption. Water Res. 2020, 173, 115578. [Google Scholar] [CrossRef]
|
T1: Decreased Beverage Score (n = 374) | T2: Non-Changed Beverage Score (n = 360) | T3: Increased Beverage Score (n = 388) | p | |
---|---|---|---|---|
Sex | 0.308 | |||
Men (n; %) | 173 (46.3) | 178 (49.4) | 201 (51.8) | |
Women (n; %) | 201 (53.7) | 182 (50.6) | 187 (48.2) | |
Highest school level completed | 0.696 | |||
Primary School (n; %) | 45 (12.0) | 36 (10.0) | 50 (12.9) | |
College School Technician (n; %) | 30 (8.0) | 31 (8.6) | 36 (9.3) | |
Secondary School (n; %) | 97 (25.9) | 91 (25.3) | 109 (28.1) | |
Bachelor’s degree (n; %) | 202 (54.0) | 202 (56.1) | 193 (49.7) | |
Age (years) * | 64.9 (4.9) | 65.0 (4.7) | 64.8 (5.0) | 0.832 |
BMI (kg/m2) * | 32.6 (3.4) | 32.6 (3.2) | 33.1 (3.7) | 0.188 |
Energy (Kcal/day) * | 2400.3 (592.3) | 2479.7 (618.7) | 2531.7 (578.1) | 0.009 |
Physical Activity (METs) ^ | 2297.5 (2256.2) | 2611.1 (2301.9) | 2478.1 (2484.2) | 0.193 |
T1: Decreased Beverage Score § (n = 374) | T2: Non-Changed Beverage Score § (n = 360) | T3: Increased Beverage Score § (n = 388) | p-Value Time × Group Interaction | |
---|---|---|---|---|
Bottled water | <0.001 | |||
v00 | 503.8 (559.7) b | 605.8 (593.9) | 649.4 (645.2) b | |
v01 | 721.7 (633.2) b | 665.7 (654.8) | 582.6 (635.9) b | |
▲ | 217.8 (651.4) * d e | 59.8 (539.1) * d f | −66.7 (669.1) * e f | |
Tap water | <0.001 | |||
v00 | 511.8 (583.2) | 453.8 (596.2) | 445.9 (614.6) | |
v01 | 484.8 (588.0) b | 495.7 (619.9) | 614.4 (681.1) b | |
▲ | −27.0 (588.4) e | 41.9 (532.9) f | 168.5 (651.8) * e f | |
Natural fruit juice | <0.001 | |||
v00 | 22.5 (74.2) a b | 83.4 (150.6) a | 92.9 (157.3) b | |
v01 | 67.9 (143.8) b | 68.4 (148.9) c | 22.4 (79.3) b c | |
▲ | 45.3 (140.3) * d e | −15.0 (147.1) d f | −70.5 (161.9) * e f | |
Packed fruit juice | <0.001 | |||
v00 | 12.9 (57.1) a b | 34.7 (101.2) a | 38.2 (110.8) b | |
v01 | 23.8 (102.5) b | 16.6 (79.5) | 5.6 (33.2) b | |
▲ | 10.8 (99.4) d e | −18.0 (110.8) * d | −32.5 (110.6) * e | |
Milk (whole/semi-skimmed/skimmed) | <0.001 | |||
v00 | 193.9 (203.7) a b | 242.2 (212.2) a c | 285.3 (205.8) b c | |
v01 | 256.3 (215.4) b | 217.4 (230.3) c | 121.4 (182.6) b c | |
▲ | 62.3 (229.5) * d e | −24.8 (206.3) * d f | −163.9 (230.8) * e f | |
Drinkable dairy | 0.001 | |||
v00 | 8.2 (44.4) b | 14.4 (57.8) b | 20.5 (69.6) | |
v01 | 14.8 (57.4) | 8.3 (43.3) | 11.8 (45.6) | |
▲ | 6.6 (59.1) * d e | −6.1 (60.1) d | −8.7 (70.8) * e | |
Dairy shakes | 0.176 | |||
v00 | 0.4 (4.4) | 3.4 (31.1) | 4.9 (40.9) | |
v01 | 2.9 (30.9) | 2.2 (29.7) | 1.3 (21.0) | |
▲ | 2.5 (31.3) | −1.2 (31.2) | −3.5 (46.2) | |
