Design of a Remote Time-Restricted Eating and Mindfulness Intervention to Reduce Risk Factors Associated with Early-Onset Colorectal Cancer Development among Young Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting and Recruitment
2.3. Participants
2.3.1. Screening
2.3.2. Inclusion Criteria
2.3.3. Exclusion Criteria
2.3.4. Randomization
2.4. Interventions
2.4.1. Time-Restricted Eating (TRE)
2.4.2. Mindfulness
2.4.3. TRE and Mindfulness
2.4.4. Control
2.5. Intervention Fidelity
2.6. Data Collection and Measures
2.6.1. Body Weight and Body Composition
2.6.2. Dietary Intake
2.6.3. Physical Activity and Sleep Behavior
2.6.4. Circulating Biomarkers
2.6.5. Blood Pressure, Heart Rate, and Heart Rate Variability
2.6.6. Stool Collection
2.6.7. Microbial Amplicon Sequencing and Bioinformatics Processing
2.6.8. Colonic Inflammation
2.6.9. Hair Cortisol (HCORT)
2.6.10. Adverse Event Monitoring
2.6.11. Covariates That Could Influence Adherence and Intervention Effects
2.6.12. Power and Sample Size
2.6.13. Data Management
2.7. Data Analytic Plan
2.8. Design Considerations
2.8.1. Participant Retention
2.8.2. Participant Safety
2.8.3. Identified A Priori Limitations
2.8.4. Identified A Priori Innovations
3. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sinicrope, F.A. Increasing Incidence of Early-Onset Colorectal Cancer. N. Engl. J. Med. 2022, 386, 1547–1558. [Google Scholar] [CrossRef]
- Petrick, J.L.; Barber, L.E.; Warren Andersen, S.; Florio, A.A.; Palmer, J.R.; Rosenberg, L. Racial Disparities and Sex Differences in Early- and Late-Onset Colorectal Cancer Incidence, 2001–2018. Front. Oncol. 2021, 11, 734998. [Google Scholar] [CrossRef] [PubMed]
- Boland, C.R.; Goel, A.; Patel, S.G. The genetic and epigenetic landscape of early-onset colorectal cancer. Color. Cancer 2020, 9, CRC23. [Google Scholar] [CrossRef]
- White, A.; Ironmonger, L.; Steele, R.J.C.; Ormiston-Smith, N.; Crawford, C.; Seims, A. A review of sex-related differences in colorectal cancer incidence, screening uptake, routes to diagnosis, cancer stage and survival in the UK. BMC Cancer 2018, 18, 906. [Google Scholar] [CrossRef] [PubMed]
- Rebersek, M. Gut microbiome and its role in colorectal cancer. BMC Cancer 2021, 21, 1325. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Boakye, D.; Chen, X.; Jansen, L.; Chang-Claude, J.; Hoffmeister, M.; Brenner, H. Associations of Body Mass Index at Different Ages with Early-Onset Colorectal Cancer. Gastroenterology 2022, 162, 1088–1097.e3. [Google Scholar] [CrossRef] [PubMed]
- Adult Obesity Facts. 2022. Available online: https://www.cdc.gov/obesity/data/adult.html#print (accessed on 16 November 2023).
