Consumption Patterns of Sugar-Sweetened Beverages and Association with Undernutrition among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Survey Content
- (1)
- Questionnaire survey: (1) Information on demographics covered age, gender, region, place of residence, and parent’s education level, among others. (2) Lifestyle variables included moderate-to-high physical activity, screen time, dietary preferences, nutrition knowledge level, etc. (3) The frequency and intake of SSBs among students in the past month were assessed using a semi-quantitative food frequency questionnaire (FFQ). Visual aids such as food models and images were employed to assist participants in evaluating their SSB intake. The questionnaire was developed based on the survey conducted by the China National Center for Chronic Noncommunicable Disease and Nutrition Surveillance [18] and further adjusted through group discussions considering the characteristics of Guangzhou children. SSBs were classified into nine categories according to the Chinese General Principles for Beverages (GB/T 10789-2015) [19]: carbonated beverages, fruit and vegetable juices and their beverages, plant protein beverages, dairy-containing beverages, tea (and its types) beverages, coffee (and its types) beverages, plant-based beverages, milk tea beverages, and sports beverages.
- (2)
- Physical examination: Physical assessments such as height and weight were performed meticulously [20] using a mechanical height meter and an electronic scale, accurate to 0.1 cm and 0.1 kg, respectively. Body mass index (BMI) was computed as the ratio of weight in kilograms to the square of height in meters (BMI = weight (kg)/height (m2)).
2.3. The Criteria for Diagnosing Undernutrition
2.4. The Establishment of Sugar-Sweetened Beverages Consumption Patterns
2.5. The Establishment of Dietary Preferences Models
2.6. Statistical Analysis
3. Results
3.1. Participant Characteristics
3.2. Consumption Patterns of Sugar-Sweetened Beverages
3.3. Latent Class Model of Other Dietary Preferences
3.4. Characteristics of Quartiles (Q) of SSBs Consumption Patterns in Study Participants
3.5. Association Analysis between SSBs Consumption Patterns and Undernutrition
3.5.1. Analysis of SSBs Consumption Patterns and Undernutrition
3.5.2. Log-Binomial Regression Analysis on Undernutrition in Children of Different Genders and Ages Based on SSBs Patterns
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bhutta, Z.A.; Berkley, J.A.; Bandsma, R.H.J.; Kerac, M.; Trehan, I.; Briend, A. Severe Childhood Malnutrition. Nat. Rev. Dis. Primer 2017, 3, 17067. [Google Scholar] [CrossRef]
- Grey, K.; Gonzales, G.B.; Abera, M.; Lelijveld, N.; Thompson, D.; Berhane, M.; Abdissa, A.; Girma, T.; Kerac, M. Severe Malnutrition or Famine Exposure in Childhood and Cardiometabolic Non-Communicable Disease Later in Life: A Systematic Review. BMJ Glob. Health 2021, 6, e003161. [Google Scholar] [CrossRef]
- Galler, J.R.; Bringas-Vega, M.L.; Tang, Q.; Rabinowitz, A.G.; Musa, K.I.; Chai, W.J.; Omar, H.; Abdul Rahman, M.R.; Abd Hamid, A.I.; Abdullah, J.M.; et al. Neurodevelopmental Effects of Childhood Malnutrition: A Neuroimaging Perspective. NeuroImage 2021, 231, 117828. [Google Scholar] [CrossRef]
- 122 Million More People Pushed into Hunger Since 2019 Due to Multiple Crises, Reveals UN Report. Available online: https://www.who.int/news/item/12-07-2023-122-million-more-people-pushed-into-hunger-since-2019-due-to-multiple-crises--reveals-un-report (accessed on 25 October 2023).
- Liu, J.; Zhong, P.; Ma, N.; Shi, D.; Chen, L.; Dong, Y.; Dong, B.; Chen, T.; Li, J.; Song, Y.; et al. Prevalence trend of malnutrition among Chinese Han children and adolescents aged 7–18 years from 2010 to 2019. Chin. J. Prev. Med. 2023, 57, 27–35. [Google Scholar]
- Ten Year Health Monitoring Witnessing Nutritional Improvement Changes in Nutritional Health Status of Rural Compulsory Education Students under the Nutrition Improvement Program (2012–2022). Available online: https://www.chinanutri.cn/xwzx_238/gzdt/202301/t20230113_263360.html (accessed on 26 October 2023).
