An Overview of Parenteral Nutrition from Birth to Adolescence Based on a Composite Fish Oil Containing Lipid Emulsion and a Pediatric Amino Acid Solution
Abstract
:1. Introduction
2. Provision of Energy and Macronutrients in Pediatric Patients on PN
2.1. Energy
2.2. Glucose
2.3. Lipids
2.4. Amino Acids
3. PN with a Composite Fish Oil Containing Lipid Emulsion in Newborn Infants, Infants/Toddlers, Children, and Adolescents—Clinical Experience
3.1. Effects on Fatty Acid Patterns
3.2. Effects on Inflammation and Infection
3.3. Effects on Cholestasis/Liver Function
3.4. Effects on Growth and Nutritional Status
4. PN with a Pediatric Amino Acid Solution for Newborn Infants, Infants/Toddlers, Children, and Adolescents—Clinical Experience
5. The Role of Commercial Multi-Chamber Bags in Pediatric PN
6. Summary and Conclusions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ALA | alpha-linolenic acid |
ALT | alanine aminotransferase |
ARA | arachidonic acid |
AST | aspartate aminotransferase |
BW | body weight |
CBil | conjugated bilirubin |
DBil | direct bilirubin |
DHA | docosahexaenoic acid |
EFA | essential fatty acid |
EFAD | essential fatty acid deficiency |
EPA | eicosapentaenoic acid |
FO | fish oil |
GGT | gamma-glutamyl transferase |
HPN | home parenteral nutrition |
IF | intestinal failure |
IFALD | intestinal-failure-associated liver disease |
ILE | intravenous lipid emulsion |
LCPUFA | long-chain polyunsaturated fatty acid |
LNA | linolenic acid |
MCB | multi-chamber bags |
MCT | medium-chain triglyceride |
OO | olive oil |
PN | parenteral nutrition |
PNDI | parenteral nutrition dependency index |
PUFA | polyunsaturated fatty acid |
RBC | red blood cell |
RDA | recommended dietary allowance |
SO | soybean oil |
TBil | total bilirubin |
References
- Worthington, P.; Balint, J.; Bechtold, M.; Bingham, A.; Chan, L.-N.; Durfee, S.; Jevenn, A.K.; Malone, A.; Mascarenhas, M.; Robinson, D.T. When Is Parenteral Nutrition Appropriate? J. Parenter. Enter. Nutr. 2017, 41, 324–377. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Goulet, O.; Hunt, J.; Krohn, K.; Shamir, R. 1. Guidelines on Paediatric Parenteral Nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), Supported by the European Society of Paediatric Research (ESPR). J. Pediatr. Gastroenterol. Nutr. 2005, 41, S1–S87. [Google Scholar] [CrossRef] [PubMed]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T. ESPGHAN/ESPEN/ESPR guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef]
- Ayers, P.; Boullata, J.; Sacks, G. Parenteral nutrition safety: The story continues. Nutr. Clin. Pract. 2018, 33, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Itzhaki, M.H.; Singer, P. Advances in Medical Nutrition Therapy: Parenteral Nutrition. Nutrients 2020, 12, 717. [Google Scholar] [CrossRef]
- Keady, S.; Morgan, C.; Ozzard, A.; Chauhan, B. Effect of a neonatal standard aqueous parenteral nutrition formulation on aseptic unit capacity planning. E Spen. Eur. E J. Clin. Nutr. Metab. 2010, 5, e14–e17. [Google Scholar] [CrossRef]
- Goulet, O.; Ruemmele, F. Causes and management of intestinal failure in children. Gastroenterology 2006, 130, S16–S28. [Google Scholar] [CrossRef]
- Vlug, L.E.; Nagelkerke, S.C.J.; Jonkers-Schuitema, C.F.; Rings, E.; Tabbers, M.M. The Role of a Nutrition Support Team in the Management of Intestinal Failure Patients. Nutrients 2020, 12, 172. [Google Scholar] [CrossRef]
- Goulet, O.; Breton, A.; Coste, M.E.; Dubern, B.; Ecochard-Dugelay, E.; Guimber, D.; Loras-Duclaux, I.; Abi Nader, E.; Marinier, E.; Peretti, N.; et al. Pediatric Home Parenteral Nutrition in France: A six years national survey. Clin. Nutr. 2021, 40, 5278–5287. [Google Scholar] [CrossRef]
- Elia, M. Changing concepts of nutrient requirements in disease: Implications for artificial nutritional support. Lancet 1995, 345, 1279–1284. [Google Scholar] [CrossRef]
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. 1), 5–41. [Google Scholar]
- Goulet, O.; Abi Nader, E.; Pigneur, B.; Lambe, C. Short Bowel Syndrome as the Leading Cause of Intestinal Failure in Early Life: Some Insights into the Management. Pediatr. Gastroenterol. Hepatol. Nutr. 2019, 22, 303–329. [Google Scholar] [CrossRef]
- Abi Nader, E.; Lambe, C.; Talbotec, C.; Pigneur, B.; Lacaille, F.; Garnier-Lengliné, H.; Petit, L.M.; Poisson, C.; Rocha, A.; Corriol, O.; et al. Outcome of home parenteral nutrition in 251 children over a 14-y period: Report of a single center. Am. J. Clin. Nutr. 2016, 103, 1327–1336. [Google Scholar] [CrossRef]
- Abi Nader, E.; Lambe, C.; Talbotec, C.; Dong, L.; Pigneur, B.; Goulet, O. A new concept to achieve optimal weight gain in malnourished infants on total parenteral nutrition. J. Parenter. Enter. Nutr. 2018, 42, 78–86. [Google Scholar] [CrossRef]
- Goulet, O.; Lamazière, A.; Abi Nader, E.; Talbotec, C.; Wolf, C.; Lambe, C. Erythrocyte fatty acid membrane composition in children on long-term parenteral nutrition enriched with ω-3 fatty acids. Am. J. Clin. Nutr. 2022, 115, 422–431. [Google Scholar] [CrossRef]
- Mehta, N.M.; Compher, C. ASPEN Clinical Guidelines: Nutrition support of the critically ill child. J. Parenter. Enteral Nutr. 2009, 33, 260–276. [Google Scholar] [CrossRef]
- Mesotten, D.; Joosten, K.; van Kempen, A.; Verbruggen, S. ESPGHAN/ESPEN/ESPR guidelines on pediatric parenteral nutrition: Carbohydrates. Clin. Nutr. 2018, 37, 2337–2343. [Google Scholar] [CrossRef]
- Bresson, J.L.; Narcy, P.; Putet, G.; Ricour, C.; Sachs, C.; Rey, J. Energy substrate utilization in infants receiving total parenteral nutrition with different glucose to fat ratios. Pediatr. Res. 1989, 25, 645–648. [Google Scholar] [CrossRef]
- Salas, J.; Girardet, J.P.; De Potter, S.; Martí-Henneberg, C.; Goulet, O.; Ricour, C. Glucose versus glucose-fat mixture in the course of total parenteral nutrition: Effects on substrate utilisation and energy metabolism in malnourished children. Clin. Nutr. 1991, 10, 272–278. [Google Scholar] [CrossRef]
- Preissig, C.M.; Rigby, M.R. Hyperglycaemia results from beta-cell dysfunction in critically ill children with respiratory and cardiovascular failure: A prospective observational study. Crit. Care 2009, 13, R27. [Google Scholar] [CrossRef]
- Hirshberg, E.; Larsen, G.; Van Duker, H. Alterations in glucose homeostasis in the pediatric intensive care unit: Hyperglycemia and glucose variability are associated with increased mortality and morbidity. Pediatr. Crit. Care Med. 2008, 9, 361–366. [Google Scholar] [CrossRef]
- Dasarathy, S.; Dodig, M.; Muc, S.M.; Kalhan, S.C.; McCullough, A.J. Skeletal muscle atrophy is associated with an increased expression of myostatin and impaired satellite cell function in the portacaval anastamosis rat. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G1124–G1130. [Google Scholar] [CrossRef]
- Lapillonne, A.; Fidler Mis, N.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef]