Vegetable drinks | 0.257 | |||
v00 | 23.1 (90.5) | 25.2 (99.9) | 32.8 (112.7) | |
v01 | 35.7 (116.4) | 25.8 (96.5) | 33.9 (108.6) | |
▲ | 12.5 (111.1) * | 0.6 (95.8) | 1.1 (115.5) | |
Soups and broths | <0.001 | |||
v00 | 24.2 (29.1) b | 36.1 (70.9) | 44.3 (80.6) b | |
v01 | 53.4 (79.8) a b | 39.8 (73.0) a c | 26.6 (34.4) b c | |
▲ | 29.2 (82.6) * d e | 3.7 (91.5) d f | −17.7 (76.6) * e f | |
Sorbets and jellies | 0.002 | |||
v00 | 2.6 (13.4) b | 6.3 (43.2) | 10.4 (55.2) b | |
v01 | 7.8 (40.6) | 4.3 (31.5) | 3.3 (23.9) | |
▲ | 5.1 (38.6) * d e | −2.0 (32.0) d | −7.1 (57.7) * e | |
Soft drinks (with/without sugar) | <0.001 | |||
v00 | 44.8 (113.1) a b | 93.4 (230.3) a | 105.1 (207.2) b | |
v01 | 53.2 (148.3) | 51.7 (135.1) | 32.5 (103.3) | |
▲ | 8.4 (168.1) d e | −41.6 (221.4) * d | −72.6 (204.3) * e | |
Black coffee without sugar | 0.852 | |||
v00 | 25.9 (38.4) | 21.6 (37.6) | 25.9 (44.6) | |
v01 | 34.4 (43.5) | 31.1 (43.8) | 34.2 (42.5) | |
▲ | 8.5 (46.1) * | 9.4 (46.8) * | 8.2 (54.0) * | |
Black coffee with sugar | 0.477 | |||
v00 | 14.8 (32.8) | 17.5 (34.1) | 17.7 (35.2) | |
v01 | 11.0 (1507) | 14.1 (32.3) | 10.9 (27.7) | |
▲ | −3.8 (34.7) * | −3.4 (37.2) | −6.8 (38.3) * | |
Coffee with milk without sugar | 0.008 | |||
v00 | 62.6 (113.3) | 57.8 (104.7) | 70.3 (116.7) | |
v01 | 106.4 (124.7) b | 91.2 (121.4) | 79.3 (116.7) b | |
▲ | 43.8 (147.2) * e | 33.3 (127.9) * | 9.0 (148.3) e | |
Coffee with milk with sugar | 0.488 | |||
v00 | 26.8 (83.2) | 35.9 (89.5) | 34.4 (85.2) | |
v01 | 22.8 (74.5) | 26.8 (76.1) | 18.1 (63.9) | |
▲ | −1.0 (100.6) | −9.1 (101.1) | −16.3 (101.5) * | |
Tea without sugar | <0.001 | |||
v00 | 23.3 (90.4) b | 35.8 (104.6) | 48.1 (125.8) b | |
v01 | 52.8 (156.7) b | 37.6 (106.3) | 25.2 (82.7) b | |
▲ | 29.4 (155.3) * d e | 1.8 (125.8) d f | −22.8 (133.0) * e f | |
Tea with sugar | 0.804 | |||
v00 | 9.9 (53.3) | 12.4 (64.0) | 11.3 (59.1) | |
v01 | 6.8 (46.9) | 8.3 (49.7) | 6.3 (42.5) | |
▲ | −16.5 (103.3) | −27.5 (114.7) | −41.7 (133.7) | |
Infusions without sugar | 0.296 | |||
v00 | 37.3 (104.6) | 46.1 (139.5) | 50.2 (121.4) | |
v01 | 57.5 (123.4) | 61.4 (129.7) | 54.1 (116.8) | |
▲ | 20.2 (141.2) * | 15.3 (152.4) | 3.9 (148.4) | |
Infusions with sugar | 0.576 | |||
v00 | 15.4 (70.2) | 21.1 (81.1) | 15.4 (74.6) | |
v01 | 10.8 (56.6) | 16.1 (70.6) | 16.8 (73.5) | |
▲ | −4.6 (89.1) | −5.1 (94.9) | 1.4 (96.4) | |
Beer with and without alcohol | <0.001 | |||
v00 | 68.3 (156.6) b | 118.5 (275.1) c | 194.1 (369.2) b c | |
v01 | 141.9 (304.4) a b | 95.9 (275.6) a | 57.8 (144.2) b | |
▲ | 73.5 (301.0) * d e | −22.5 (287.1) d f | −136.2 (363.6) * e f | |
Wine | <0.001 | |||
