Impacts of Habit Formation Effect on Food Consumption and Nutrient Intake in Rural China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Dynamic AIDS Model
2.2.1. Model Specification
2.2.2. Censoring Problem
2.2.3. Elasticity
2.3. Data and Variables
2.3.1. Data Collection
2.3.2. Major Variables and Statistical Analysis
3. Results
3.1. Model Estimation Results
3.2. Elasticity Estimation Results
3.3. Robustness Check
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Grains | Legumes | Vegetables | Fruits | Pork | Beef and Mutton | Poultry | Aquatic Products | Eggs | Edible Oils | |
---|---|---|---|---|---|---|---|---|---|---|
0.008 | ||||||||||
(0.028) | ||||||||||
0.000 | 0.002 | |||||||||
(0.019) | (0.013) | |||||||||
−0.002 | 0.003 | 0.003 | ||||||||
(0.007) | (0.005) | (0.003) | ||||||||
−0.002 | 0.000 | 0.000 | 0.003 | |||||||
(0.002) | (0.001) | (0.002) | (0.002) | |||||||
−0.001 | −0.004 | −0.002 | 0.001 | 0.022 | ||||||
(0.042) | (0.030) | (0.011) | (0.005) | (0.066) | ||||||
0.004 | 0.000 | 0.001 | 0.002 | −0.016 | 0.015 | |||||
(0.055) | (0.039) | (0.013) | (0.003) | (0.084) | (0.111) | |||||
−0.003 | −0.003 | −0.004 | 0.000 | 0.004 | −0.002 | 0.001 | ||||
(0.025) | (0.018) | (0.007) | (0.003) | (0.039) | (0.051) | (0.023) | ||||
−0.008 | −0.003 | 0.003 | −0.001 | 0.001 | −0.005 | −0.001 | 0.006 | |||
(0.010) | (0.007) | (0.003) | (0.002) | (0.016) | (0.020) | (0.010) | (0.005) | |||
0.002 | 0.000 | −0.003 | 0.000 | −0.005 | 0.000 | −0.003 | 0.000 | 0.004 | ||
(0.014) | (0.010) | (0.004) | (0.001) | (0.022) | (0.029) | (0.014) | (0.006) | (0.008) | ||
0.001 | 0.007 | 0.000 | −0.002 | 0.002 | 0.003 | 0.012 | 0.009 | 0.004 | −0.036 | |
(0.115) | (0.081) | (0.027) | (0.005) | (0.175) | (0.233) | (0.107) | (0.043) | (0.061) | (0.489) | |
0.006 | 0.004 | 0.001 | 0.000 | −0.009 | 0.012 | 0.006 | 0.002 | 0.003 | −0.026 | |
(0.006) | (0.003) | (0.003) | (0.003) | (0.010) | (0.008) | (0.007) | (0.003) | (0.003) | (0.021) | |
Size | 0.001 | −0.001 | 0.000 | 0.000 | 0.000 | −0.002 | 0.000 | 0.000 | 0.000 | 0.002 |
(0.002) | (0.000) | (0.001) | (0.001) | (0.002) | (0.002) | (0.001) | (0.001) | (0.001) | (0.006) | |
Gender | −0.002 | 0.000 | 0.002 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | 0.001 | −0.004 |
(0.012) | (0.002) | (0.005) | (0.003) | (0.010) | (0.013) | (0.005) | (0.003) | (0.003) | (0.030) | |
Age | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
(0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.000) | (0.001) | |
Education | −0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
(0.001) | (0.000) | (0.001) | (0.000) | (0.001) | (0.001) | (0.001) | (0.000) | (0.000) | (0.003) | |
Proportion of Working Population | −0.001 | 0.000 | 0.002 | 0.001 | 0.006 | −0.006 | 0.000 | −0.002 | −0.002 | 0.001 |
(0.010) | (0.002) | (0.005) | (0.003) | (0.008) | (0.011) | (0.004) | (0.003) | (0.002) | (0.026) | |
Constant | −0.043 | −0.043 | 0.005 | −0.032 | 0.286 | −0.228 | 0.031 | 0.001 | −0.005 | 1.028 |
(0.492) | (0.355) | (0.123) | (0.045) | (0.752) | (0.998) | (0.478) | (0.186) | (0.266) | (2.120) | |