- Goulet, O.J.; Cai, W.; Seo, J.M. Lipid Emulsion Use in Pediatric Patients Requiring Long-Term Parenteral Nutrition. J. Parenter. Enter. Nutr. 2020, 44 (Suppl. 1), S55–S67. [Google Scholar] [CrossRef]
- Martindale, R.G.; Berlana, D.; Boullata, J.I.; Cai, W.; Calder, P.C.; Deshpande, G.H.; Evans, D.; Garcia-de-Lorenzo, A.; Goulet, O.J.; Li, A.; et al. Summary of Proceedings and Expert Consensus Statements From the International Summit “Lipids in Parenteral Nutrition”. J. Parenter. Enter. Nutr. 2020, 44 (Suppl. 1), S7–S20. [Google Scholar] [CrossRef]
- Salas, J.S.; Dozio, E.; Goulet, O.J.; Marti-Henneberg, C.; Moukarzel, E.; Ricour, C. Energy expenditure and substrate utilization in the course of renutrition of malnourished children. J. Parenter. Enter. Nutr. 1991, 15, 288–293. [Google Scholar] [CrossRef]
- Calder, P.C.; Waitzberg, D.L.; Klek, S.; Martindale, R.G. Lipids in Parenteral Nutrition: Biological Aspects. J. Parenter. Enter. Nutr. 2020, 44 (Suppl. 1), S21–S27. [Google Scholar] [CrossRef]
- Klek, S. Omega-3 Fatty Acids in Modern Parenteral Nutrition: A Review of the Current Evidence. J. Clin. Med. 2016, 5, 34. [Google Scholar] [CrossRef]
- Serhan, C.N.; Levy, B.D. Resolvins in inflammation: Emergence of the pro-resolving superfamily of mediators. J. Clin. Investig. 2018, 128, 2657–2669. [Google Scholar] [CrossRef]
- Wanten, G.J.; Calder, P.C. Immune modulation by parenteral lipid emulsions. Am. J. Clin. Nutr. 2007, 85, 1171–1184. [Google Scholar] [CrossRef]
- Lien, E.L.; Richard, C.; Hoffman, D.R. DHA and ARA addition to infant formula: Current status and future research directions. Prostaglandins Leukot. Essent. Fat. Acids 2018, 128, 26–40. [Google Scholar] [CrossRef]
- Hoffman, D.R.; Boettcher, J.A.; Diersen-Schade, D.A. Toward optimizing vision and cognition in term infants by dietary docosahexaenoic and arachidonic acid supplementation: A review of randomized controlled trials. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 151–158. [Google Scholar] [CrossRef]
- Qawasmi, A.; Landeros-Weisenberger, A.; Bloch, M.H. Meta-analysis of LCPUFA supplementation of infant formula and visual acuity. Pediatrics 2013, 131, e262–e272. [Google Scholar] [CrossRef]
- Goulet, O.; De Potter, S.; Antebi, H.; Driss, F.; Colomb, V.; Bereziat, G.; Alcindor, L.G.; Corriol, O.; Le Brun, A.; Dutot, G.; et al. Long-term efficacy and safety of a new olive oil-based intravenous fat emulsion in pediatric patients: A double-blind randomized study. Am. J. Clin. Nutr. 1999, 70, 338–345. [Google Scholar] [CrossRef]
- Goulet, O.; Joly, F.; Corriol, O.; Colomb-Jung, V. Some new insights in intestinal failure-associated liver disease. Curr. Opin. Organ Transplant. 2009, 14, 256–261. [Google Scholar] [CrossRef]
- Lacaille, F.; Gupte, G.; Colomb, V.; D’Antiga, L.; Hartman, C.; Hojsak, I.; Kolacek, S.; Puntis, J.; Shamir, R. Intestinal failure-associated liver disease: A position paper of the ESPGHAN Working Group of Intestinal Failure and Intestinal Transplantation. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 272–283. [Google Scholar] [CrossRef]
- Gura, K.M.; Duggan, C.P.; Collier, S.B.; Jennings, R.W.; Folkman, J.; Bistrian, B.R.; Puder, M. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: Implications for future management. Pediatrics 2006, 118, e197–e201. [Google Scholar] [CrossRef]
- Nandivada, P.; Baker, M.A.; Mitchell, P.D.; O’Loughlin, A.A.; Potemkin, A.K.; Anez-Bustillos, L.; Carlson, S.J.; Dao, D.T.; Fell, G.L.; Gura, K.M.; et al. Predictors of failure of fish-oil therapy for intestinal failure-associated liver disease in children. Am. J. Clin. Nutr. 2016, 104, 663–670. [Google Scholar] [CrossRef]
- Hojsak, I.; Colomb, V.; Braegger, C.; Bronsky, J.; Campoy, C.; Domellof, M.; Embleton, N.; Fidler Mis, N.; Hulst, J.M.; Indrio, F.; et al. ESPGHAN Committee on Nutrition Position Paper. Intravenous Lipid Emulsions and Risk of Hepatotoxicity in Infants and Children: A Systematic Review and Meta-analysis. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 776–792. [Google Scholar] [CrossRef]
- Dupont, I. Peroxidation of lipid emulsions: Effects of changes in fatty acid pattern and α-tocopherol content on the sensitivity to peroxidative damage. Clin. Nutr. 1999, 18, 113–116. [Google Scholar] [CrossRef]
- Goulet, O.; Girot, R.; Maier-Redelsperger, M.; Bougle, D.; Virelizier, J.L.; Ricour, C. Hematologic disorders following prolonged use of intravenous fat emulsions in children. J. Parenter. Enter. Nutr. 1986, 10, 284–288. [Google Scholar] [CrossRef]
- Clayton, P.T.; Bowron, A.; Mills, K.A.; Massoud, A.; Casteels, M.; Milla, P.J. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 1993, 105, 1806–1813. [Google Scholar] [CrossRef]
- Hukkinen, M.; Mutanen, A.; Nissinen, M.; Merras-Salmio, L.; Gylling, H.; Pakarinen, M.P. Parenteral Plant Sterols Accumulate in the Liver Reflecting Their Increased Serum Levels and Portal Inflammation in Children with Intestinal Failure. J. Parenter. Enter. Nutr. 2017, 41, 1014–1022. [Google Scholar] [CrossRef]
- Pereira-Fantini, P.M.; Lapthorne, S.; Gahan, C.G.M.; Joyce, S.A.; Charles, J.; Fuller, P.J.; Bines, J.E. Farnesoid X Receptor Agonist Treatment Alters Bile Acid Metabolism but Exacerbates Liver Damage in a Piglet Model of Short-Bowel Syndrome. CMGH Cell. Mol. Gastroenterol. Hepatol. 2017, 4, 65–74. [Google Scholar] [CrossRef]
- Cao, Y.; Xiao, Y.; Zhou, K.; Yan, J.; Wang, P.; Yan, W.; Cai, W. FXR agonist GW4064 improves liver and intestinal pathology and alters bile acid metabolism in rats undergoing small intestinal resection. Am. J. Physiol. Gastrointest. Liver Physiol. 2019, 317, G108–G115. [Google Scholar] [CrossRef]
- Guthrie, G.; Burrin, D. Impact of Parenteral Lipid Emulsion Components on Cholestatic Liver Disease in Neonates. Nutrients 2021, 13, 508. [Google Scholar] [CrossRef]
- Bach, A.C.; Babayan, V.K. Medium-chain triglycerides: An update. Am. J. Clin. Nutr. 1982, 36, 950–962. [Google Scholar] [CrossRef]
- Goulet, O.; Antebi, H.; Wolf, C.; Talbotec, C.; Alcindor, L.G.; Corriol, O.; Lamor, M.; Colomb-Jung, V. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: A single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. J. Parenter. Enter. Nutr. 2010, 34, 485–495. [Google Scholar] [CrossRef]
- ASPEN. Guidelines for the use of parenteral and enteral nutrition in adult and paediatric patients. J. Parenter. Enter. Nutr. 2002, 26, 1SA–138SA. [Google Scholar] [CrossRef]
- van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M. ESPGHAN/ESPEN/ESPR guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef]
- Goulet, O.; DePotter, S.; Salas, J.; Robert, J.J.; Rongier, M.; Ben Hariz, M.; Koziet, J.; Desjeux, J.F.; Ricour, C.; Darmaun, D. Leucine metabolism at graded amino acid intakes in children receiving parenteral nutrition. Am. J. Physiol. 1993, 265, E540–E546. [Google Scholar] [CrossRef]
- Dudrick, S.J.; Wilmore, D.W.; Vars, H.M.; Rhoads, J.E. Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery 1968, 64, 134–142. [Google Scholar]