v00 | 44.6 (84.8) a b | 64.9 (109.9) a | 82.6 (123.3) b | |
v01 | 61.2 (96.7) | 69.5 (110.1) | 65.6 (99.2) | |
▲ | 16.5 (90.4) * e | 4.6 (109.8) f | −17.1 (119.2) * e f | |
High proof drinks | 0.908 | |||
v00 | 2.1 (10.9) | 2.7 (16.1) | 2.6 (12.2) | |
v01 | 2.0 (9.7) | 1.3 (8.3) | 1.4 (8.0) | |
▲ | −0.1 (13.1) | −1.3 (17.5) | −1.2 (14.3) | |
Combined drinks | 0.075 | |||
v00 | 1.2 (9.0) | 3.7 (31.7) | 4.5 (30.7) | |
v01 | 2.7 (22.8) | 3.4 (31.7) | 1.4 (7.7) | |
▲ | 1.5 (24.5) e | −0.3 (39.5) | −3.1 (30.6) * e | |
Energy drinks | 0.645 | |||
v00 | 0.1 (2.2) | 1.1 (21.1) | 0.4 (8.7) | |
v01 | 0.0 (0.0) | 0.2 (5.2) | 0.0 (0.0) | |
▲ | −0.1 (2.2) | −0.8 (15.8) | −0.4 (8.7) | |
Isotonic drinks | 0.091 | |||
v00 | 1.4 (21.21) | 0.7 (7.7) | 3.1 (29.9) | |
v01 | 1.2 (11.4) | 6.5 (85.6) | 0.6 (8.9) | |
▲ | −0.2 (24.1) | 5.7 (86.1) * | −2.5 (30.1) | |
Replacement shakes | 0.223 | |||
v00 | 0.0 (0.0) | 0.3 (5.7) | 0.0 (0.0) | |
v01 | 1.0 (20.6) | 0.0 (0.0) | 0.0 (0.0) | |
▲ | 1.0 (20.6) | −0.3 (5.7) | 0.0 (0.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García, S.; Monserrat-Mesquida, M.; Argelich, E.; Ugarriza, L.; Salas-Salvadó, J.; Bautista, I.; Vioque, J.; Zomeño, M.D.; Corella, D.; Pintó, X.; et al. Association between Beverage Consumption and Environmental Sustainability in an Adult Population with Metabolic Syndrome. Nutrients 2024, 16, 730. https://doi.org/10.3390/nu16050730
García S, Monserrat-Mesquida M, Argelich E, Ugarriza L, Salas-Salvadó J, Bautista I, Vioque J, Zomeño MD, Corella D, Pintó X, et al. Association between Beverage Consumption and Environmental Sustainability in an Adult Population with Metabolic Syndrome. Nutrients. 2024; 16(5):730. https://doi.org/10.3390/nu16050730
Chicago/Turabian StyleGarcía, Silvia, Margalida Monserrat-Mesquida, Emma Argelich, Lucía Ugarriza, Jordi Salas-Salvadó, Inmaculada Bautista, Jesús Vioque, María Dolores Zomeño, Dolores Corella, Xavier Pintó, and et al. 2024. "Association between Beverage Consumption and Environmental Sustainability in an Adult Population with Metabolic Syndrome" Nutrients 16, no. 5: 730. https://doi.org/10.3390/nu16050730
APA StyleGarcía, S., Monserrat-Mesquida, M., Argelich, E., Ugarriza, L., Salas-Salvadó, J., Bautista, I., Vioque, J., Zomeño, M. D., Corella, D., Pintó, X., Bueno-Cavanillas, A., Daimiel, L., Martínez, J. A., Nishi, S., Herrera-Ramos, E., González-Palacios, S., Fitó, M., Asensio, E. M., Fanlo-Maresma, M., ... Bouzas, C. (2024). Association between Beverage Consumption and Environmental Sustainability in an Adult Population with Metabolic Syndrome. Nutrients, 16(5), 730. https://doi.org/10.3390/nu16050730