- Farhangi, M.A.; Nikniaz, L.; Khodarahmi, M. Sugar-Sweetened Beverages Increases the Risk of Hypertension among Children and Adolescence: A Systematic Review and Dose-Response Meta-Analysis. J. Transl. Med. 2020, 18, 344. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Feldman, H.A.; Steltz, S.K.; Quinn, N.L.; Robinson, L.M.; Ludwig, D.S. Effects of Sugar-Sweetened, Artificially Sweetened, and Unsweetened Beverages on Cardiometabolic Risk Factors, Body Composition, and Sweet Taste Preference: A Randomized Controlled Trial. J. Am. Heart Assoc. 2020, 9, e015668. [Google Scholar] [CrossRef]
- Pries, A.M.; Filteau, S.; Ferguson, E.L. Snack Food and Beverage Consumption and Young Child Nutrition in Low- and Middle-Income Countries: A Systematic Review. Matern. Child. Nutr. 2019, 15 (Suppl. S4), e12729. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.H.T.; Mok, A.; Ahmad, R.; Rangan, A.; Louie, J.C.Y. Intake of Free Sugar and Micronutrient Dilution in Australian Children and Adolescents. Eur. J. Nutr. 2019, 58, 2485–2495. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Hu, X.; Fang, J.; Sun, X.; Zhu, F.; Sun, Y.; Wang, Y. Association of Oral Microbiota Profile with Sugar-Sweetened Beverages Consumption in School-Aged Children. Int. J. Food Sci. Nutr. 2022, 73, 82–92. [Google Scholar] [CrossRef] [PubMed]
- Bellisle, F.; Drewnowski, A.; Anderson, G.H.; Westerterp-Plantenga, M.; Martin, C.K. Sweetness, Satiation, and Satiety. J. Nutr. 2012, 142, 1149S–1154S. [Google Scholar] [CrossRef] [PubMed]
- Poirier, K.L.; Totosy de Zepetnek, J.O.; Bennett, L.J.; Brett, N.R.; Boateng, T.; Schwartz, A.; Luhovyy, B.L.; Bellissimo, N. Effect of Commercially Available Sugar-Sweetened Beverages on Subjective Appetite and Short-Term Food Intake in Boys. Nutrients 2019, 11, 270. [Google Scholar] [CrossRef] [PubMed]
- Händel, M.N.; Heitmann, B.L.; Abrahamsen, B. Nutrient and Food Intakes in Early Life and Risk of Childhood Fractures: A Systematic Review and Meta-Analysis. Am. J. Clin. Nutr. 2015, 102, 1182–1195. [Google Scholar] [CrossRef] [PubMed]
- Shen, L.; Wang, Z.; Fan, J.; Ding, C.; Zang, J. Review of health hazards and control strategies of sugar-sweetened beverages. J. Environ. Occup. Med. 2023, 40, 769–774. [Google Scholar]
- Zhan, S.; Ye, D.; Tan, H. Epidemiology; National Health and Family Planning Commission’s 13th Five Year Plan Textbook for Preventive Medicine Majors; People’s Health Publishing House: Beijing, China, 2017; ISBN 978-7-117-24557-9. [Google Scholar]
- Lv, D.; Zeng, C.; Huang, J.; Lao, S.; Zhang, W.; Liu, Y.; Chen, K.; Li, Y. Current situation and influencing factors of malnutrition among primary and secondary school students, Guangzhou. Mod. Prev. Med. 2022, 49, 3123–3129. [Google Scholar]
- Chronic Disease and Nutrition Monitoring Work Plan for Chinese Residents (Trial). Available online: https://www.chinanutri.cn/tzgg_6537/tzgg_102/201412/t20141231_108847.html (accessed on 30 October 2023).
- GB/T 10789-2015; General Standard for Beverage. The General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, The Standardization Administration of China: Beijing, China, 2015. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=74CA249115E304FB0AF2CAFC7AC60AD7 (accessed on 26 October 2023).
- WST 424-2013; Human Measurement Method for Population Health Monitoring. Chinese Nutrition Society: Beijing, China, 2013. Available online: https://www.cnsoc.org/policystand/1019312010.html (accessed on 30 October 2023).