- Stone, T.W.; McPherson, M.; Gail Darlington, L. Obesity and Cancer: Existing and New Hypotheses for a Causal Connection. EBioMedicine 2018, 30, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, S.; Khess, C.R. Prevalence of depression, anxiety, and stress among young male adults in India: A dimensional and categorical diagnoses-based study. J. Nerv. Ment. Dis. 2010, 198, 901–904. [Google Scholar] [CrossRef] [PubMed]
- Fawzy, M.; Hamed, S.A. Prevalence of psychological stress, depression and anxiety among medical students in Egypt. Psychiatry Res. 2017, 255, 186–194. [Google Scholar] [CrossRef]
- Mravec, B.; Tibensky, M.; Horvathova, L. Stress and cancer. Part I: Mechanisms mediating the effect of stressors on cancer. J. Neuroimmunol. 2020, 346, 577311. [Google Scholar] [CrossRef]
- Coelho, M.; Moz, M.; Correia, G.; Teixeira, A.; Medeiros, R.; Ribeiro, L. Antiproliferative effects of β-blockers on human colorectal cancer cells. Oncol. Rep. 2015, 33, 2513–2520. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D. Hallmarks of Cancer: New Dimensions. Cancer Discov. 2022, 12, 31–46. [Google Scholar] [CrossRef]
- Eckerling, A.; Ricon-Becker, I.; Sorski, L.; Sandbank, E.; Ben-Eliyahu, S. Stress and cancer: Mechanisms, significance and future directions. Nat. Rev. Cancer 2021, 21, 767–785. [Google Scholar] [CrossRef]
- Feller, L.; Khammissa, R.A.G.; Ballyram, R.; Chandran, R.; Lemmer, J. Chronic Psychosocial Stress in Relation to Cancer. Middle East. J. Cancer 2019, 10, 1–8. [Google Scholar] [CrossRef]
- Yan, Y.-X.; Xiao, H.-B.; Wang, S.-S.; Zhao, J.; He, Y.; Wang, W.; Dong, J. Investigation of the Relationship Between Chronic Stress and Insulin Resistance in a Chinese Population. J. Epidemiol. 2016, 26, 355–360. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Liu, D.; Cline, M.A.; Gilbert, E.R. Chronic stress, epigenetics, and adipose tissue metabolism in the obese state. Nutr. Metab. 2020, 17, 88. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Z.; Wang, Y.-X.; Jiang, C.-L. Inflammation: The Common Pathway of Stress-Related Diseases. Front. Hum. Neurosci. 2017, 11, 316. [Google Scholar] [CrossRef]
- Foster, J.A.; Rinaman, L.; Cryan, J.F. Stress & the gut-brain axis: Regulation by the microbiome. Neurobiol. Stress 2017, 7, 124–136. [Google Scholar] [CrossRef]
- Cani, P.D.; Osto, M.; Geurts, L.; Everard, A. Involvement of gut microbiota in the development of low-grade inflammation and type 2 diabetes associated with obesity. Gut Microbes 2012, 3, 279–288. [Google Scholar] [CrossRef]
- Wells, J.M.; Brummer, R.J.; Derrien, M.; MacDonald, T.T.; Troost, F.; Cani, P.D.; Theodorou, V.; Dekker, J.; Méheust, A.; de Vos, W.M.; et al. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 2017, 312, G171–G193. [Google Scholar] [CrossRef]
- Song, M.; Chan, A.T.; Sun, J. Influence of the Gut Microbiome, Diet, and Environment on Risk of Colorectal Cancer. Gastroenterology 2020, 158, 322–340. [Google Scholar] [CrossRef]
- Gabel, K.; Hoddy, K.K.; Haggerty, N.; Song, J.; Kroeger, C.M.; Trepanowski, J.F.; Panda, S.; Varady, K.A. Effects of 8-hour time restricted feeding on body weight and metabolic disease risk factors in obese adults: A pilot study. Nutr. Healthy Aging 2018, 4, 345–353. [Google Scholar] [CrossRef] [PubMed]
- Moro, T.; Tinsley, G.; Bianco, A.; Marcolin, G.; Pacelli, Q.F.; Battaglia, G.; Palma, A.; Gentil, P.; Neri, M.; Paoli, A. Effects of eight weeks of time-restricted feeding (16/8) on basal metabolism, maximal strength, body composition, inflammation, and cardiovascular risk factors in resistance-trained males. J. Transl. Med. 2016, 14, 290. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, H.; Beyl, R.A.; Della Manna, D.L.; Yang, E.S.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves 24-Hour Glucose Levels and Affects Markers of the Circadian Clock, Aging, and Autophagy in Humans. Nutrients 2019, 11, 1234. [Google Scholar] [CrossRef] [PubMed]
