Effectiveness of Web Applications on Improving Nutritional Status of Patients with Colorectal Cancer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- Nutritional news: scientific information combatting misleading information shown on social media.
- Self-weekly body weight recorder: motivates patients to monitor their body weight with a self-weekly body weight recorder.
- Food group selection: proper nutritional information on how to make appropriate food choices during chemotherapy based on food groups, e.g., carbohydrates, protein, fat, fruit, and vegetables.
- Fruit and vegetable washing techniques: three easy washing methods followed by public health concerns that can be practiced at the household level.
- Therapeutic recipes with diet tricks for reducing chemotherapy side effects: 50 therapeutic recipes with cooking videos. The menu function offers cooking tips for decreasing chemotherapy side effects, including recipes for reducing nausea, preventing diarrhea, stimulating appetite, and other related issues.
- Medical food selection: informs on commercial oral nutritional supplements (ONS) available in Thailand and lists the beneficial properties of each formula with automatic scoop calculation features.
- Food group selection: proper nutritional information on making appropriate food choices during chemotherapy based on food groups, e.g., carbohydrates, protein, fat, fruit, vegetables, and water intake.
- Meal plan examples with a table of calorie requirements: 1500 kcal/1800 kcal and 2000 kcal with specific portion sizes of food groups: starch/protein (meat)/milk or dairy product/oil/fruit and vegetables.
- ONS: suggests medical formulas that provide immunonutrients to cancer patients who do not achieve nutritional goals.
- Eating guidelines when suffering from chemotherapy side effects: information on reducing treatment side effects, such as poor appetite, nausea and vomiting, mucositis, chewing and swallowing difficulty, constipation, diarrhea, neutropenia, and changes in taste.
- Food avoidance in cancer patients.
- Diet tricks: nutritional tricks to reach nutritional goals with small, frequent meals containing calorie-dense foods and a protein-based diet.
- A calorie-dense and regular protein diet with small, multiple meals were distributed to participants individually.
- Carbohydrate suggestions followed by gastrointestinal symptoms and underlying diseases.
- Lean protein from breast chicken, fish, white egg, tofu, and skinless meat were suggested to be cooked well-done in proper portion sizes.
- Mainly monounsaturated fatty acid (MUFA) oil was suggested as a trick for adding more calories to limited portions.
- Immunonutrient supplementation (omega-3, arginine, and nucleotides) during the day was suggested (as a snack or after resistance exercise) to provide adequate calories and protein.
- In terms of physical activity, increasing resistance exercise in addition to aerobic exercise was suggested to maintain muscle mass and prevent muscle atrophy.
2.2. Data Collection
2.3. Ethical Approval
2.4. Data Analyses
3. Results
3.1. Baseline Charateristics
3.2. Anthropometric Assessment
3.3. Biochemical Assessment
3.4. Dietary Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Health Statistic A.D. 2021. Ministry of Public Health ISSN 0857-3093. Available online: http://bps.moph.go.th/new_bps/sites/default/files/stratistics64.pdf (accessed on 3 June 2023).