- WS/T 456-2014; Industry Standard—National Standard Information Public Service Platform. National Health and Family Planning Commission: Beijing, China, 2014. Available online: https://std.samr.gov.cn/hb/search/stdHBDetailed?id=8B1827F20C41BB19E05397BE0A0AB44A (accessed on 5 January 2024).
- Ma, J.; Huang, J.; Zeng, C.; Zhong, X.; Zhang, W.; Zhang, B.; Li, Y. Dietary Patterns and Association with Anemia in Children Aged 9–16 Years in Guangzhou, China: A Cross-Sectional Study. Nutrients 2023, 15, 4133. [Google Scholar] [CrossRef]
- Li, X.I.; Zhiqiang, W.A.; Yukun, Z.H.; Jing, W.U.; Haifeng, P.A.; Guoping, C.H. Association of sugar-sweetened beverages intake with overweight and obesity among primary and middle school students in Anhui Province. Chin. J. Sch. Health 2022, 43, 1729–1732. [Google Scholar]
- Wang, M.; Bi, X. Latent Variable Modeling and Mplus Application (Advanced Part); Chongqing University Press: Chongqing, China, 2023; ISBN 978-7-5689-0816-0. [Google Scholar]
- Lu, S.; Huang, W.; Yang, S.; Liang, J.; Tan, W.; Ao, L.; Deng, N.; Gao, Y.; Liu, L.; Yang, Y. Relationship between sugar-sweetened beverage consumption with other dietary behaviors among urban primary and middle school students in Guangzhou based on Latent Class Analysis. Mod. Prev. Med. 2020, 47, 3313–3317. [Google Scholar]
- Li, S.; Zeng, M.; Xie, C.; Xu, Q.; Zhao, Y. Nutritional literacy and influencing factors among students from Nutrition Improvement Program for Rural Compulsory Education Students in Chongqing. Chin. J. Sch. Health 2022, 43, 41–44+52. [Google Scholar] [CrossRef]
- Zhao, W.; Li, K.; Wang, Y.; Wang, J.; Liu, A.; Chen, X.; Xu, J.; Yang, P.; Ding, C.; Wang, M.; et al. Physical Activity Guidelines for Chinese (2021). Chin. J. Public Health 2022, 38, 129–130. [Google Scholar]
- Dietary Guidelines for Chinese Residents (2022)—People’s Health Publishing House_ Books and Other Publications_ The Official Website of the Chinese Nutrition Society. Available online: https://www.cnsoc.org/bookpublica/0522202019.html (accessed on 17 July 2023).
- Wang, B.; Bi, X.; Ye, H. Growth Hybrid Model: Analyzing the Development Trends of Different Categories of Individuals. Sociol. Stud. 2014, 29, 220–241+246. [Google Scholar]
- von Philipsborn, P.; Stratil, J.M.; Burns, J.; Busert, L.K.; Pfadenhauer, L.M.; Polus, S.; Holzapfel, C.; Hauner, H.; Rehfuess, E. Environmental Interventions to Reduce the Consumption of Sugar-Sweetened Beverages and Their Effects on Health. Cochrane Database Syst. Rev. 2019, 6, CD012292. [Google Scholar] [CrossRef]
- GBD 2016 Risk Factors Collaborators Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet Lond. Engl. 2017, 390, 1345–1422.