- Sutton, E.F.; Beyl, R.; Early, K.S.; Cefalu, W.T.; Ravussin, E.; Peterson, C.M. Early Time-Restricted Feeding Improves Insulin Sensitivity, Blood Pressure, and Oxidative Stress Even without Weight Loss in Men with Prediabetes. Cell Metab. 2018, 27, 1212–1221.e1213. [Google Scholar] [CrossRef] [PubMed]
- Nehra, D.K.; Sharma, N.; Kumar, P.; Nehra, S. Mindfulness Based Stress Reduction: An Overview. In Mental Health Risk and Resources; Global Vision Publishing House: Delhi, India, 2013; pp. 197–231. [Google Scholar]
- Zhao, L.; Xu, J.; Liang, F.; Li, A.; Zhang, Y.; Sun, J. Effect of Chronic Psychological Stress on Liver Metastasis of Colon Cancer in Mice. PLoS ONE 2015, 10, e0139978. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, M.; Sukartini, N.; Nursyirwan, S.A.; Pribadi, R.R.; Maulahela, H.; Utari, A.P.; Muzellina, V.N.; Wiraatmadja, A.; Renaldi, K. Gut Microbiota Profiles in Early- and Late-Onset Colorectal Cancer: A Potential Diagnostic Biomarker in the Future. Digestion 2021, 102, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Fulwiler, C.; Brewer, J.A.; Sinnott, S.; Loucks, E.B. Mindfulness-Based Interventions for Weight Loss and CVD Risk Management. Curr. Cardiovasc. Risk Rep. 2015, 9, 46. [Google Scholar] [CrossRef]
- Xia, T.; Lopes, S.; Chen, L.; Roth, R.; Zinzow, H.; Jones, K.; Zhang, L.; Shi, L.; Jindal, M. A feasibility study on low-dose mindfulness-based stress reduction intervention among prediabetes and diabetes patients. Complement. Ther. Med. 2022, 65, 102810. [Google Scholar] [CrossRef]
- Bower, J.E.; Crosswell, A.D.; Stanton, A.L.; Crespi, C.M.; Winston, D.; Arevalo, J.; Ma, J.; Cole, S.W.; Ganz, P.A. Mindfulness meditation for younger breast cancer survivors: A randomized controlled trial. Cancer 2015, 121, 1231–1240. [Google Scholar] [CrossRef]
- Ponte Márquez, P.H.; Feliu-Soler, A.; Solé-Villa, M.J.; Matas-Pericas, L.; Filella-Agullo, D.; Ruiz-Herrerias, M.; Soler-Ribaudi, J.; Roca-Cusachs Coll, A.; Arroyo-Díaz, J.A. Benefits of mindfulness meditation in reducing blood pressure and stress in patients with arterial hypertension. J. Hum. Hypertens. 2019, 33, 237–247. [Google Scholar] [CrossRef]
- Sanogo, F.; Xu, K.; Cortessis, V.K.; Weigensberg, M.J.; Watanabe, R.M. Mind- and Body-Based Interventions Improve Glycemic Control in Patients with Type 2 Diabetes: A Systematic Review and Meta-Analysis. J. Integr. Complement. Med. 2023, 9, 69–79. [Google Scholar] [CrossRef]
- Yang, J.; Tang, S.; Zhou, W. Effect of Mindfulness-Based Stress Reduction Therapy on Work Stress and Mental Health of Psychiatric Nurses. Psychiatr. Danub. 2018, 30, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Cherkin, D.C.; Sherman, K.J.; Balderson, B.H.; Cook, A.J.; Anderson, M.L.; Hawkes, R.J.; Hansen, K.E.; Turner, J.A. Effect of Mindfulness-Based Stress Reduction vs Cognitive Behavioral Therapy or Usual Care on Back Pain and Functional Limitations in Adults With Chronic Low Back Pain: A Randomized Clinical Trial. JAMA 2016, 315, 1240–1249. [Google Scholar] [CrossRef]
- Pascoe, M.C.; Thompson, D.R.; Jenkins, Z.M.; Ski, C.F. Mindfulness mediates the physiological markers of stress: Systematic review and meta-analysis. J. Psychiatr. Res. 2017, 95, 156–178. [Google Scholar] [CrossRef]