Region | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Time | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
References
- Yu, X.H. Meat consumption in China and its impact on international food security: Status quo, trends, and policies. J. Integr. Agric. 2015, 14, 989–994. [Google Scholar] [CrossRef]
- Zheng, Z.; Henneberry, S.R.; Zhao, Y.; Gao, Y. Predicting the changes in the structure of food demand in China. Agribusiness 2019, 35, 301–328. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, Y.; Han, X.; Wen, J.; Li, G.; Yang, Y.; Liu, Z. How Does Income Heterogeneity Affect Future Perspectives on Food Consumption? Empirical Evidence from Urban China. Foods 2022, 11, 2597. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wang, Z.; Wang, H.; Zhao, L.; Jiang, H.; Zhang, B.; Ding, G. Nutrition transition and related health challenges over decades in China. Eur. J. Clin. Nutr. 2021, 75, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A. Food in the Anthropocene: The EAT–Lancet Commission on healthy diets from sustainable food systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef] [PubMed]
- National Health Commission of the People’s Republic of China, Bureau of Disease Prevention and Control. Report on the Nutritional Status and Chronic Diseases of Chinese Residents (2020); People’s Medical Publishing House: Beijing, China, 2020.
- Wang, L.; Zhou, B.; Zhao, Z.; Yang, L.; Zhang, M.; Jiang, Y.; Li, Y.; Zhou, M.; Wang, L.; Huang, Z. Body-mass index and obesity in urban and rural China: Findings from consecutive nationally representative surveys during 2004–18. Lancet 2021, 398, 53–63. [Google Scholar] [CrossRef] [PubMed]
- Dubois, P.; Griffith, R.; Nevo, A. Do prices and attributes explain international differences in food purchases? Am. Econ. Rev. 2014, 104, 832–867. [Google Scholar] [CrossRef]
- Naik, N.Y.; Moore, M.J. Habit formation and intertemporal substitution in individual food consumption. Rev. Econ. Stat. 1996, 78, 321–328. [Google Scholar] [CrossRef]
- Vu, L.; Glewwe, P. Impacts of rising food prices on poverty and welfare in Vietnam. J. Agric. Resour. Econ. 2011, 36, 14–27. [Google Scholar]
- Zhai, T.; Long, W.; Si, W. The evolution of habit formation effect on sugar consumption of urban residents in China. China Agric. Econ. Rev. 2021, 13, 548–568. [Google Scholar] [CrossRef]
- Zhen, C.; Wohlgenant, M.K.; Karns, S.; Kaufman, P. Habit formation and demand for sugar-sweetened beverages. Am. J. Agric. Econ. 2011, 93, 175–193. [Google Scholar] [CrossRef]
- Duesenberry, J.S. Income, Saving and the Theory of Consumer Behavior; Harvard University Press: London, UK, 1949. [Google Scholar]
- Green, R.D.; Hassan, Z.A.; Johnson, S.R. Testing for habit formation, autocorrelation and theoretical restrictions in linear expenditure systems. South. Econ. J. 1980, 47, 433–443. [Google Scholar] [CrossRef]
- Hayashi, F. The permanent income hypothesis and consumption durability: Analysis based on Japanese panel data. Q. J. Econ. 1985, 100, 1083–1113. [Google Scholar] [CrossRef]