- Zhang, C.-Q.; Wong, M.C.-Y.; Zhang, R.; Hamilton, K.; Hagger, M.S. Adolescent Sugar-Sweetened Beverage Consumption: An Extended Health Action Process Approach. Appetite 2019, 141, 104332. [Google Scholar] [CrossRef] [PubMed]
- Bailey, R.L.; Fulgoni, V.L.; Cowan, A.E.; Gaine, P.C. Sources of Added Sugars in Young Children, Adolescents, and Adults with Low and High Intakes of Added Sugars. Nutrients 2018, 10, 102. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, K.; Gunthert, K.; Kaidbey, J.H.; Parr, M.; Visek, A.J.; Sacheck, J.M.; Sylvetsky, A.C. Behavioral Patterns of Sugary Drink Consumption among African American Adolescents: A Pilot and Feasibility Study Using Ecological Momentary Assessment. Nutrients 2023, 15, 2171. [Google Scholar] [CrossRef] [PubMed]
- Institute of Nutrition and Health, Chinese Center for Disease Control and Prevention. Monitoring Report on Student Nutrition and Health Status (2012–2017); People’s Health Publishing: Beijing, China, 2020; ISBN 978-7-117-30395-8. [Google Scholar]
- Bragança, M.L.B.M.; Bogea, E.G.; de Almeida Fonseca Viola, P.C.; Dos Santos Vaz, J.; Confortin, S.C.; Menezes, A.M.B.; Gonçalves, H.; Bettiol, H.; Barbieri, M.A.; Cardoso, V.C.; et al. High Consumption of Sugar-Sweetened Beverages Is Associated with Low Bone Mineral Density in Young People: The Brazilian Birth Cohort Consortium. Nutrients 2023, 15, 324. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Risk Factors Collaborators Global Burden of 87 Risk Factors in 204 Countries and Territories, 1990-2019: A Systematic Analysis for the Global Burden of Disease Study 2019. Lancet Lond. Engl. 2020, 396, 1223–1249. [CrossRef] [PubMed]
- Hu, X.; Zhang, J.; Jia, X.; Jiang, H.; Wang, L.; Wang, H.; Zhang, B.; Wang, Z. Double burden of malnutrition among children and adolescents aged 6-17 years in 15 provinces(autonomous regions, municipalities)of China in 1991–2015. J. Hyg. Res. 2023, 52, 27–32. [Google Scholar]
- Victora, C.G.; Christian, P.; Vidaletti, L.P.; Gatica-Domínguez, G.; Menon, P.; Black, R.E. Revisiting Maternal and Child Undernutrition in Low-Income and Middle-Income Countries: Variable Progress towards an Unfinished Agenda. Lancet Lond. Engl. 2021, 397, 1388–1399. [Google Scholar] [CrossRef]
- Chen, M.X.; Xiong, J.Y.; Zhao, L.; Cheng, G.; Zhang, G.G.; Ding, G. Epidemiological research progress on the relationship between children’s dietary patterns and health. Zhonghua Yu Fang Yi Xue Za Zhi 2022, 56, 139–145. [Google Scholar]
- GB/T 21732-2008; National Standards—National Standard Information Public Service Platform. National Standardization Technical Committees: Beijing, China, 2008. Available online: https://std.samr.gov.cn/gb/search/gbDetailed?id=71F772D76DB5D3A7E05397BE0A0AB82A (accessed on 25 December 2023).
- Pan, F.; Shi, M.; Li, J.; Luan, D.; Liu, S.; Liu, Y.; Liang, D.; Liu, A. Analysis on status of milk beverage consumption among the population in nine provinces of China. Chin. J. Food Hyg. 2020, 32, 316–321. [Google Scholar]
- Luhovyy, B.L.; Akhavan, T.; Anderson, G.H. Whey Proteins in the Regulation of Food Intake and Satiety. J. Am. Coll. Nutr. 2007, 26, 704S–712S. [Google Scholar] [CrossRef]
- Wu, M.; Wang, J.; Shen, X.; Yu, X. Research on Relieving Effect of Botanical Beverage with Ginseng Extract and Pueraria Extract on Physical Fatigue in Mice. Sci. Technol. Cereals Oils Foods 2022, 30, 212–218. [Google Scholar]
- Chiu, S.; Siri-Tarino, P.; Bergeron, N.; Suh, J.H.; Krauss, R.M. A Randomized Study of the Effect of Replacing Sugar-Sweetened Soda by Reduced Fat Milk on Cardiometabolic Health in Male Adolescent Soda Drinkers. Nutrients 2020, 12, 405. [Google Scholar] [CrossRef]