- Li, H.; Boakye, D.; Chen, X.; Hoffmeister, M.; Brenner, H. Association of Body Mass Index With Risk of Early-Onset Colorectal Cancer: Systematic Review and Meta-Analysis. Am. J. Gastroenterol. 2021, 116, 2173–2183. [Google Scholar] [CrossRef]
- Ljubičić, M.; Matek Sarić, M.; Klarin, I.; Rumbak, I.; Colić Barić, I.; Ranilović, J.; Dželalija, B.; Sarić, A.; Nakić, D.; Djekic, I.; et al. Emotions and Food Consumption: Emotional Eating Behavior in a European Population. Foods 2023, 12, 872. [Google Scholar] [CrossRef] [PubMed]
- Levoy, E.; Lazaridou, A.; Brewer, J.; Fulwiler, C. An exploratory study of Mindfulness Based Stress Reduction for emotional eating. Appetite 2017, 109, 124–130. [Google Scholar] [CrossRef] [PubMed]
- Fuentes Artiles, R.; Staub, K.; Aldakak, L.; Eppenberger, P.; Rühli, F.; Bender, N. Mindful eating and common diet programs lower body weight similarly: Systematic review and meta-analysis. Obes. Rev. 2019, 20, 1619–1627. [Google Scholar] [CrossRef]
- Pflugeisen, B.M.; Rebar, S.; Reedy, A.; Pierce, R.; Amoroso, P.J. Assessment of clinical trial participant patient satisfaction: A call to action. Trials 2016, 17, 483. [Google Scholar] [CrossRef]
- Cohen, S.; Kamarck, T.; Mermelstein, R. A global measure of perceived stress. J. Health Soc. Behav. 1983, 24, 385–396. [Google Scholar] [CrossRef]
- Torres, L.; Lee, J.L.; Park, S.; Di Lorenzo, R.C.; Branam, J.P.; Fraser, S.A.; Salisbury, B.A. Retention, Fasting Patterns, and Weight Loss With an Intermittent Fasting App: Large-Scale, 52-Week Observational Study. JMIR Mhealth Uhealth 2022, 10, e35896. [Google Scholar] [CrossRef]
- Huberty, J.L.; Espel-Huynh, H.M.; Neher, T.L.; Puzia, M.E. Testing the Pragmatic Effectiveness of a Consumer-Based Mindfulness Mobile App in the Workplace: Randomized Controlled Trial. JMIR Mhealth Uhealth 2022, 10, e38903. [Google Scholar] [CrossRef] [PubMed]
- Riegler, G.; Esposito, I. Bristol scale stool form. A still valid help in medical practice and clinical research. Tech. Coloproctol. 2001, 5, 163–164. [Google Scholar] [CrossRef] [PubMed]
- Callahan, B.J.; Sankaran, K.; Fukuyama, J.A.; McMurdie, P.J.; Holmes, S.P. Bioconductor Workflow for Microbiome Data Analysis: From raw reads to community analyses. F1000Research 2016, 5, 1492. [Google Scholar] [CrossRef] [PubMed]
- Paulson, J.N.; Stine, O.C.; Bravo, H.C.; Pop, M. Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 2013, 10, 1200–1202. [Google Scholar] [CrossRef] [PubMed]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A New Phylogenetic Method for Comparing Microbial Communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef]
- Oksanen, J.; Kindt, R.; Legendre, P.; Hara, B.; Henry, M.; Stevens, H. The Vegan Package; R Package Version: 2; R Foundation for Statistical Computing: Vienna, Austria, 2007. [Google Scholar]
- McMurdie, P.J.; Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 2013, 8, e61217. [Google Scholar] [CrossRef]
- Mallick, H.; Rahnavard, A.; McIver, L.J.; Ma, S.; Zhang, Y.; Nguyen, L.H.; Tickle, T.L.; Weingart, G.; Ren, B.; Schwager, E.H.; et al. Multivariable Association Discovery in Population-scale Meta-omics Studies. PLoS Comput. Biol. 2021, 17, e1009442. [Google Scholar] [CrossRef]
- Bryce, C.; Bucaj, M. Fecal Calprotectin for the Evaluation of Inflammatory Bowel Disease. Am. Fam. Physician 2021, 104, 303–304. [Google Scholar]
- Meyer, J.; Novak, M.; Hamel, A.; Rosenberg, K. Extraction and analysis of cortisol from human and monkey hair. J. Vis. Exp. 2014, 83, e50882. [Google Scholar] [CrossRef]
- Meyer, J.S.; Novak, M.A. Minireview: Hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 2012, 153, 4120–4127. [Google Scholar] [CrossRef]