- Holt, L.E., Jr.; Snyderman, S.E. The amino acid requirements of infants. JAMA 1961, 175, 100–103. [Google Scholar] [CrossRef]
- Elango, R.; Pencharz, P.B.; Ball, R.O. The branched-chain amino acid requirement of parenterally fed neonatal piglets is less than the enteral requirement. J. Nutr. 2002, 132, 3123–3129. [Google Scholar] [CrossRef]
- Kien, C.L.; Horswill, C.A.; Zipf, W.B.; McCoy, K.S.; Denne, S.C. Splanchnic uptake of leucine in healthy children and in children with cystic fibrosis. Pediatr. Res. 1999, 45, 680–683. [Google Scholar] [CrossRef]
- Heird, W.C. Amino acids in pediatric and neonatal nutrition. Curr. Opin. Clin. Nutr. Metab. Care 1998, 1, 73–78. [Google Scholar] [CrossRef]
- Beganović, N.; Kok, K.; de Leeuw, R.; de Vries, I.J.; Schutgens, R. Amino acids in parenteral nutrition of preterm infants. Comparison of oral and parenteral supply. Acta Paediatr. Scand. 1983, 72, 421–425. [Google Scholar] [CrossRef]
- Andersen, G.E.; Bucher, D.; Friis-Hansen, B.; Nexø, E.; Olesen, H. Plasma amino acid concentrations in newborn infants during parenteral nutrition. J. Parenter. Enter. Nutr. 1983, 7, 369–373. [Google Scholar] [CrossRef]
- Bürger, U.; Wolf, H.; Fritsch, U.; Bauer, M. Parenteral nutrition in preterm infants: Influence of respiratory treatment and effect of different amino acid compositions. J. Pediatr. Gastroenterol. Nutr. 1983, 2, 644–652. [Google Scholar] [CrossRef]
- Bell, E.F.; Filer, L.J., Jr.; Wong, A.P.; Stegink, L.D. Effects of a parenteral nutrition regimen containing dicarboxylic amino acids on plasma, erythrocyte, and urinary amino acid concentrations of young infants. Am. J. Clin. Nutr. 1983, 37, 99–107. [Google Scholar] [CrossRef]
- Coran, A.G.; Drongowski, R.A. Studies on the toxicity and efficacy of a new amino acid solution in pediatric parenteral nutrition. J. Parenter. Enter. Nutr. 1987, 11, 368–377. [Google Scholar] [CrossRef]
- Sankaran, K.; Berscheid, B.; Verma, V.; Zakhary, G.; Tan, L. An evaluation of total parenteral nutrition using Vamin and Aminosyn as protein base in critically ill preterm infants. J. Parenter. Enter. Nutr. 1985, 9, 439–442. [Google Scholar] [CrossRef]
- Chessex, P.; Zebiche, H.; Pineault, M.; Lepage, D.; Dallaire, L. Effect of amino acid composition of parenteral solutions on nitrogen retention and metabolic response in very-low-birth weight infants. J. Pediatr. 1985, 106, 111–117. [Google Scholar] [CrossRef]
- Meurling, S.; Grotte, G. Total parenteral nutrition in pediatric surgery using a new amino acid solution (Vaminolac). Acta Chir. Scand. Suppl. 1983, 517, 79–87. [Google Scholar]
- Pineault, M.; Chessex, P.; Lepage, D.; Dallaire, L.; Brisson, G.; Qureshi, I. Total parenteral nutrition in very low birth weight infants with Travasol 10% blend C. J. Parenter. Enter. Nutr. 1986, 10, 296–299. [Google Scholar] [CrossRef]
- Vlaardingerbroek, H.; Roelants, J.A.; Rook, D.; Dorst, K.; Schierbeek, H.; Vermes, A.; Vermeulen, M.J.; van Goudoever, J.B.; van den Akker, C.H. Adaptive regulation of amino acid metabolism on early parenteral lipid and high-dose amino acid administration in VLBW infants—A randomized, controlled trial. Clin. Nutr. 2014, 33, 982–990. [Google Scholar] [CrossRef]
- Vinton, N.E.; Laidlaw, S.A.; Ament, M.E.; Kopple, J.D. Taurine concentrations in plasma, blood cells, and urine of children undergoing long-term total parenteral nutrition. Pediatr. Res. 1987, 21, 399–403. [Google Scholar] [CrossRef]
- Laidlaw, S.A.; Kopple, J.D. Newer concepts of the indispensable amino acids. Am. J. Clin. Nutr. 1987, 46, 593–605. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; MacKay, M.W. Calcium and phosphate solubility in neonatal parenteral nutrient solutions containing TrophAmine. Am. J. Hosp. Pharm. 1986, 43, 88–93. [Google Scholar] [CrossRef]
- Fitzgerald, K.A.; MacKay, M.W. Calcium and phosphate solubility in neonatal parenteral nutrient solutions containing Aminosyn PF. Am. J. Hosp. Pharm. 1987, 44, 1396–1400. [Google Scholar] [CrossRef]
- Koletzko, B.; Rodriguez-Palmero, M.; Demmelmair, H.; Fidler, N.; Jensen, R.; Sauerwald, T. Physiological aspects of human milk lipids. Early Hum. Dev. 2001, 65 (Suppl. 2), S3–S18. [Google Scholar] [CrossRef]
- Gil, A.; Ramirez, M.; Gil, M. Role of long-chain polyunsaturated fatty acids in infant nutrition. Eur. J. Clin. Nutr. 2003, 57 (Suppl. 1), S31–S34. [Google Scholar] [CrossRef]
- Oliveira, O.R.; Santana, M.G.; Santos, F.S.; Conceição, F.D.; Sardinha, F.L.; Veiga, G.V.; Tavares do Carmo, M.G. Composition of fatty acids in the maternal and umbilical cord plasma of adolescent and adult mothers: Relationship with anthropometric parameters of newborn. Lipids Health Dis. 2012, 11, 157. [Google Scholar] [CrossRef]
- Agostoni, C.; Galli, C.; Riva, E.; Risé, P.; Colombo, C.; Giovannini, M.; Marangoni, F. Whole blood fatty acid composition at birth: From the maternal compartment to the infant. Clin. Nutr. 2011, 30, 503–505. [Google Scholar] [CrossRef]
- Koletzko, B. Human Milk Lipids. Ann. Nutr. Metab. 2016, 69 (Suppl. 2), 28–40. [Google Scholar] [CrossRef]
- Tomsits, E.; Pataki, M.; Tölgyesi, A.; Fekete, G.; Rischak, K.; Szollár, L. Safety and efficacy of a lipid emulsion containing a mixture of soybean oil, medium-chain triglycerides, olive oil, and fish oil: A randomised, double-blind clinical trial in premature infants requiring parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2010, 51, 514–521. [Google Scholar] [CrossRef]
- Skouroliakou, M.; Konstantinou, D.; Koutri, K.; Kakavelaki, C.; Stathopoulou, M.; Antoniadi, M.; Xemelidis, N.; Kona, V.; Markantonis, S. A double-blind, randomized clinical trial of the effect of omega-3 fatty acids on the oxidative stress of preterm neonates fed through parenteral nutrition. Eur. J. Clin. Nutr. 2010, 64, 940–947. [Google Scholar] [CrossRef]
- Skouroliakou, M.; Konstantinou, D.; Agakidis, C.; Kaliora, A.; Kalogeropoulos, N.; Massara, P.; Antoniadi, M.; Panagiotakos, D.; Karagiozoglou-Lampoudi, T. Parenteral MCT/omega-3 Polyunsaturated Fatty Acid-Enriched Intravenous Fat Emulsion Is Associated with Cytokine and Fatty Acid Profiles Consistent with Attenuated Inflammatory Response in Preterm Neonates: A Randomized, Double-Blind Clinical Trial. Nutr. Clin. Pract. 2016, 31, 235–244. [Google Scholar] [CrossRef]
- Rayyan, M.; Devlieger, H.; Jochum, F.; Allegaert, K. Short-term use of parenteral nutrition with a lipid emulsion containing a mixture of soybean oil, olive oil, medium-chain triglycerides, and fish oil: A randomized, double-blind study in preterm infants. J. Parenter. EntEnter. Eral Nutr. 2012, 36, 81S–94S. [Google Scholar] [CrossRef]
- Vlaardingerbroek, H.; Vermeulen, M.J.; Carnielli, V.P.; Vaz, F.M.; van den Akker, C.H.; van Goudoever, J.B. Growth and fatty acid profiles of VLBW infants receiving a multicomponent lipid emulsion from birth. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 417–427. [Google Scholar] [CrossRef]