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Olson, K.; Turner, A.R.; Courneya, K.S.; Field, C.; Man, G.; Cree, M.; Hanson, J. Possible links between behavioral and physiological indices of tiredness, fatigue, and exhaustion in advanced cancer. Support Care Cancer 2008, 16, 241–249. [Google Scholar] [CrossRef]
- Norman, K.; Kirchner, H.; Lochs, H.; Pirlich, M. Malnutrition affects quality of life in gastroenterology patients. World J. Gastroenterol. 2006, 12, 3380. [Google Scholar] [CrossRef] [PubMed]
- Von, M.M. Cancer-associated malnutrition: An introduction. Eur. J. Oncol. Nurs. 2005, 9, S35–S38. [Google Scholar]
- Bower, J.E. Cancer-related fatigue—Mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 2014, 11, 597–609. [Google Scholar] [CrossRef]
- Rehse, B.; Pukrop, R. Effects of psychosocial interventions on quality of life in adult cancer patients: Meta analysis of 37 published controlled outcome studies. Patient Educ. Couns. 2003, 50, 179–186. [Google Scholar] [CrossRef]
- McGrath, P. Reflections on nutritional issues associated with cancer therapy. Cancer Pract. 2002, 10, 94–101. [Google Scholar] [CrossRef]
- Baldwin, C. The effectiveness of nutritional interventions in malnutrition and cachexia. Proc. Nutr. Soc. 2015, 74, 397–404. [Google Scholar] [CrossRef]
- Moskovitz, D.N.; Kim, Y.I. Does perioperative immunonutrition reduce postoperative complications in patients with gastrointestinal cancer undergoing operations? Nutr. Rev. 2004, 62, 443–447. [Google Scholar] [CrossRef]
- Morley, J.E.; Mooradian, A.D.; Silver, A.J.; Heber, D.; Alfin-Slater, R.B. Nutrition in the elderly. Ann. Intern. Med. 1988, 109, 890–904. [Google Scholar] [CrossRef]
- Fukuda, Y.; Yamamoto, K.; Hirao, M.; Nishikawa, K.; Maeda, S.; Haraguchi, N.; Tsujinaka, T. Prevalence of malnutrition among gastric cancer patients undergoing gastrectomy and optimal preoperative nutritional support for preventing surgical site infections. Ann. Surg. Oncol. 2015, 22, 778–785. [Google Scholar] [CrossRef]
- Sierpina, V.; Levine, L.; McKee, J.; Campbell, C.; Lian, S.; Frenkel, M. Nutrition, Metabolism, and Integrative Approaches in Cancer Survivors. In Proceedings of the Seminar in Oncology Nursing, WB Saunders, Philadelphia, PA, USA, 1 February 2015. [Google Scholar]
- Wolf, P.G.; Manero, J.; Harold, K.B.; Chojnacki, M.; Kaczmarek, J.; Liguori, C.; Arthur, A. Educational video intervention improves knowledge and self-efficacy in identifying malnutrition among healthcare providers in a cancer center: A pilot study. Support Care Cancer 2020, 28, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Hopkinson, J.B. Educational needs of self-care in cachectic cancer patients and caregivers. Curr. Opin. Oncol. 2023, 35, 254–260. [Google Scholar] [CrossRef]
- Thompson, J.; Silliman, K.; Clifford, D.E. Impact of an early education multimedia intervention in managing nutrition-related chemotherapy side effects: A pilot study. Springerplus 2013, 2, 1–5. [Google Scholar] [CrossRef]
- Ministry of Digital Economy and Society. Household Survey on the Use of Information and Communication Technology Use of Information and Communication Technology of Population, 3rd ed.; National Statistic Office: Bangkok, Thailand, 2017; p. 148.
- Gell, N.M.; Grover, K.W.; Humble, M.; Sexton, M.; Dittus, K. Efficacy, feasibility, and acceptability of a novel technology-based intervention to support physical activity in cancer survivors. Support Care Cancer 2017, 25, 1291–1300. [Google Scholar] [CrossRef]
- Cai, T.; Huang, Y.; Zhang, Y.; Lu, Z.; Huang, Q.; Yuan, C. Mobile health applications for the care of patients with breast cancer: A scoping review. Int. J. Nurs. Sci. 2021, 8, 470–476. [Google Scholar] [CrossRef]