- Van Engelen, M.; Khodabandeh, S.; Akhavan, T.; Agarwal, J.; Gladanac, B.; Bellissimo, N. Effect of Sugars in Solutions on Subjective Appetite and Short-Term Food Intake in 9- to 14-Year-Old Normal Weight Boys. Eur. J. Clin. Nutr. 2014, 68, 773–777. [Google Scholar] [CrossRef]
- Bellissimo, N.; Desantadina, M.V.; Pencharz, P.B.; Berall, G.B.; Thomas, S.G.; Anderson, G.H. A Comparison of Short-Term Appetite and Energy Intakes in Normal Weight and Obese Boys Following Glucose and Whey-Protein Drinks. Int. J. Obes. 2005 2008, 32, 362–371. [Google Scholar] [CrossRef]
- Shomaker, L.B.; Tanofsky-Kraff, M.; Savastano, D.M.; Kozlosky, M.; Columbo, K.M.; Wolkoff, L.E.; Zocca, J.M.; Brady, S.M.; Yanovski, S.Z.; Crocker, M.K.; et al. Puberty and Observed Energy Intake: Boy, Can They Eat! Am. J. Clin. Nutr. 2010, 92, 123–129. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, T.; Zhang, F.; Xu, T. Nutritional Status Analysis of Rural Students Aged Between 6 to 14 of Tujia and Miao Ethnic in Xiangxi. Occup. Health Damage 2021, 36, 310–315. [Google Scholar]
- Mäntyselkä, A.; Jääskeläinen, J.; Eloranta, A.-M.; Väistö, J.; Voutilainen, R.; Ong, K.; Brage, S.; Lakka, T.A.; Lindi, V. Associations of Lifestyle Factors with Serum Dehydroepiandrosterone Sulphate and Insulin-like Growth Factor-1 Concentration in Prepubertal Children. Clin. Endocrinol. 2018, 88, 234–242. [Google Scholar] [CrossRef]
- Utriainen, P.; Laakso, S.; Liimatta, J.; Jääskeläinen, J.; Voutilainen, R. Premature Adrenarche—A Common Condition with Variable Presentation. Horm. Res. Paediatr. 2015, 83, 221–231. [Google Scholar] [CrossRef]
- Shearrer, G.E.; O’Reilly, G.A.; Belcher, B.R.; Daniels, M.J.; Goran, M.I.; Spruijt-Metz, D.; Davis, J.N. The Impact of Sugar-Sweetened Beverage Intake on Hunger and Satiety in Minority Adolescents. Appetite 2016, 97, 43–48. [Google Scholar] [CrossRef] [PubMed]
- Anderson, G.H.; Hunschede, S.; Akilen, R.; Kubant, R. Physiology of Food Intake Control in Children. Adv. Nutr. Bethesda Md 2016, 7, 232S–240S. [Google Scholar] [CrossRef] [PubMed]
- Francis, L.; Riggs, N. Executive Function and Self-Regulatory Influences on Children’s Eating. Pediatr. Food Prefer. Eat. Behav. 2018, 13, 183–206. [Google Scholar]
- Cecil, J.E.; Palmer, C.N.A.; Wrieden, W.; Murrie, I.; Bolton-Smith, C.; Watt, P.; Wallis, D.J.; Hetherington, M.M. Energy Intakes of Children after Preloads: Adjustment, Not Compensation. Am. J. Clin. Nutr. 2005, 82, 302–308. [Google Scholar] [CrossRef]
- Malik, V.S.; Hu, F.B. The Role of Sugar-Sweetened Beverages in the Global Epidemics of Obesity and Chronic Diseases. Nat. Rev. Endocrinol. 2022, 18, 205–218. [Google Scholar] [CrossRef]
- Johnson, R.J.; Sánchez-Lozada, L.G.; Andrews, P.; Lanaspa, M.A. Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Adv. Nutr. Bethesda Md 2017, 8, 412–422. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Z.; Shen, L.; Zang, J. Raising awareness of health risks of added sugar and limiting its excessive intake. J. Environ. Occup. Med. 2023, 40, 737–742. [Google Scholar]
- Mozaffarian, D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation 2016, 133, 187–225. [Google Scholar] [CrossRef]
- Spilling the Beans: How Much Caffeine Is Too Much?|FDA. Available online: https://www.fda.gov/consumers/consumer-updates/spilling-beans-how-much-caffeine-too-much#:~:text=For%20healthy%20adults%2C%20the%20FDA%20has%20cited%20400,how%20fast%20they%20metabolize%20it%20%28break%20it%20down%29. (accessed on 15 January 2024).