- Deshpande, G.; Simmer, K.; Deshmukh, M.; Mori, T.A.; Croft, K.D.; Kristensen, J. Fish Oil (SMOFlipid) and olive oil lipid (Clinoleic) in very preterm neonates. J. Pediatr. Gastroenterol. Nutr. 2014, 58, 177–182. [Google Scholar] [CrossRef]
- Haines, K.L.; Ohnuma, T.; Hornik, C.D.; Grisel, B.; Leraas, H.; Trujillo, C.N.; Krishnamoorthy, V.; Raghunathan, K.; Wischmeyer, P.E. Change to Mixed-Lipid Emulsion From Soybean Oil-Based Lipid Emulsion in Pediatric Patients. JAMA Netw. Open 2023, 6, e2332389. [Google Scholar] [CrossRef]
- Belza, C.; Courtney-Martin, G.; Wong-Sterling, S.; Garofalo, E.; Silva, C.; Yanchis, D.; Avitzur, Y.; Wales, P.W. Composite lipid emulsion use and essential fatty acid deficiency in pediatric patients with intestinal failure with high parenteral nutrition dependence: A retrospective cohort study. J. Parenter. Enter. Nutr. 2023, 47, 930–937. [Google Scholar] [CrossRef]
- Hudson, A.S.; Tyminski, N.; Turner, J.M.; Silverman, J.A. Intestinal Failure-Associated Liver Disease and Growth Pre- and Post-Transition to a Composite Lipid Emulsion. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 830–836. [Google Scholar] [CrossRef]
- Huff, K.A.; Cruse, W.; Vanderpool, C. Lipid strategies to prevent intestinal failure-associated liver disease in neonates: A pilot trial. J. Parenter. Enter. Nutr. 2023, 47, 482–493. [Google Scholar] [CrossRef]
- Yu, L.J.; Anez-Bustillos, L.; Mitchell, P.D.; Ko, V.H.; Secor, J.D.; Hurley, A.P.; Dao, D.T.; Fligor, S.C.; Cho, B.S.; Tsikis, S.T.; et al. Incidence and development of cholestasis in surgical neonates receiving an intravenous mixed-oil lipid emulsion. J. Parenter. Enter. Nutr. 2023, 47, 30–40. [Google Scholar] [CrossRef]
- Alvira-Arill, G.R.; Herrera, O.R.; Tsang, C.C.S.; Wang, J.; Peters, B.M.; Stultz, J.S. Comparison of catheter-related bloodstream infection rates in pediatric patients receiving parenteral nutrition with soybean oil-based intravenous fat emulsion versus a mixed oil fat emulsion. Pharmacotherapy 2022, 42, 898–904. [Google Scholar] [CrossRef] [PubMed]
- Navaratnarajah, N.; Girard, G.; Sant’Anna, G.; Langlois, H.; Sant’Anna, A.M. The impact of a lipid injectable emulsion (SMOF) on conjugated bilirubin levels in children receiving prolonged parenteral nutrition: A large single center experience. Clin. Nutr. ESPEN 2022, 49, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Rumore, S.; McGrath, K.; Scott, A.; Sexton, E.; Wong, T. Fat soluble vitamin status in children on home parenteral nutrition in a tertiary paediatric intestinal rehabilitation unit. Clin. Nutr. ESPEN 2021, 46, 240–245. [Google Scholar] [CrossRef]
- Wassef, J.; Lipkin, E.; Hardigan, P.; Duro, D. Trends in liver profile and nutrition outcomes in children undergoing intestinal rehabilitation using a mixed lipid injectable emulsion. Nutr. Clin. Pract. 2021, 37, 1180–1189. [Google Scholar] [CrossRef] [PubMed]
- Daniel, S.; Svoboda, L.; Chen, J. Liver Function in Pediatric Recipients: A Comparison of Intralipid and Smoflipid. J. Pediatr. Pharmacol. Ther. 2021, 26, 258–264. [Google Scholar] [CrossRef]
- Lezo, A.; D’Onofrio, V.; Puccinelli, M.P.; Capriati, T.; De Francesco, A.; Bo, S.; Massarenti, P.; Gandullia, P.; Marin, M.; Derevlean, L.; et al. Plasma and Red Blood Cell PUFAs in Home Parenteral Nutrition Paediatric Patients-Effects of Lipid Emulsions. Nutrients 2020, 12, 3748. [Google Scholar] [CrossRef]
- Nagelkerke, S.C.J.; Draijer, L.G.; Benninga, M.A.; Koot, B.G.P.; Tabbers, M.M. The prevalence of liver fibrosis according to non-invasive tools in a pediatric home parenteral nutrition cohort. Clin. Nutr. 2021, 40, 460–466. [Google Scholar] [CrossRef]
- Ho, B.E.; Chan, S.C.; Faino, A.V.; Mortensen, M.; Williamson, N.; Javid, P.J.; Horslen, S.P.; Wendel, D. Evaluation of SMOFlipid in Pediatric Intestinal-Failure Patients and Its Effects on Essential Fatty Acid Levels. J. Parenter. Enter. Nutr. 2021, 45, 546–552. [Google Scholar] [CrossRef]
- Huff, K.A.; Breckler, F.; Cruse, W.; Szeszycki, E.; Vanderpool, C. Pediatric Smoflipid Therapy: Patient Response and Safety Concerns. J. Parenter. Enter. Nutr. 2021, 45, 792–799. [Google Scholar] [CrossRef]
- Hanindita, M.H.; Widjaja, N.A.; Irawan, R.; Hidajat, B. Influence of intravenous fish oil-enriched lipid emulsion on the inflammatory response in children post gastrointestinal surgery. Pak. J. Nutr. 2019, 18, 1036–1041. [Google Scholar] [CrossRef]
- Hanindita, M.H.; Widjaja, N.A.; Irawan, R.; Hidayat, B.; Hariastawa, I.A. Impact of Intravenous Omega-3-Enriched Lipid Emulsion on Liver Enzyme and Triglyceride Serum Levels of Children Undergoing Gastrointestinal Surgery. Pediatr. Gastroenterol. Hepatol. Nutr. 2020, 23, 98–104. [Google Scholar] [CrossRef]
- Casson, C.; Nguyen, V.; Nayak, P.; Channabasappa, N.; Berris, K.; Panczuk, J.; Bhiladvala, C.; Dasgupta, T.; Piper, H.G. A Comparison of Smoflipid® and Intralipid® in the Early Management of Infants with Intestinal Failure. J. Pediatr. Surg. 2020, 55, 153–157. [Google Scholar] [CrossRef]
- Belza, C.; Wales, J.C.; Courtney-Martin, G.; de Silva, N.; Avitzur, Y.; Wales, P.W. An Observational Study of Smoflipid vs Intralipid on the Evolution of Intestinal Failure-Associated Liver Disease in Infants with Intestinal Failure. J. Parenter. Enter. Nutr. 2020, 44, 688–696. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, G.; Zhang, J.; Lv, X.; Lu, C.; Chen, H.; Li, W.; Li, H.; Geng, Q.; Xu, X.; et al. The effects of two mixed intravenous lipid emulsions on clinical outcomes in infants after gastrointestinal surgery: A prospective, randomized study. Pediatr. Surg. Int. 2019, 35, 347–355. [Google Scholar] [CrossRef]
- Lam, C.K.L.; Church, P.C.; Haliburton, B.; Chambers, K.; Martincevic, I.; Vresk, L.; Courtney-Martin, G.; Bandsma, R.; Avitzur, Y.; Wales, P.C.; et al. Long-term Exposure of Children to a Mixed Lipid Emulsion Is Less Hepatotoxic Than Soybean-based Lipid Emulsion. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 501–504. [Google Scholar] [CrossRef]
- Olszewska, K.; Ksiazyk, J.; Kozlowski, D.; Pajdowska, M.; Janusz, M.; Jaworski, M. Nutritional therapy complications in children with ultra-short bowel syndrome include growth deficiency but not cholestasis. Acta Paediatr. 2018, 107, 1088–1093. [Google Scholar] [CrossRef]
- Pereira-da-Silva, L.; Nóbrega, S.; Rosa, M.L.; Alves, M.; Pita, A.; Virella, D.; Papoila, A.L.; Serelha, M.; Cordeiro-Ferreira, G.; Koletzko, B. Parenteral nutrition-associated cholestasis and triglyceridemia in surgical term and near-term neonates: A pilot randomized controlled trial of two mixed intravenous lipid emulsions. Clin. Nutr. ESPEN 2017, 22, 7–12. [Google Scholar] [CrossRef]
- Diamond, I.R.; Grant, R.C.; Pencharz, P.B.; de Silva, N.; Feldman, B.M.; Fitzgerald, P.; Sigalet, D.; Dicken, B.; Turner, J.; Marchand, V.; et al. Preventing the Progression of Intestinal Failure-Associated Liver Disease in Infants Using a Composite Lipid Emulsion: A Pilot Randomized Controlled Trial of SMOFlipid. J. Parenter. Enter. Nutr. 2017, 41, 866–877. [Google Scholar] [CrossRef]