- Kalliokoski, O.; Jellestad, F.K.; Murison, R. A systematic review of studies utilizing hair glucocorticoids as a measure of stress suggests the marker is more appropriate for quantifying short-term stressors. Sci. Rep. 2019, 9, 11997. [Google Scholar] [CrossRef]
- Slominski, R.; Rovnaghi, C.R.; Anand, K.J. Methodological Considerations for Hair Cortisol Measurements in Children. Ther. Drug Monit. 2015, 37, 812–820. [Google Scholar] [CrossRef]
- Brown, E.G.; Wood, L.; Wood, S. The medical dictionary for regulatory activities (MedDRA). Drug Saf. 1999, 20, 109–117. [Google Scholar] [CrossRef]
- Spitzer, R.L.; Kroenke, K.; Williams, J.B.; Löwe, B. A brief measure for assessing generalized anxiety disorder: The GAD-7. Arch. Intern. Med. 2006, 166, 1092–1097. [Google Scholar] [CrossRef] [PubMed]
- Kroenke, K.; Strine, T.W.; Spitzer, R.L.; Williams, J.B.; Berry, J.T.; Mokdad, A.H. The PHQ-8 as a measure of current depression in the general population. J. Affect. Disord. 2009, 114, 163–173. [Google Scholar] [CrossRef] [PubMed]
- Taylor, M.J.; Cooper, P.J. Body size overestimation and depressed mood. Br. J. Clin. Psychol. 1986, 25 Pt 2, 153–154. [Google Scholar] [CrossRef] [PubMed]
- Sallis, J.F.; Grossman, R.M.; Pinski, R.B.; Patterson, T.L.; Nader, P.R. The development of scales to measure social support for diet and exercise behaviors. Prev. Med. 1987, 16, 825–836. [Google Scholar] [CrossRef]
- Stunkard, A.J.; Messick, S. The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J. Psychosom. Res. 1985, 29, 71–83. [Google Scholar] [CrossRef] [PubMed]
- Dahlem, N.W.; Zimet, G.D.; Walker, R.R. The Multidimensional Scale of Perceived Social Support: A confirmation study. J. Clin. Psychol. 1991, 47, 756–761. [Google Scholar] [CrossRef]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, S.E.; Delaney, H.D. Designing Experiments and Analyzing Data: A Model Comparison Perspective, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 2004. [Google Scholar]
- Davis, C.S. Statistical Methods for the Analysis of Repeated Measurements; Springer: New York, NY, USA, 2002; pp. 310–311. 415p. [Google Scholar]
- Vonesh, E.F.; Schork, M.A. Sample sizes in the multivariate analysis of repeated measurements. Biometrics 1986, 42, 601–610. [Google Scholar] [CrossRef] [PubMed]
- Overall, J.E.; Doyle, S.R. Estimating sample sizes for repeated measurement designs. Control Clin. Trials 1994, 15, 100–123. [Google Scholar] [CrossRef]
- Rencher, A.C. Multivariate Statistical Inference and Applications; Wiley Series in Probability and Statistics Texts and References Section; Wiley: New York, NY, USA, 1998; pp. 153–154. 559p. [Google Scholar]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Goldberg, S.B.; Manley, A.R.; Smith, S.S.; Greeson, J.M.; Russell, E.; Van Uum, S.; Koren, G.; Davis, J.M. Hair cortisol as a biomarker of stress in mindfulness training for smokers. J. Altern. Complement. Med. 2014, 20, 630–634. [Google Scholar] [CrossRef]
Inclusion Criteria |
(1) 18–39 years old. |
(2) BMI: 30–49.99 kg/m2. |
(3) Own and use a smartphone, computer, or tablet with access to the Internet. |
(4) Score ≥ 14 on the Perceived Stress Score (PSS) at screening. |
Exclusion Criteria |
(1) Have a personal or family history of EOCRC. |
(2) Have taken antibiotics in the previous 2 months. |
(3) Have an inflammatory bowel disease or genetic predisposition to EOCRC or CRC (e.g., Lynch syndrome). |
(4) Any cancer diagnosis or cancer treatment in the past 12 months. |
(5) Consume >50 g of ethanol daily (approximately 4–5, 12 ounce beers). |
(6) Use combustible tobacco. |
(7) Have a history of bariatric surgery or bowel resection. |