- Holt, M.T.; Goodwin, B.K. Generalized habit formation in an inverse almost ideal demand system: An application to meat expenditures in the US. Empir. Econ. 1997, 22, 293–320. [Google Scholar] [CrossRef]
- Muellbauer, J.; Pashardes, P. Tests of dynamic specification and homogeneity in a demand system. Adv. Stud. Theor. Appl. Econom. 1992, 27, 55. [Google Scholar]
- Arnade, C.; Gopinath, M.; Pick, D. Brand inertia in US household cheese consumption. Am. J. Agric. Econ. 2008, 90, 813–826. [Google Scholar] [CrossRef]
- Zhou, D.; Yu, X.H.; Herzfeld, T. Dynamic food demand in urban China. China Agric. Econ. Rev. 2015, 7, 27–44. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhen, C.; Nonnemaker, J.; Dench, D. Advertising, habit formation, and US tobacco product demand. Am. J. Agric. Econ. 2016, 98, 1038–1054. [Google Scholar] [CrossRef]
- Lin, P.-Y.; Wood, W.; Monterosso, J. Healthy eating habits protect against temptations. Appetite 2016, 103, 432–440. [Google Scholar] [CrossRef]
- Salvy, S.-J.; Dutton, G.R.; Borgatti, A.; Kim, Y.-I. Habit formation intervention to prevent obesity in low-income preschoolers and their mothers: A randomized controlled trial protocol. Contemp. Clin. Trials 2018, 70, 88–98. [Google Scholar] [CrossRef]
- Havranek, T.; Rusnak, M.; Sokolova, A. Habit formation in consumption: A meta-analysis. Eur. Econ. Rev. 2017, 95, 142–167. [Google Scholar] [CrossRef]
- Spinnewyn, F. Rational habit formation. Eur. Econ. Rev. 1981, 15, 91–109. [Google Scholar] [CrossRef]
- Deaton, A.; Muellbauer, J. An Almost Ideal Demand System. Am. Econ. Rev. 1980, 70, 312–326. [Google Scholar]
- Alessie, R.; Lusardi, A. Consumption, saving and habit formation. Econ. Lett. 1997, 55, 103–108. [Google Scholar] [CrossRef]
- Deaton, A. Understanding Consumption; Oxford University Press: Oxford, UK, 1992. [Google Scholar]
- Fuhrer, J.C. Habit formation in consumption and its implications for monetary-policy models. Am. Econ. Rev. 2000, 90, 367–390. [Google Scholar] [CrossRef]
- Banks, J.; Blundell, R.; Lewbel, A. Quadratic Engel curves and consumer demand. Rev. Econ. Stat. 1997, 79, 527–539. [Google Scholar] [CrossRef]
- Han, X.; Chen, Y. Food consumption of outgoing rural migrant workers in urban area of China: A QUAIDS approach. China Agric. Econ. Rev. 2016, 8. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Bozic, M. Price endogeneity and food demand in urban China. J. Agric. Econ. 2017, 68, 386–406. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Introductory Econometrics: A Modern Approach, 6th ed.; Cengage Learning: Boston, MA, USA, 2015. [Google Scholar]
- Zhu, W.B.; Chen, Y.F.; Zhao, J.; Wu, B.B. Impacts of household income on beef at-home consumption: Evidence from urban China. J. Integr. Agric. 2021, 20, 1701–1715. [Google Scholar] [CrossRef]
- Zhu, W.B.; Chen, Y.F.; Zheng, Z.H.; Zhao, J.; Li, G.J.; Si, W. Impact of changing income distribution on fluid milk consumption in urban China. China Agric. Econ. Rev. 2020, 12, 623–645. [Google Scholar] [CrossRef]