- Pichler, J.; Watson, T.; McHugh, K.; Hill, S. Prevalence of Gallstones Compared in Children with Different Intravenous Lipids. J. Pediatr. Gastroenterol. Nutr. 2015, 61, 253–259. [Google Scholar] [CrossRef]
- De Cunto, A.; Paviotti, G.; Travan, L.; Bua, J.; Cont, G.; Demarini, S. Impact of Surgery for Neonatal Gastrointestinal Diseases on Weight and Fat Mass. J. Pediatr. 2015, 167, 568–571. [Google Scholar] [CrossRef]
- Pichler, J.; Simchowitz, V.; Macdonald, S.; Hill, S. Comparison of liver function with two new/mixed intravenous lipid emulsions in children with intestinal failure. Eur. J. Clin. Nutr. 2014, 68, 1161–1167. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, K.M.; Grabowski, M.; Rodl, S.; Deutschmann, A.; Schwantzer, G.; Sovinz, P.; Strenger, V.; Urban, C.; Muntean, W.; Hauer, A.C. Short-term intravenous fish-oil emulsions in pediatric oncologic patients—Effect on liver parameters. Nutr. Cancer 2014, 66, 1070–1076. [Google Scholar] [CrossRef] [PubMed]
- Wong, R.S.; Walker, K.; Halliday, R.; Trivedi, A. Influence of Soybean Oil or Non-Soybean Oil Based Lipid Emulsions on Parenteral Nutrition Associated Liver Disease in Late Preterm and Term Infants. Int. J. Child Health Nutr. 2014, 3, 179–184. [Google Scholar] [CrossRef]
- Ariyawangso, U.; Puttilerpong, C.; Ratanachu-ek, S.; Anuntkosol, M. Short-term safety and efficacy of fish-oil emulsions on the prevention of parenteral nutrition-associated liver disease in surgical neonates: A randomized controlled trial. Thai J. Pharm. Sci. 2014, 38, 156–209. [Google Scholar]
- Bishay, M.; Pichler, J.; Horn, V.; MacDonald, S.; Ellmer, M.; Eaton, S.; Hill, S.; Pierro, A. Intestinal failure-associated liver disease in surgical infants requiring long-term parenteral nutrition. J. Pediatr. Surg. 2012, 47, 359–362. [Google Scholar] [CrossRef]
- Muhammed, R.; Bremner, R.; Protheroe, S.; Johnson, T.; Holden, C.; Murphy, M.S. Resolution of parenteral nutrition-associated jaundice on changing from a soybean oil emulsion to a complex mixed-lipid emulsion. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 797–802. [Google Scholar] [CrossRef]
- Anez-Bustillos, L.; Dao, D.T.; Fell, G.L.; Baker, M.A.; Gura, K.M.; Bistrian, B.R.; Puder, M. Redefining essential fatty acids in the era of novel intravenous lipid emulsions. Clin. Nutr. 2018, 37, 784–789. [Google Scholar] [CrossRef]
- WHO. Protein and Amino Acid Requirements in Human Nutrition; World Health Organization Technical Report Series; World Health Organization: Geneva, Switzerland, 2007. [Google Scholar]
- Stapleton, P.P.; Charles, R.P.; Redmond, H.P.; Bouchier-Hayes, D.J. Taurine and human nutrition. Clin. Nutr. 1997, 16, 103–108. [Google Scholar] [CrossRef]
- Chesney, R.W.; Helms, R.A.; Christensen, M.; Budreau, A.M.; Han, X.; Sturman, J.A. An updated view of the value of taurine in infant nutrition. Adv. Pediatr. 1998, 45, 179–200. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, R.; Camilo, M.E. Taurine: A conditionally essential amino acid in humans? An overview in health and disease. Nutr. Hosp. 2002, 17, 262–270. [Google Scholar] [PubMed]
- Lima, L.; Obregon, F.; Cubillos, S.; Fazzino, F.; Jaimes, I. Taurine as a micronutrient in development and regeneration of the central nervous system. Nutr. Neurosci. 2001, 4, 439–443. [Google Scholar] [CrossRef] [PubMed]
- Kumpf, V.J. Parenteral nutrition-associated liver disease in adult and pediatric patients. Nutr. Clin. Pract. 2006, 21, 279–290. [Google Scholar] [CrossRef]
- Norsa, L.; Artru, S.; Lambe, C.; Talbotec, C.; Pigneur, B.; Ruemmele, F.; Colomb, V.; Capito, C.; Chardot, C.; Lacaille, F. Long term outcomes of intestinal rehabilitation in children with neonatal very short bowel syndrome: Parenteral nutrition or intestinal transplantation. Clin. Nutr. 2019, 38, 926–933. [Google Scholar] [CrossRef]
- Struijs, M.-C.; Schaible, T.; van Elburg, R.M.; Debauche, C.; te Beest, H.; Tibboel, D. Efficacy and safety of a parenteral amino acid solution containing alanyl-glutamine versus standard solution in infants: A first-in-man randomized double-blind trial. Clini. Nutr. 2013, 32, 331–337. [Google Scholar] [CrossRef]
- Ong, E.; Eaton, S.; Wade, A.; Horn, V.; Losty, P.; Curry, J.; Sugarman, I.; Klein, N.; Pierro, A. Randomized clinical trial of glutamine-supplemented versus standard parenteral nutrition in infants with surgical gastrointestinal disease. Br. J. Surg. 2012, 99, 929–938. [Google Scholar] [CrossRef] [PubMed]
- Mohamad Ikram, I.; Quah, B.; Noraida, R.; Djokomuljanto, S.; Faris Irfan, C.; Van Rostenberghe, H. A randomised controlled trial of glutamine-enriched neonatal parenteral nutrition in Malaysia. Singap. Med. J. 2011, 52, 356–360. [Google Scholar]
- Guimber, D.; Michaud, L.; Ategbo, S.; Turck, D.; Gottrand, F. Experience of parenteral nutrition for nutritional rescue in children with severe liver disease following failure of enteral nutrition. Pediatr. Transplant. 1999, 3, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Thornton, L.; Griffin, E. Evaluation of a taurine containing amino acid solution in parenteral nutrition. Arch. Dis. Child. 1991, 66, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Puntis, J.; Ball, P.; Preece, M.; Green, A.; Brown, G.; Booth, I. Egg and breast milk based nitrogen sources compared. Arch. Dis. Child. 1989, 64, 1472–1477. [Google Scholar] [CrossRef] [PubMed]
- Puntis, J.W.; Edwards, M.A.; Green, A.; Morgan, I.; Booth, I.W.; Ball, P.A. Hyperphenylalaninaemia in parenterally fed newborn babies. Lancet 1986, 2, 1105–1106. [Google Scholar] [CrossRef] [PubMed]
- Riskin, A.; Picaud, J.C.; Shamir, R. ESPGHAN/ESPEN/ESPR guidelines on pediatric parenteral nutrition: Standard versus individualized parenteral nutrition. Clin. Nutr. 2018, 37, 2409–2417. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Guerra, P.; Ferreras, C.; Espinheira, M.D.C.; Trindade, E.; Dias, J.A. Could Commercial Formulations Replace Individualized Prescription in Pediatric Home Parenteral Nutrition? J. Pediatr. Gastroenterol. Nutr. 2021, 73, 548–554. [Google Scholar] [CrossRef]
- Meyer, R.; Timmermann, M.; Schulzke, S.; Kiss, C.; Sidler, M.; Furlano, R. Developing and implementing all-in-one standard paediatric parenteral nutrition. Nutrients 2013, 5, 2006–2018. [Google Scholar] [CrossRef]
- Hermanspann, T.; Schoberer, M.; Robel-Tillig, E.; Hartel, C.; Goelz, R.; Orlikowsky, T.; Eisert, A. Incidence and Severity of Prescribing Errors in Parenteral Nutrition for Pediatric Inpatients at a Neonatal and Pediatric Intensive Care Unit. Front. Pediatr. 2017, 5, 149. [Google Scholar] [CrossRef]
- Riskin, A.; Shiff, Y.; Shamir, R. Parenteral nutrition in neonatology—To standardize or individualize? Isr. Med. Assoc. J. 2006, 8, 641–645. [Google Scholar]