- Sassin, J.F.; Parker, D.C.; Mace, J.W.; Gotlin, R.W.; Johnson, L.C.; Rossman, L.G. Human Growth Hormone Release: Relation to Slow-Wave Sleep and Sleep-Walking Cycles. Science 1969, 165, 513–515. [Google Scholar] [CrossRef]
- Jiang, Y.-R.; Spruyt, K.; Chen, W.-J.; Shen, X.-M.; Jiang, F. Somatic Growth of Lean Children: The Potential Role of Sleep. World J. Pediatr. WJP 2014, 10, 245–250. [Google Scholar] [CrossRef]
- Boozari, B.; Saneei, P.; Safavi, S.M. Association between Sleep Duration and Sleep Quality with Sugar and Sugar-Sweetened Beverages Intake among University Students. Sleep Breath. Schlaf Atm. 2021, 25, 649–656. [Google Scholar] [CrossRef]
- Chaput, J.-P.; Tremblay, M.S.; Katzmarzyk, P.T.; Fogelholm, M.; Hu, G.; Maher, C.; Maia, J.; Olds, T.; Onywera, V.; Sarmiento, O.L.; et al. Sleep Patterns and Sugar-Sweetened Beverage Consumption among Children from Around the World. Public Health Nutr. 2018, 21, 2385–2393. [Google Scholar] [CrossRef]
- Nehlig, A. Interindividual Differences in Caffeine Metabolism and Factors Driving Caffeine Consumption. Pharmacol. Rev. 2018, 70, 384–411. [Google Scholar] [CrossRef]
- Soós, R.; Gyebrovszki, Á.; Tóth, Á.; Jeges, S.; Wilhelm, M. Effects of Caffeine and Caffeinated Beverages in Children, Adolescents, and Young Adults: Short Review. Int. J. Environ. Res. Public Health 2021, 18, 12389. [Google Scholar] [CrossRef] [PubMed]
- Duchaine, C.S.; Diorio, C. Association between Intake of Sugar-Sweetened Beverages and Circulating 25-Hydroxyvitamin D Concentration among Premenopausal Women. Nutrients 2014, 6, 2987–2999. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Wen, N. From “Happy Water” to “Social Currency”: A Sociological Analysis of New Tea Beverage Consumption in Generation Z. China Youth Study 2022, 92–100. [Google Scholar] [CrossRef]
Variable | Total | Nutrition Status | p | |
---|---|---|---|---|
Normal | Undernutrition | |||
Age, n (%) | ||||
9–10 | 335 | 268 (80.00) | 67 (20.00) | 0.007 |
11–13 | 909 | 785 (86.36) | 124 (13.64) | |
14–17 | 620 | 540 (87.10) | 80 (12.90) | |
Sex, n (%) | ||||
Male | 938 | 751 (80.06) | 187 (19.94) | <0.001 |
Female | 926 | 842 (90.93) | 84 (9.07) | |
Education of father, n (%) | ||||
High school or below | 1451 | 1244 (85.73) | 207 (14.27) | 0.531 |
Junior college or above | 413 | 349 (84.50) | 64 (15.50) | |
Education of mother, n (%) | ||||
High school or below | 1444 | 1234 (85.46) | 210 (14.54) | <0.001 |
Junior college or above | 420 | 359 (85.48) | 61 (14.52) | |
Boarding, n (%) | ||||
Yes | 803 | 710 (88.42) | 93 (11.58) | 0.002 |
No | 1061 | 883 (83.22) | 178 (16.78) | |
Moderate-to-high-intensity exercise, n (%) | ||||
<3 times/week | 765 | 659 (86.14) | 106 (13.86) | 0.486 |
≥3 times/week | 1099 | 934 (84.99) | 165 (15.01) | |
Screen time, n (%) | ||||
≤2 h/day | 1211 | 1028 (84.89) | 183 (15.11) | 0.339 |
>2 h/day | 653 | 565 (86.52) | 88 (13.48) | |
Dietary preferences, n (%) | ||||
Health group | 1550 | 1324 (85.42) | 226 (14.58) | 0.909 |
Unhealthy group | 314 | 269 (85.67) | 45 (14.33) | |
Nutrition knowledge level, n (%) | ||||