- Smith, S.A.; Whitehead, M.S.; Sheats, J.; Mastromonico, J.; Yoo, W.; Coughlin, S.S. A community-engaged approach to developing a mobile cancer prevention app: The mCPA study protocol. JMIR Res. Protoc. 2016, 5, e5290. [Google Scholar] [CrossRef]
- Nasi, G.; Cucciniello, M.; Guerrazzi, C. The role of mobile technologies in health care processes: The case of cancer supportive care. J. Med. Internet Res. 2015, 17, e26. [Google Scholar] [CrossRef]
- Kushi, L.H.; Doyle, C.; McCullough, M.; Rock, C.L.; Demark-Wahnefried, W.; Bandera, E.V.; American Cancer Society 2010 Nutrition and Physical Activity Guidelines Advisory Committee. American Cancer Society Guidelines on nutrition and physical activity for cancer prevention: Reducing the risk of cancer with healthy food choices and physical activity. CA Cancer J. Clin. 2012, 62, 30–67. [Google Scholar] [CrossRef]
- Muscaritoli, M.; Arends, J.; Bachmann, P.; Baracos, V.; Barthelemy, N.; Bertz, H.; Bischoff, S.C. ESPEN practical guideline: Clinical Nutrition in cancer. Clin. Nutr. 2021, 40, 2898–2913. [Google Scholar] [CrossRef]
- Orlemann, T.; Reljic, D.; Zenker, B.; Meyer, J.; Eskofier, B.; Thiemt, J.; Zopf, Y. A novel mobile phone app (OncoFood) to record and optimize the dietary behavior of oncologic patients: Pilot study. JMIR Cancer 2018, 4, e10703. [Google Scholar] [CrossRef]
- Gupta, D.; Lis, C.G.; Granick, J.; Grutsch, J.F.; Vashi, P.G.; Lammersfeld, C.A. Malnutrition was associated with poor quality of life in colorectal cancer: A retrospective analysis. Clin. Epidemiol. 2006, 59, 704–709. [Google Scholar] [CrossRef]
- Van, C.E.; Arends, J. The causes and consequences of cancer-associated malnutrition. Eur. J. Oncol. Nurs. 2005, 9, S51–S63. [Google Scholar]
- Aaldriks, A.A.; van der Geest, L.G.; Giltay, E.J.; le Cessie, S.; Portielje, J.E.; Tanis, B.C.; Maartense, E. Frailty and malnutrition predictive of mortality risk in older patients with advanced colorectal cancer receiving chemotherapy. J. Geriatr. Oncol. 2013, 4, 218–226. [Google Scholar] [CrossRef]
- VanderVeen, B.N.; Fix, D.K.; Carson, J.A. Disrupted skeletal muscle mitochondrial dynamics, mitophagy, and biogenesis during cancer cachexia: A role for inflammation. Oxid. Med. Cell. Longev. 2017, 2017, 3292087. [Google Scholar] [CrossRef]
- Antoun, S.; Raynard, B. Muscle protein anabolism in advanced cancer patients: Response to protein and amino acids support, and to physical activity. Ann. Oncol. 2018, 29, ii10–ii17. [Google Scholar] [CrossRef]
- Dong, Y.; Zhou, J.; Zhu, Y.; Luo, L.; He, T.; Hu, H.; Teng, Z. Abdominal obesity and colorectal cancer risk: Systematic review and meta-analysis of prospective studies. Biosci. Rep. 2017, 37, BSR20170945. [Google Scholar] [CrossRef]
- Madeddu, C.; Neri, M.; Sanna, E.; Oppi, S.; Macciò, A. Experimental drugs for chemotherapy-and cancer-related anemia. J. Exp. Pharmacol. 2021, 13, 593–611. [Google Scholar] [CrossRef]
- Aapro, M.; Österborg, A.; Gascón, P.; Ludwig, H.; Beguin, Y. Prevalence and management of cancer-related anaemia, iron deficiency and the specific role of iv iron. Ann. Oncol. 2012, 23, 1954–1962. [Google Scholar] [CrossRef]
- Taylor, S.; Ho, C.; Hu, F.; Barnett, J.; Melosky, B. Anemia and FOLFOX chemotherapy for colorectal carcinoma. J. Clin. Oncol. 2005, 23 (Suppl. S16), 3684. [Google Scholar] [CrossRef]
- Cella, D.; Dobrez, D.; Glaspy, J. Control of cancer-related anemia with erythropoietic agents: A review of evidence for improved quality of life and clinical outcomes. Ann. Oncol. 2003, 14, 511–519. [Google Scholar] [CrossRef] [PubMed]