(8) Have an active infection. |
(9) Have type 1 or type 2 diabetes, immunodeficiency/autoimmune disorder, or inflammatory bowel disease. |
(10) Use fiber or pre-/probiotic supplements ≥3 days per week. |
(11) Currently taking corticosteroids medication—inhaled, topical, or oral—in the past 2 months (affects cortisol measures). |
(12) Are on a weight-loss diet or involved in a formal weight-loss program or are not weight stable for 3 months (+/−4.5 kg) prior to the study. |
(13) Females who are pregnant or are trying to become pregnant. |
(14) Have schizophrenia (medication can affect study outcomes). |
(15) Have an eating window of <10 h/day or are currently following an intermittent fasting pattern. |
(16) Night shift workers (shift passes midnight). |
(17) Present a history of eating disorders. |
(18) Currently taking weight-loss medication. |
(19) Illegal drug use in the past month (not marijuana). |
Week 1 | Week 2 | Week 3 | Week 4 | Week 5 | Week 6 | Week 7 | Week 8 |
---|---|---|---|---|---|---|---|
1: The Big Idea (10 min) | 5: A Habit You Actually Want (10 min) | 9: Into the Still point (11 min) | 13: Body Wisdom (14 min) | 17: The Waxy Build-up (13 min) | 21: The Happiness Hit (11 min) | 25: Meditation Muscle Groups (13 min) | 29: Cosmic Burpee (11 min) |
2: Homebase (9 min) | 6: The Concentration Gym (11 min) | 10: Eye of the Hurricane (10 min) | 14: A Space Odyssey (13 min) | 18: Welcome to the Party (10 min) | 22: Strong Compassion (11 min) | 26: The Do-Nothing Project (10 min) | 30: Take the Power Back (13 min) |
3: Pop out of your thoughts (10 min) | 7: The Sweet Spot (10 min) | 11: Electric Clarity (11 min) | 15: Roller Coaster (13 min) | 19: Slow Motion (10 min) | 23: (Self) Love Bomb (13 min) | 27: No Agenda (10 min) | - |
4: Inner Smoothness (11 min) | 8: Even Flow (10 min) | 12: Sanity Day (14 min) | 16: Free and Clear (14 min) | 20: Better at Everything (11 min) | 24: Connected from the Inside (11 min) | 28: The Answer (10 min) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lima Oliveira, M.; Biggers, A.; Oddo, V.M.; Naylor, K.B.; Chen, Z.; Hamm, A.; Pezley, L.; Peñalver Bernabé, B.; Gabel, K.; Sharp, L.K.; et al. Design of a Remote Time-Restricted Eating and Mindfulness Intervention to Reduce Risk Factors Associated with Early-Onset Colorectal Cancer Development among Young Adults. Nutrients 2024, 16, 504. https://doi.org/10.3390/nu16040504
Lima Oliveira M, Biggers A, Oddo VM, Naylor KB, Chen Z, Hamm A, Pezley L, Peñalver Bernabé B, Gabel K, Sharp LK, et al. Design of a Remote Time-Restricted Eating and Mindfulness Intervention to Reduce Risk Factors Associated with Early-Onset Colorectal Cancer Development among Young Adults. Nutrients. 2024; 16(4):504. https://doi.org/10.3390/nu16040504
Chicago/Turabian StyleLima Oliveira, Manoela, Alana Biggers, Vanessa M. Oddo, Keith B. Naylor, Zhengjia Chen, Alyshia Hamm, Lacey Pezley, Beatriz Peñalver Bernabé, Kelsey Gabel, Lisa K. Sharp, and et al. 2024. "Design of a Remote Time-Restricted Eating and Mindfulness Intervention to Reduce Risk Factors Associated with Early-Onset Colorectal Cancer Development among Young Adults" Nutrients 16, no. 4: 504. https://doi.org/10.3390/nu16040504
APA StyleLima Oliveira, M., Biggers, A., Oddo, V. M., Naylor, K. B., Chen, Z., Hamm, A., Pezley, L., Peñalver Bernabé, B., Gabel, K., Sharp, L. K., & Tussing-Humphreys, L. M. (2024). Design of a Remote Time-Restricted Eating and Mindfulness Intervention to Reduce Risk Factors Associated with Early-Onset Colorectal Cancer Development among Young Adults. Nutrients, 16(4), 504. https://doi.org/10.3390/nu16040504