- Bai, J.F.; Seale, J.L.; Wahl, T.I. Meat demand in China: To include or not to include meat away from home? Aust. J. Agric. Resour. Econ. 2020, 64, 150–170. [Google Scholar] [CrossRef]
- Li, L.; Zhai, S.X.; Bai, J.F. The dynamic impact of income and income distribution on food consumption among adults in rural China. J. Integr. Agric. 2021, 20, 330–342. [Google Scholar] [CrossRef]
- Shonkwiler, J.S.; Yen, S.T. Two-step estimation of a censored system of equations. Am. J. Agric. Econ. 1999, 81, 972–982. [Google Scholar] [CrossRef]
- Leser, C.E.V. Forms of Engel functions. Econom. J. Econom. Soc. 1963, 31, 694–703. [Google Scholar] [CrossRef]
- Working, H. Statistical laws of family expenditure. J. Am. Stat. Assoc. 1943, 38, 43–56. [Google Scholar] [CrossRef]
- Huang, K.S.; Gale, F. Food demand in China: Income, quality, and nutrient effects. China Agric. Econ. Rev. 2009, 1, 395–409. [Google Scholar] [CrossRef]
- Zheng, Z.H.; Henneberry, S.R. Household Food Demand by Income Category: Evidence from Household Survey Data in an Urban Chinese Province. Agribusiness 2011, 27, 99–113. [Google Scholar] [CrossRef]
- Huang, K.S. Nutrient elasticities in a complete food demand system. Am. J. Agric. Econ. 1996, 78, 21–29. [Google Scholar] [CrossRef]
- Han, X.; Guo, Y.; Xue, P.; Wang, X.; Zhu, W. Impacts of COVID-19 on nutritional intake in rural China: Panel data evidence. Nutrients 2022, 14, 2704. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Xue, P.; Zhang, N. Impact of grain subsidy reform on the land Use of smallholder farms: Evidence from Huang-Huai-Hai Plain in China. Land 2021, 10, 929. [Google Scholar] [CrossRef]
- Han, X.; Xue, P.; Zhu, W.; Wang, X.; Li, G. Shrinking Working-Age Population and Food Demand: Evidence from Rural China. Int. J. Environ. Res. Public Health 2022, 19, 14578. [Google Scholar] [CrossRef] [PubMed]
- Xue, P.; Han, X.; Elahi, E.; Zhao, Y.; Wang, X. Internet access and nutritional intake: Evidence from rural China. Nutrients 2021, 13, 2015. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.H.; Henneberry, S.R. The Impact of Changes in Income Distribution on Current and Future Food Demand in Urban China. J. Agric. Resour. Econ. 2010, 35, 51–71. [Google Scholar]
- Hovhannisyan, V.; Gould, B.W. Quantifying the structure of food demand in China: An econometric approach. Agric. Econ. 2011, 42, 1–18. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Mendis, S.; Bastian, C. An econometric analysis of demand for food quantity and quality in urban China. Agric. Econ. 2019, 50, 3–13. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Shanoyan, A. An Empirical Analysis of the Welfare Consequences of Rising Food Prices in Urban China: The Easi Approach. Appl. Econ. Perspect. Policy 2020, 42, 796–814. [Google Scholar] [CrossRef]
- Zhen, C.; Finkelstein, E.A.; Nonnemaker, J.M.; Karns, S.A.; Todd, J.E. Predicting the Effects of Sugar-Sweetened Beverage Taxes on Food and Beverage Demand in a Large Demand System. Am. J. Agric. Econ. 2014, 96, 1–25. [Google Scholar] [CrossRef]
- Wansink, B.; Chandon, P. Can “low-fat” nutrition labels lead to obesity? J. Mark. Res. 2006, 43, 605–617. [Google Scholar] [CrossRef]