- Mena, K.D.R.; Espitia, O.L.P.; Vergara, J.A.D. Management of Ready-to-Use Parenteral Nutrition in Newborns: Systematic Review. J. Parenter. Enter. Nutr. 2018, 42, 1123–1132. [Google Scholar] [CrossRef] [PubMed]
- Simmer, K.; Rakshasbhuvankar, A.; Deshpande, G. Standardised parenteral nutrition. Nutrients 2013, 5, 1058–1070. [Google Scholar] [CrossRef] [PubMed]
- Adamkin, D.H.; Radmacher, P.G. Current trends and future challenges in neonatal parenteral nutrition. J. Neonatal Perinatal Med. 2014, 7, 157–164. [Google Scholar] [CrossRef]
- Lapillonne, A.; Berleur, M.P.; Brasseur, Y.; Calvez, S. Safety of parenteral nutrition in newborns: Results from a nationwide prospective cohort study. Clin. Nutr. 2018, 37, 624–629. [Google Scholar] [CrossRef]
- Kumpf, V.J. Challenges and Obstacles of Long-Term Home Parenteral Nutrition. Nutr. Clin. Pract. 2019, 34, 196–203. [Google Scholar] [CrossRef]
- Holcombe, B.; Mattox, T.W.; Plogsted, S. Drug shortages: Effect on parenteral nutrition therapy. Nutr. Clin. Pract. 2018, 33, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Hill, S.; Ksiazyk, J.; Prell, C.; Tabbers, M. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Home parenteral nutrition. Clin. Nutr. 2018, 37, 2401–2408. [Google Scholar] [CrossRef]
- Neelis, E.; de Koning, B.; van Winckel, M.; Tabbers, M.; Hill, S.; Hulst, J. Wide variation in organisation and clinical practice of paediatric intestinal failure teams: An international survey. Clin. Nutr. 2018, 37, 2271–2279. [Google Scholar] [CrossRef]
Study | Design Number of Patients (N) | Patients Age at Inclusion | Intervention | Control | PN Lipid Dose (g/kg BW/day) | In Line with ESPGHAN | PN Duration | Main Outcomes and Conclusions |
---|---|---|---|---|---|---|---|---|
Haines et al., 2023 [82] | Retrospective | Hospitalized infants and toddlers/children, median (IQR) age: 3.0 (0.9–11.0) years | SMOF (n = 478) | SO (n = 206) | n.a. | n.a. | SO: 9.0 (4, 25) days, SMOF: 9.0 (4, 19) days | SMOF vs. SO: Overall
|
Belza et al., 2023 [83] | Retrospective | Infants and toddlers, median age (IQR) age 4.1 (2.4–9.6) years | SMOF (n = 26) | n.a. | 1.7 | ☑ | 1367 days | Normal T:T ratio in all patients. ARA levels: low in 19.2%, normal in 76.9%, and high in 3.8% of patients. DHA: normal in 7.7%, high in 92.3%; EPA: high in 100%. None with EFAD. |
Hudson et al., 2023 [84] | Retrospective Multicenter | Infants Median age 5.5 weeks | SMOF (n = 35) | SO (n = 15) | SMOF: 1.8 SO: 1.5 | ☑ | SMOF: 10.1 weeks SO: 7.66 weeks | SMOF vs. SO: Higher median serum CBil level at baseline: (p < 0.001). Differences resolved after 6 weeks. Proportion of patients with IFALD decreased from 54% to 20% for SMOF while stable in SO group. |
Huff 2023 [85] | RCT | Surgical term newborns Median age 2–5 days | SMOF (n = 12) | SO (n = 12) SO historic (n = 12) | SMOF: 3 SO: 1 | ☑ | Up to 12 weeks | SMOF vs. SO/SO historic: Lower weekly change in DBil levels (both p < 0.001). Lower DBil levels at study end (both p < 0.01). Higher EPA and DHA levels (p < 0.05), and lower ARA levels vs. control. |
Yu 2023 [86] | Retrospective | Preterm and term neonates < 1 month | SMOF (n = 16) | SO (n = 136) | SMOF: median 2.7 g/kg/d SO: median 1 g/kg/d | ☑ | ≥14 days | SMOF vs. SO: Higher incidence of cholestasis (p = 0.005). Shorter time to cholestasis. |
Alvira-Avril 2022 [87] | Retrospective | Hospitalized and outpatient pediatric patients, newborns to adolescents < 18 years | SMOF (n = 743) | SO (n = 450) | n.a. | SMOF: 18.5 days SO: 17.5 days | SMOF vs. SO: Lower total rate of infection (p < 0.01). SMOF was independently associated with reduced catheter-related bloodstream infections (p < 0.05). | |
Navaratnarajah et al., 2022 [88] | Retrospective chart review N = 160 | Hospitalized infants/toddlers on prolonged PN < 1 year | SMOF (n = 88) | SO (n = 72) | SMOF: 2.5 [1.7–2.8] SO 2.5 [1.9–2.8] | ☑ | ≥28 days | SMOF vs. SO: Lower incidence of cholestasis during the study period. Lower log-transformed CBil at the end of the ILE administration (p < 0.02). |
Goulet et al., 2022 [15] | Prospective cross-sectional N = 70 | Children on HPN SMOF: 5.9 [4.1–8.4] years Weaned: 6.9 [4.0–8.7] years | SMOF (n = 46) | Weaned off PN (n = 24) | SMOF: 1.9 [1.4–2.0] | ☑ | 2.4 ± 0.9 years | SMOF vs. weaned: Higher CBil (p < 0.0001) and liver enzymes (all p < 0.01). Higher EPA and DHA but lower MA and ARA in RBC (all p < 0.0001). |
Goulet et al., 2021 [9] | Retrospective cross-sectional Multicenter N = 268 in 2014 N = 385 in 2019 | Children on HPN Median age per year over the 5-year observation period: 62.5–84.1 months | HPN with different types of ILEs | - | 1.02–1.5 | ☑ | 5 years | 2014 vs. 2019: Use of a SMOF increased from 67.4% to 88.3% (p < 0.001). CRBSIs decreased (p < 0.001). Prevalence of cholestasis (CBil ≥ 20 μmol/L) low and stable during the study period. |
Rumore et al., 2021 [89] | Retrospective N = 92 | Infants/toddlers and children on HPN Range 3–223 months (median 11 months) | SMOF (n = 79) Switch to SMOF (n = 13) | Non-SMOF (SO or OO/SO) (n = 19) | n.a. | - | n.a. | SMOF vs. non-SMOF: Lower overall transplantation rate (p < 0.05). Lower mortality rate (n.s.). Higher vitamin E level and vitamin E:lipid ratio, both p < 0.001. Higher vitamin D level (p < 0.001). |
Wassef et al., 2021 [90] | Prospective observational N = 16 | Infants/toddlers, children and adolescents with IF | SMOF (n = 16) | - | Mean dose at initiation: 1.5 [1–2.5] Mean dose at the end: 1.6 [1–2.5] | ☑ | 16.4 [4–33] months | End of study vs. baseline: Decrease in mean TBil (p < 0.05) normalization of DBil in all patients. Change in mean TBil after 4–5 months (p < 0.01; stable thereafter). No new cases of IFALD. No EFAD. |
Daniel et al., 2021 [91] | Retrospective N = 101 | Hospitalized newborn infants (preterm/term), infants/toddlers, children and adolescents SMOF: 300 [0–1095] days SO: 31 [0–795] days | SMOF (n = 60) | SO (n = 41) | Initiated: 0.5–1.0 Increased up to 2.0–3.0 | ☑ | SMOF: 28.5 [20.75, 44] days SO: 32 [23, 55] days | SMOF vs. SO: Lower incidence of IFALD p < 0.05). Subgroup of patients with IFALD (n = 20), over 6 months: Lower bilirubin (p < 0.05). |
Lezo et al., 2020 [92] | Prospective observational Multicenter N = 38 | Infants/toddlers, children and adolescents on HPN SMOF; 3.3 [0.9–16.9] years OO/SO: 8.4 [1.6–18.6] years | SMOF (n = 23) | OO/SO (n = 15) | SMOF: 1.3 [0.5–2.5] OO/SO: 1.3 [0.5–1.7] | ☑ | SMOF: 22.2 [9.8–202] months OO/SO: 21.1 [7.0–104.0] months | SMOF vs. OO/SO and vs. healthy reference range:
Lower ARA in RBC (both p < 0.01). With both ILEs vs. healthy reference range: no EFAD with both ILEs. Absence of liver fibrosis with both ILEs. SMOF vs. OO/SO: Median Z-score of weight, height or BMI NSD. |
Nagelkerke et al., 2020 [93] | Prospective cross-sectional N = 32 | Infants/toddlers, children and adolescents on HPN Median 8.0 (range 0.3–17.8) years | SMOF (n = 23) or OO/SO (n = 6) | - | Median 1.0 (range 0–2.6) | ☑ | Median 45 months | Varying, but substantial proportion of subjects with fibrosis in the cohort:
|
Ho 2020 [94] | Retrospective N = 20 | Children on HPN Median 6.2 years | SMOF | Pre-SMOF (SO or SO/FO combination) | 2.0 [1.6–2.0] | ☑ | 1.5 years | From SMOF initiation to 1.5 years post SMOF initiation: Increases in ARA, LA, DHA and ALA, all p < 0.01. Decreases in ALT and GGT; both p < 0.005. Slight increases in BMI z-score; n.s. |
Huff 2020 [95] | Retrospective N = 47 | Newborn infants, infants/toddlers, and children with IF and cholestasis (n = 42) 45 [4–1623] days | SMOF | - | Median 2.1 (range 0.8–3.0) | ☑ | Median 53 days (range 1–432 days) | Cholestatic patients had resolution with SMOF: 17% improved, 45% showed no response. Biochemical signs of EFAD observed in 15/28 patients with measurements available; EFAD was mild in all patients without clinical symptoms of EFAD. |
Hanindita 2019 [96], 2020 [97] | RCT N = 14 | Newborn infants post surgery SMOF: 14.1 ± 17.1 days MCT/SO: 14.0 ± 12.1 days | SMOF (n not reported) | SO/MCT (n not reported) | 1.0–4.0 | ☑ | SMOF: 29 ± 34 days MCT/SO: 30.0 ± 20.3 (18 ± 15 days) | SMOF vs. SO/MCT group: Decrease in SMOF vs. increase in serum IL-6 from baseline to POD 3. Significant differences in IL-6 levels before surgery (p = 0.048), on POD 3 (p = 0.013), and in changes within 3 days (p = 0.003). |
Casson et al., 2019 [98] | Retrospective Two centers N = 44 | Newborn infants and infants/toddlers during the first 8 weeks of intestinal rehabilitation SMOF: mean 7 (range 4–50) days SO: mean 8 (range 4–47) days | SMOF (n = 21) | SO (n = 23) | SMOF:wk1: 3.0 [2.0–3.0] wk4: 3.0 [1.3–3.0] wk8: 2.0 [1.5–3.0] SO:wk1: 2.0 [1.5–3.0] wk 4: 2.0 [1.5–3.0] wk 8: 1.5 [1.0–3.4] | ☑ | >8 weeks | SMOF vs. SO: CBil levels normalized more quickly (p = 0.04). Subset of infants without any EN tolerance: Lower incidence of cholestasis (78% vs. 92%, p = 0.057). |
Belza 2019 [99] | Retrospective N = 37 | Infants/toddlers with IF <12 months | SMOF (n = 17) | SO (n = 20) | 2.0–3.0 | ☑ | SMOF: 421 [203–822] days SO: 213 [104–364] days | SMOF vs. SO: Lower likelihood to reach a serum CBil of 34 µmol/L or 50 µmol/L; both p ≤ 0.05). With SMOF: no need for Omegaven to resolve IFALD ( p = 0.014). Lower median CBil 3 months after PN initiation (p = 0.023). Improved weight z-scores at 3 and 6 months (both p < 0.05). Normal range of growth in both groups. |
Jiang 2019 [100] | RCT N = 160 | Newborn infants after GI surgery Mean 4–5 days | SMOF (n = 74) | SO/MCT (n = 86) | 1.0–3.0 | ☑ | >2 weeks (22/24 patients > 4 weeks) | SMOF vs. SO/MCT: Infants who received lipids for >4 weeks: Lower ALT, AST and DBil levels at end of week 4 (all p < 0.05). NSD in weight gain or nutrition indices at end of weeks 2 and 4 months. |
Lam 2018 [101] | Retrospective N = 40 | Hospitalized newborn and infants/toddlers/children SMOF: 0.6 (0.1–28) mths SO: 0.8 (0.1–33) months | SMOF (n = 20) | SO (n = 20) | SMOF: 2.2 (1.8–2.5] SO: 2.1 [1.6–2.3] | ☑ | SMOF: 9 [5–13] weeks SO: 6 [4–13] weeks | SMOF vs. SO: Lower trajectory of CBil (p < 0.001) (both p < 0.001). Growth/nutritional status NSD. |
Olszewska 2018 [102] | Prospective observational N = 17 | Infants, children, and adolescents with ultra-SBS Range 0.8–14.2 years | SMOF (n = 10) or SMOF/FO (n = 5) or SO/MCT (n = 2) | - | n.a. | - | PN duration 6.6 years [0.8–14.2] | During the 1-year observation period: (SDS) of −1.2 for body mass. None of the patients had elevated CBil levels above 34.2 µmol/L. |
Pereira-da-Silva 2018 [103] | RCT N = 49 | Newborn infants (term/preterm) undergoing major surgery <48 h | SMOF (n = 22) | SO/MCT (n = 27) | Median cumulative dose: SMOF: 14.7 g/kg SO/MCT: 12.5 g/kg | ☑ | SMOF: median 16 days SO/MCT: median 18 days | SMOF vs. SO/MCT: Similar cumulative incidence rates of CBil > 1 mg/dL or >20% of TBil between groups. Cumulative incidence of hypertriglyceridemia was lower (p = 0.0024). Mean serum TG lower (p = 0.013). |
Diamond 2017 [104] | RCT Multicenter N = 24 | Infants/toddlers with early IFALD SMOF: mean 6.5 weeks (range 4.3–8.7) SO: mean 5.3 weeks (range 3.5–7.2) | SMOF (n = 11) | SO (n = 13) | 2.0–3.0 | ☑ | SMOF: 8 [5.5–10.5] weeks SO: 8 [5.7–10.7] weeks | SMOF vs. SO: Lower serum CBil at trial completion (primary endpoint, p = 0.001). Higher likeliness to have a decrease in serum CBil to 0 µmol/L over the entire study period (p = 0.006). Less patients with serum CBil > 50 µmol/L at primary endpoint (p = 0.04). Higher GGT at trial completion (p = 0.04). |
Pichler 2015 [105] | Controlled trial non-randomized N = 67 | Newborn infants, infants/toddlers, children, and adolescents with IF 0.7 [0.01–15.1] years | Mixed ILE: SMOF or OO/SO (n = 27) | SO or SO/MCT (n = 40) | n.a. | - | 2–3 times per week Duration n.a. | Lower frequency of sludge and/or gallstones (p = 0.05). Lower liver echogenicity (p = 0.003). Overall, in 7 (10%) children, sludge and/or gallstones resolved spontaneously. |
De Cunto 2015 [106] | Retrospective N = 42 | Newborn infants (preterm/term) undergoing GI surgery 1–82 days Matched controls (n = 21, thereof 5 receiving PN due to prematurity) | SMOF (surgical group, n = 21) | 0.5–3.0 | ☑ | Mean 40 days | Surgical infants vs. matched controls: Post-surgical infants were shorter (p = 0.001), lighter (p < 0.001), and had lower fat mass content (p < 0.0001) than their peers at similar corrected age. Nine infants in the surgical group and 1 in the control group had PN-associated cholestasis. | |
Pichler 2014 [107] | Retrospective N = 177 | Hospitalized infants/toddlers, children and adolescents changing to or starting PN with a FO-ILE Median 0.6 (range 0–16) years | SMOF (n = 71) | SO/MCT (n = 56) | SMOF: 2.3 ± 0.8 SO/OO/FO: 2.2 ± 0.9 | ☑ | SMOF: median 41 (3–311) days SO/OO/FO: median 30 (3–436) days SO: median 73 (19–154) | With SMOF (baseline vs. end of treatment):
|
Hoffmann 2014 [108] | Retrospective N = 30 | Children with haemato-oncologic disease during CT 10.69 ± 7.11 years (mean ± SD) | SMOF (n = 15) | SO (n = 15) | SMOF: 0.9 SO: 1.0 | ☑ | >14 days | GGT increased in the SO group (p < 0.05). No patients developed cholestasis. Decrease in lactate dehydrogenase levels (marker of cell damage) with SMOF vs. increase in the SO group (p = 0.016). |
Wong 2014 [109] | Retrospective N = 208 | Newborn infants and infants Age not reported | SMOF or SO/OO (n = 54) | SO (n = 154) | n.a. | - | SMOF mean 19 days and SO: 21 days | Mixed ILEs vs. SO: Lower prevalence of IFALD (17% vs. 21%; p = 0.315) |
Ariyawangso 2014 [110] | RCT N = 42 | Surgical newborn infants (preterm/term) Age not reported | SMOF (n = 21) | SO (n = 21) | SMOF: 2.6 ± 0.3 SO: 2.6 ± 0.2 | ☑ | SMOF: 22.5 ± 8.5 days SO: 20.9 ± 5.5 days | SMOF vs. SO: Lower plasma TBil (p < 0.001)] and DBil (p < 0.001)]. Increase in TBil and DBil in the SO group (p = 0.02 and p < 0.001). Decrease in TBil (p < 0.001) and unchanged DBil with SMOF Growth NSD at day 22. |