Unqualified | 770 | 634 (82.34) | 136 (17.66) | <0.001 |
Qualified | 1094 | 959 (87.66) | 135 (12.34) |
SSBs Type | Plant Protein Pattern | Dairy-Containing Pattern | Coffee Pattern |
---|---|---|---|
plant protein beverages | 0.739 | ||
fruit and vegetable juices and their beverages | 0.657 | ||
milk tea beverages | 0.580 | ||
tea (and its types) beverages | |||
dairy-containing beverages | 0.757 | ||
plant-based beverages | 0.707 | ||
sports beverages | |||
coffee (and its types) beverages | 0.704 | ||
carbonated beverages | 0.505 |
Classes | AIC | BIC | ABIC | LMR | BLRT | Entropy |
---|---|---|---|---|---|---|
1 | 12,974.372 | 13,018.616 | 12,993.200 | |||
2 | 12,579.228 | 12,673.246 | 12,619.237 | 0.0000 | 0.0000 | 0.675 |
3 | 12,407.414 | 12,551.206 | 12,468.605 | 0.0000 | 0.0000 | 0.545 |
4 | 12,380.110 | 12,573.677 | 12,462.483 | 0.0594 | 0.0000 | 0.668 |
5 | 12,369.820 | 12,613.162 | 12,473.374 | 0.1139 | 0.0000 | 0.700 |
Variable | Plant Protein Pattern | p | Dairy-Containing Pattern | p | Coffee Pattern | p | |||
---|---|---|---|---|---|---|---|---|---|
Q1 | Q4 | Q1 | Q4 | Q1 | Q4 | ||||
Age, n (%) | |||||||||
9–10 | 116 (64.09) | 65 (35.91) | <0.001 | 75 (45.73) | 89 (54.27) | 0.232 | 106 (68.83) | 48 (31.17) | <0.001 |
11–13 | 219 (48.13) | 236 (51.87) | 228 (49.14) | 236 (50.86) | 225 (49.45) | 230 (50.55) | |||
14–17 | 131 (44.26) | 165 (55.74) | 163 (53.62) | 141 (46.38) | 135 (41.80) | 188 (58.20) | |||
Sex, n (%) | |||||||||
Male | 229 (47.31) | 255 (52.69) | 0.088 | 184 (38.10) | 299 (61.90) | <0.001 | 209 (41.80) | 291 (58.20) | <0.001 |
Female | 237 (52.90) | 211 (47.10) | 282 (62.81) | 167 (37.19) | 257 (59.49) | 175 (40.51) | |||
Education of father, n (%) | |||||||||
High school or below | 360 (49.32) | 370 (50.68) | 0.427 | 363 (49.05) | 377 (50.95) | 0.257 | 367 (50.41) | 361 (49.59) | 0.635 |
Junior college or above | 106 (52.48) | 96 (47.52) | 103 (53.65) | 89 (46.35) | 99 (48.53) | 105 (51.47) | |||
Education of mother, n (%) | |||||||||
High school or below | 366 (49.93) | 367 (50.07) | 0.936 | 366 (49.66) | 371 (50.34) | 0.687 | 374 (51.52) | 352 (48.48) | 0.082 |
Junior college or above | 100 (50.25) | 99 (49.75) | 100 (51.28) | 95 (48.72) | 92 (44.66) | 114 (55.34) | |||
Boarding, n (%) | |||||||||
Yes | 158 (40.93) | 228 (59.07) | <0.001 | 200 (50.13) | 199 (49.87) | 0.947 | 207 (47.59) | 228 (52.41) | 0.168 |
No | 308 (56.41) | 238 (43.59) | 266 (49.91) | 267 (50.09) | 259 (52.11) | 238 (47.89) | |||
Moderate-to-high-intensity exercise, n (%) | |||||||||
<3 times/week | 205 (52.84) | 183 (47.16) | 0.144 | 211 (55.97) | 166 (44.03) | 0.003 | 197 (54.87) | 162 (45.13) | 0.018 |
≥3 times/week | 261 (47.98) | 283 (52.02) | 255 (45.95) | 300 (54.05) | 269 (46.95) | 304 (53.05) | |||
Screen time, n (%) | |||||||||
≤2 h/day | 313 (52.17) | 287 (47.83) | 0.075 | 298 (51.83) | 277 (48.17) | 0.157 | 343 (57.07) | 258 (42.93) | <0.001 |
>2 h/day | 153 (46.08) | 179 (53.92) | 168 (47.06) | 189 (52.94) | 123 (37.16) | 208 (62.84) | |||
Dietary preferences, n (%) | |||||||||