Food Items | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2012–2018 Growth (%) |
---|---|---|---|---|---|---|---|---|
Grains | 272.5 | 258.8 | 254.8 | 239.1 | 231.3 | 230.6 | 224.5 | −17.6 |
Legumes | 17.5 | 20.0 | 21.6 | 21.9 | 21.7 | 21.1 | 21.7 | 24.2 |
Vegetables | 124.3 | 132.7 | 140.2 | 137.3 | 138.9 | 135.8 | 138.7 | 11.5 |
Fruits | 49.9 | 49.6 | 49.8 | 53.2 | 52.2 | 52.4 | 51.1 | 2.3 |
Pork | 42.2 | 45.4 | 45.6 | 45.5 | 44.1 | 44.5 | 44.7 | 5.8 |
Beef and mutton | 3.5 | 4.3 | 5.0 | 4.8 | 5.2 | 5.3 | 5.5 | 54.7 |
Poultry | 11.4 | 10.6 | 10.9 | 10.5 | 10.5 | 9.7 | 9.3 | −18.9 |
Aquatic products | 14.6 | 14.3 | 14.7 | 14.6 | 15.2 | 14.7 | 15.5 | 5.8 |
Eggs | 23.0 | 23.8 | 23.5 | 24.1 | 25.3 | 25.5 | 26.3 | 14.3 |
Edible oils | 37.6 | 37.7 | 38.7 | 39.4 | 39.3 | 38.3 | 37.1 | −1.3 |
Variables | Unit | Mean | S.D. |
---|---|---|---|
Annual real income of the household | CNY | 45,015.98 | 46,364.12 |
Annual real expenditure on food purchases by the household | CNY | 4660.04 | 2604.11 |
Actual price of grains | CNY/kg | 5.71 | 3.19 |
Actual price of legumes | CNY/kg | 8.56 | 4.31 |
Actual price of vegetables | CNY/kg | 5.29 | 3.47 |
Actual price of fruits | CNY/kg | 6.99 | 4.48 |
Actual price of pork | CNY/kg | 22.96 | 6.35 |
Actual price of beef and mutton | CNY/kg | 66.45 | 29.72 |
Actual price of poultry | CNY/kg | 19.41 | 8.41 |
Actual price of aquatic products | CNY/kg | 16.10 | 5.58 |
Actual price of eggs | CNY/kg | 11.17 | 4.65 |
Actual price of edible oil | CNY/kg | 14.52 | 5.63 |
Number of household members | persons/household | 3.57 | 1.41 |
Gender of the head of household, male = 1, female = 0 | / | 0.94 | 0.23 |
Actual age of the head of household | / | 51.08 | 10.17 |
Number of years of education of the head of the household | / | 8.03 | 2.29 |
Proportion of working population to the number of household members | % | 67.00 | 31.16 |
Sample is in the eastern region = 1, otherwise = 0 | / | 0.53 | 0.50 |
Sample is in the central region = 1, otherwise = 0 | / | 0.33 | 0.47 |
Sample is in the western region = 1, otherwise = 0 | / | 0.13 | 0.34 |
Actual year of the survey | / | 2015.00 | 2.00 |
Variables | Grains | Legumes | Vegetables | Fruits | Pork | Beef and Mutton | Poultry | Aquatic Products | Eggs | Edible Oils |
---|---|---|---|---|---|---|---|---|---|---|
0.100 *** | 0.065 *** | 0.095 *** | 0.063 *** | 0.026 * | 0.007 | 0.016 | 0.058 *** | 0.051 *** | 0.103 *** | |
(0.013) | (0.015) | (0.013) | (0.015) | (0.015) | (0.016) | (0.019) | (0.015) | (0.015) | (0.013) | |
Income and price | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Demographics | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Region | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Time | YES | YES | YES | YES | YES | YES | YES | YES | YES | YES |
Observations | 3882 | 3882 | 3882 | 3882 | 3882 | 3882 | 3882 | 3882 | 3882 | 3882 |
Food Items | Low-Income Group | Middle–High-Income Group | Youth Group | Middle-Aged and Elderly Group | ||||
---|---|---|---|---|---|---|---|---|