Bishay 2012 [111] | Retrospective N = 87 | Infants post surgery with or without IFALD Non-IFALD: mean 19 (1–347) days IFALD: mean 45 (4–270) | SMOF or SO/OO/FO | - | n.a. | - | Non-IFALD: 48 days (28–310) IFALD: 77 (30–276) | IFALD occurred in 33% (n = 29); 61 children receiving long-term PN (70%) achieved enteral autonomy, whereas 12 (14%) required HPN. |
Muhammed 2012 [112] | Retrospective N = 17 | Infants/toddlers and children with PN-associated jaundice SMOF: 12–164 weeks SO: 8–64 weeks | SMOF (n = 8) | SO (n = 9) | SMOF: 0.6–3.5 SO: 2.5–3.5 | ☑ | SMOF: 12–148 weeks SO: 8–64 weeks | After 6 months, 5 of 8 children in the SMOF and 2 of 9 children in the SO group had total resolution of jaundice. Median TBil decreased in the SMOF group and increased in the SO group (p = 0.02). |
Goulet 2010 [48] | RCT N = 28 | Infants/toddlers and children on HPN SMOF: 30.3 ± 23.9 months SO: 38.8 ± 35.5 months | SMOF (n = 15) | SO (n = 13) | SMOF: 1.4 ± 0.5 SO: 1.4 ± 0.5 | ☑ | SMOF: 27.3 ± 0.6 days SO: 27.5 ± 0.5 days | Baseline vs. end of study: In SMOF group: TBil decreased (p < 0.01). In RBC and in plasma phospholipids, EPA and DHA increased; n3-/n6-FA ratio in plasma and RBC was more elevated with SMOF (both p < 0.01); α-tocopherol levels increased with SMOF vs. SO (p < 0.05). |
Age Group | Term Newborn Infants Up to 1 Month | Infants/Toddlers 1 Month–3 Years | Children and Adolescents 3–18 Years |
---|---|---|---|
Recommended total amino acid dose range acc. to ESPGHAN (g/kg BW/day) | 1.5–3 | 1–2.5 | 1–2 |
Cysteine/cysteine (mg/kg/day) | 23–46 | 15–38 | 15–31 |
Tyrosine (mg/kg/day) | 11–23 | 8–19 | 8–15 |
Taurine (mg/kg/day) | 7–14 | 5–14 | 5–9 |
Arginine (mg/kg/day) | 94–188 | 63–157 | 63–126 |
Phenylalanine (mg/kg/day) | 62–124 | 41–103 | 41–83 |
Valine (mg/kg/day) | 83–165 | 55–138 | 55–110 |
Isoleucine (mg/kg/day) | 71–142 | 47–119 | 47–95 |
Study | Design Number of Patients (N) | Patients Age at Inclusion | Intervention | Control | Amino Acid Dose (g/kg BW/day) | In Line with ESPGHAN * | PN Duration | Main Outcomes |
---|---|---|---|---|---|---|---|---|
Norsa et al., 2019 [120] | Retrospective Cross-sectional N = 36 | Infants/toddlers and children with neonatal short bowel syndrome. Median 9 (3–73) months | PN with Vaminolact or Primene (n = 16) on long-term PN (n = 16) or intestinal transplantation (ITx) after 2.5–9 years (n = 20) | - | n.a. | - | Follow-up: median 17 (9–20) years | Long-term PN
|
Abi Nader et al., 2017 [14] | Retrospective N = 17 | Infants with severe malnutrition on PN for 4.5 ± 2.2 months | PN with Vaminolact or Primene | - | 2.9 ± 0.3 | ☑ | 1.9 ± 0.4 years | Weight gain after 28 days of PN was 110 ± 5% of optimal weight gain/ age. |
Abi Nader et al., 2016 [13] | Retrospective N = 251 | Infants/toddlers on HPN Age 8.4 ± 3.6 months | HPN with Vaminolact or Primene or Vintene | - | n.a. | - | Mean duration: 1.9 ± 0.4 years | 19 underwent ITx; 24 children died (10%); 91 with SBS weaned off CRBSIs: 1.7/1000 days of PN and cholestasis (51 children; 20% Patients weaned off HPN:
|
Struijs et al., 2013 [121] | RCT N = 23 | Surgical newborn infants Gln-AA: 1 [1,2,3] days Standard-AA: 2 [1,2,3] days | GLN-AA: Pediatric AA solution with glycyl-tyrosine, Ala-Gln and acetyl-cysteine, higher in arginine and taurine vs. control (n = 17) | Standard-AA: Vaminolact (n = 6) | GLN-AA: 2.1 ± 0.5 Standard-AA: 2.1 ± 0.2 | ☑ | GLN-AA: 7.5 ± 3.1 days Standard-AA: 8.9 ± 2.1 days | Gln-AA vs. standard AA: NSD for body weight, head circumference and pre-albumin. Plasma AA-profiles were closer to normal ranges. |
Ong et al., 2012 [122] | RCT Multicenter N = 164 | Surgical newborn infants and infants/toddlers Ala-Gln group: 5 (1–47) days Control: 5 (1–51) days | PN + Ala-Gln (n = 82) AA solution not specified | Standard PN (n = 82) Vaminolact in 12 centers and Primene in 2 centers | 1.5 | ☑ | Control:15.0 (13.3–16.8) days Ala-Gln: 19.0 (14.6–23.4) days | PN with Ala-Gln vs. standard PN. During exclusive PN: decreased incidence of sepsis (p = 0.005). NSD for growth. No side-effects. |
Ikram et al., 2011 [123] | RCT N = 132 | Newborn infants (preterm/term) requiring PN Age < 72 h | PN + Ala-Gln (n = 132) Prepared with Vaminolact | Standard PN (n = 138) Prepared with Vaminolact | Ala-Gln 0.6 Vaminolact dose not reported | - | n.a. | Ala-Gln vs. standard NSD for sepsis, ventilation, days NICU). |
Goulet et al. 2010 [48] | RCT N = 28 | Infants/toddlers and children on HPN SMOF: 30.3 ± 23.9 mths SO: 38.8 ± 35.5 | SMOF (n = 15) Vaminolact for children < 3 years (n = 8) | SO (n = 13) Vaminolact for children < 3 years (n = 7) | 1.8 | ☑ | SMOF: 27.3 ± 0.6 days SO: 27.5 ± 0.5 days | NSD for clinical indices, vital signs, biological safety parameters, or growth. |
Guimber et al. 1999 [124] | Retrospective N = 7 | Newborn infants, infants/toddlers and children with IFALD: 2.5 yrs (4 days–11.5 yrs) | PN with Vaminolact or Primene | - | 1.7 ± 0.5 | ☑/☒ (for intakes < 1.5) | 105 days (1 day-6 months) | After PN vs. before PN: Weight/height Z-score increased (p < 0.05). |
Thornton et al. 1991 [125] | Controlled study (not randomized) N = 25 | Critically ill newborn infants requiring PN 0–4 days | PN with Vaminolact (n = 15) | PN with Vamin glucose (n = 10) Without taurine | Vaminolact: 1.8 ± 0.2 at day 1 2.3 ± 0.2 from day 3 Vamin glucose: 1.9 ± 0.1 at day 1 2.3 ± 0.1 from day 3 | ☑ | Vaminolact: 12 ± 5 days Vamin glucose: 10 ± 3 days | No abnormalities in AA concentrations.
|
Puntis et al. 1989 [126] | RCT N = 14 | Surgical newborn infants and infants/toddlers Vaminolact group: 36 days (11–84) Vamin 9 glucose group: 16 days (11–29) | Vaminolact (n = 7) | Vamin 9 glucose (n = 7) Without taurine | 0.5–2.5 | ☑/☒ (for intakes < 1.5) | 6 days | Vaminolact vs. Vamin lower PHE, TYR and total cystine/cysteine concentration (p = 0.0028, p = 0.0004, p < 0.05). Mean concentrations of AA except THRE, LYS, HIST, and CYST closer to the target range. NSD in growth or nitrogen retention. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goulet, O. An Overview of Parenteral Nutrition from Birth to Adolescence Based on a Composite Fish Oil Containing Lipid Emulsion and a Pediatric Amino Acid Solution. Nutrients 2024, 16, 440. https://doi.org/10.3390/nu16030440
Goulet O. An Overview of Parenteral Nutrition from Birth to Adolescence Based on a Composite Fish Oil Containing Lipid Emulsion and a Pediatric Amino Acid Solution. Nutrients. 2024; 16(3):440. https://doi.org/10.3390/nu16030440
Chicago/Turabian StyleGoulet, Olivier. 2024. "An Overview of Parenteral Nutrition from Birth to Adolescence Based on a Composite Fish Oil Containing Lipid Emulsion and a Pediatric Amino Acid Solution" Nutrients 16, no. 3: 440. https://doi.org/10.3390/nu16030440
APA StyleGoulet, O. (2024). An Overview of Parenteral Nutrition from Birth to Adolescence Based on a Composite Fish Oil Containing Lipid Emulsion and a Pediatric Amino Acid Solution. Nutrients, 16(3), 440. https://doi.org/10.3390/nu16030440