Healthy group | 411 (53.80) | 353 (46.20) | <0.001 | 398 (53.00) | 353 (47.00) | <0.001 | 400 (52.63) | 360 (47.37) | 0.001 |
Unhealthy group | 55 (32.74) | 113 (67.26) | 68 (37.57) | 113 (62.43) | 66 (38.37) | 106 (61.63) | |||
Nutrition knowledge level, n (%) | |||||||||
Unqualified | 190 (50.40) | 187 (49.60) | 0.841 | 193 (48.61) | 204 (51.39) | 0.466 | 199 (53.07) | 176 (46.93) | 0.124 |
Qualified | 276 (49.73) | 279 (50.27) | 273 (51.03) | 262 (48.97) | 267 (47.94) | 290 (52.06) |
SSBs Pattern | Normal | Undernutrition | p | Model 1 | p | Model 2 | p |
---|---|---|---|---|---|---|---|
PR (95% CI) | PR (95% CI) | ||||||
Plant Protein Pattern, n (%) | |||||||
Q1 | 404 (86.70) | 62 (13.30) | 0.304 | 1 | 1 | ||
Q2 | 395 (84.76) | 71 (15.24) | 1.145 (0.835, 1.570) | 0.400 | 1.197 (0.878, 1.633) | 0.256 | |
Q3 | 405 (86.91) | 61 (13.09) | 0.984 (0.708, 1.368) | 0.923 | 1.053 (0.760, 1.459) | 0.756 | |
Q4 | 389 (83.48) | 77 (16.52) | 1.145 (0.835, 1.570) | 0.169 | 1.302 (0.958, 1.771) | 0.092 | |
Dairy-Containing Pattern, n (%) | |||||||
Q1 | 417 (89.48) | 49 (10.52) | <0.001 a | 1 | 1 | ||
Q2 | 405 (86.91) | 61 (13.09) | 1.245 (0.874, 1.773) | 0.224 | 1.160 (0.818, 1.644) | 0.406 | |
Q3 | 392 (84.12) | 74 (15.88) | 1.510 (1.078, 2.116) | 0.017 | 1.410 (1.010, 1.968) | 0.043 | |
Q4 | 379 (81.33) | 87 (18.67) | 1.776 (1.282, 2.459) | 0.001 | 1.506 (1.088, 2.083) | 0.014 | |
Coffee Pattern, n (%) | |||||||
Q1 | 400 (85.84) | 66 (14.16) | 0.252 | 1 | 1 | ||
Q2 | 403 (86.48) | 63 (13.52) | 0.955 (0.693, 1.315) | 0.776 | 0.942 (0.688, 1.290) | 0.711 | |
Q3 | 403 (86.48) | 63 (13.52) | 0.955 (0.693, 1.315) | 0.776 | 0.951 (0.693, 1.303) | 0.753 | |
Q4 | 387 (83.05) | 79 (16.95) | 1.197 (0.886, 1.617) | 0.241 | 1.148 (0.849, 1.553) | 0.369 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Luo, S.; Su, Z.; Fu, J.; Ma, J.; Zhong, X.; Zeng, C.; Huang, J.; Zhang, W.; Zhang, Z.; et al. Consumption Patterns of Sugar-Sweetened Beverages and Association with Undernutrition among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Study. Nutrients 2024, 16, 650. https://doi.org/10.3390/nu16050650
Guo J, Luo S, Su Z, Fu J, Ma J, Zhong X, Zeng C, Huang J, Zhang W, Zhang Z, et al. Consumption Patterns of Sugar-Sweetened Beverages and Association with Undernutrition among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Study. Nutrients. 2024; 16(5):650. https://doi.org/10.3390/nu16050650
Chicago/Turabian StyleGuo, Jiaying, Shiyun Luo, Zheng Su, Jinhan Fu, Jie Ma, Xuexin Zhong, Chunzi Zeng, Jie Huang, Weiwei Zhang, Zhoubin Zhang, and et al. 2024. "Consumption Patterns of Sugar-Sweetened Beverages and Association with Undernutrition among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Study" Nutrients 16, no. 5: 650. https://doi.org/10.3390/nu16050650
APA StyleGuo, J., Luo, S., Su, Z., Fu, J., Ma, J., Zhong, X., Zeng, C., Huang, J., Zhang, W., Zhang, Z., Zhu, H., & Li, Y. (2024). Consumption Patterns of Sugar-Sweetened Beverages and Association with Undernutrition among Children Aged 9–17 Years in Guangzhou, China: A Cross-Sectional Study. Nutrients, 16(5), 650. https://doi.org/10.3390/nu16050650