Habit Formation Parameters | S.D. | Habit Formation Parameters | S.D. | Habit Formation Parameters | S.D. | Habit Formation Parameters | S.D. | |
Grains | 0.096 *** | (0.018) | 0.115 *** | (0.022) | 0.168 *** | (0.018) | 0.096 *** | (0.017) |
Legumes | 0.100 *** | (0.030) | 0.038 | (0.024) | 0.072 *** | (0.023) | 0.078 *** | (0.019) |
Vegetables | 0.110 *** | (0.018) | 0.093 *** | (0.021) | 0.152 *** | (0.020) | 0.091 *** | (0.017) |
Fruits | 0.091 *** | (0.020) | 0.046 ** | (0.021) | 0.104 *** | (0.022) | 0.059 *** | (0.019) |
Pork | 0.036 * | (0.020) | 0.019 | (0.024) | 0.045 * | (0.025) | 0.029 | (0.019) |
Beef and mutton | −0.001 | (0.021) | 0.006 | (0.025) | 0.001 | (0.024) | 0.008 | (0.023) |
Poultry | 0.006 | (0.021) | 0.013 | (0.051) | 0.040 | (0.025) | 0.011 | (0.024) |
Aquatic products | 0.059 *** | (0.021) | 0.061 *** | (0.023) | 0.060 ** | (0.024) | 0.069 *** | (0.021) |
Eggs | 0.059 *** | (0.019) | 0.036 | (0.024) | 0.089 *** | (0.022) | 0.045 ** | (0.020) |
Edible oils | 0.141 *** | (0.016) | 0.102 *** | (0.020) | 0.163 *** | (0.020) | 0.112 *** | (0.017) |
Observations | 2196 | 1686 | 1554 | 2328 |
Food Items | Considering the Habit Formation Effect | Not Considering the Habit Formation Effect | ||
---|---|---|---|---|
Income Elasticity | S.D. | Income Elasticity | S.D. | |
Grains | 0.073 ** | (0.037) | 0.046 ** | (0.021) |
Legumes | 0.081 ** | (0.041) | 0.073 ** | (0.033) |
Vegetables | 0.073 ** | (0.037) | 0.089 ** | (0.040) |
Fruits | 0.073 ** | (0.037) | 0.074 ** | (0.034) |
Pork | 0.068 ** | (0.034) | 0.092 ** | (0.042) |
Beef and mutton | 0.071 ** | (0.036) | 0.329 ** | (0.149) |
Poultry | 0.074 * | (0.038) | 0.112 ** | (0.051) |
Aquatic products | 0.076 ** | (0.038) | 0.105 ** | (0.048) |
Eggs | 0.072 ** | (0.036) | 0.092 ** | (0.042) |
Edible oils | 0.089 * | (0.047) | 0.062 ** | (0.028) |
Nutrient Items | Considering the Habit Formation Effect | Not Considering the Habit Formation Effect | ||
---|---|---|---|---|
Income Elasticity | S.D. | Income Elasticity | S.D. | |
Energy | 0.077 ** | (0.039) | 0.062 ** | (0.028) |
Protein | 0.073 ** | (0.037) | 0.074 ** | (0.034) |
Fat | 0.081 ** | (0.041) | 0.073 ** | (0.033) |
Carbohydrate | 0.073 ** | (0.037) | 0.059 ** | (0.027) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, J.; Zhu, W.; Han, X.; Wang, X. Impacts of Habit Formation Effect on Food Consumption and Nutrient Intake in Rural China. Nutrients 2024, 16, 505. https://doi.org/10.3390/nu16040505
Wen J, Zhu W, Han X, Wang X. Impacts of Habit Formation Effect on Food Consumption and Nutrient Intake in Rural China. Nutrients. 2024; 16(4):505. https://doi.org/10.3390/nu16040505
Chicago/Turabian StyleWen, Jinshang, Wenbo Zhu, Xinru Han, and Xiudong Wang. 2024. "Impacts of Habit Formation Effect on Food Consumption and Nutrient Intake in Rural China" Nutrients 16, no. 4: 505. https://doi.org/10.3390/nu16040505
APA StyleWen, J., Zhu, W., Han, X., & Wang, X. (2024). Impacts of Habit Formation Effect on Food Consumption and Nutrient Intake in Rural China. Nutrients, 16(4), 505. https://doi.org/10.3390/nu16040505