- Keller, U. Nutritional laboratory markers in malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef]
- Mobarhan, S. The role of albumin in nutritional support. J. Am. Coll. Nutr. 1988, 7, 445–452. [Google Scholar] [CrossRef]
- Akkiz, H.; Carr, B.I.; Bag, H.G.; Karaoğullarından, Ü.; Yalçın, K.; Ekin, N.; Delik, A. Serum levels of inflammatory markers CRP, ESR and albumin in relation to survival for patients with hepatocellular carcinoma. Int. J. Clin. Pract. 2021, 75, e13593. [Google Scholar] [CrossRef]
- Don, B.R.; Kaysen, G. Poor Nutritional Status and Inflammation: Serum Albumin: Relationship to Inflammation and Nutrition. In Seminars in Dialysis; Wiley: Oxford, UK, 2004. [Google Scholar]
- Lozano-Lozano, M.; Cantarero-Villanueva, I.; Martin-Martin, L.; Galiano-Castillo, N.; Sanchez, M.J.; Fernández-Lao, C.; Arroyo-Morales, M. A mobile system to improve quality of life via energy balance in breast cancer survivors (BENECA mHealth): Prospective test-retest quasi-experimental feasibility study. JMIR mHealth uHealth 2019, 7, e14136. [Google Scholar] [CrossRef]
- Salihah, N.; Lua, P.L.; Ahmad, A.; Shahril, M.R. CandiTm”: A Malaysian-tailored dietary smartphone app for cancer patients and survivors. Malays J. Public Health Med. 2017, 2, 32–40. [Google Scholar]
- Scarry, A.; Rice, J.; O’Connor, E.M.; Tierney, A.C. Usage of mobile applications or mobile health technology to improve diet quality in adults. Nutrients 2022, 14, 2437. [Google Scholar] [CrossRef]
- Nyman, M.H.; Frank, C.; Langius-Eklöf, A.; Blomberg, K.; Sundberg, K.; Wengström, Y. Patients’ perspective on participation in care with or without the support of a smartphone app during radiotherapy for prostate cancer: Qualitative study. JMIR mHealth uHealth 2017, 5, e6829. [Google Scholar]
- Veale, G.; Dogan, H.; Murphy, J. Development and Usability Evaluation of a Nutrition and Lifestyle Guidance Application for People Living with and Beyond Cancer. In Proceedings of the 8th International Conference Design, User Experience, and Usability, Application Domains, DUXU, Orlando, FL, USA, 26–31 July 2019. [Google Scholar]
- Sundberg, K.; Wengström, Y.; Blomberg, K.; Hälleberg-Nyman, M.; Frank, C.; Langius-Eklöf, A. Early detection and management of symptoms using an interactive smartphone application (Interaktor) during radiotherapy for prostate cancer. Support Care Cancer 2017, 25, 2195–2204. [Google Scholar] [CrossRef] [PubMed]
- Sundberg, K.; Eklöf, A.L.; Blomberg, K.; Isaksson, A.K.; Wengström, Y. Feasibility of an interactive ICT-platform for early assessment and management of patient-reported symptoms during radiotherapy for prostate cancer. Eur. J. Oncol. Nurs. 2015, 19, 523–528. [Google Scholar] [CrossRef]
- Velardo, S. The nuances of health literacy, nutrition literacy, and food literacy. J. Nutr. Educ. Behav. 2015, 47, 385–389.e381. [Google Scholar] [CrossRef] [PubMed]
- Handley, M.A.; Lyles, C.R.; McCulloch, C.; Cattamanchi, A. Selecting and improving quasi-experimental designs in effectiveness and implementation research. Annu. Rev. Public Health 2018, 39, 5–25. [Google Scholar] [CrossRef]
- Jibb, L.A.; Stevens, B.J.; Nathan, P.C.; Seto, E.; Cafazzo, J.A.; Stinson, J.N. A smartphone-based pain management app for adolescents with cancer: Establishing system requirements and a pain care algorithm based on literature review, interviews, and consensus. JMIR Res. Protoc. 2014, 3, e3041. [Google Scholar] [CrossRef] [PubMed]
Demographic Characteristics | Study Group; Number (%) | |||
---|---|---|---|---|
Intervention Group (n = 13) | Comparison Group (n = 15) | p-Value | ||
Gender | Male | 6 (46.15) | 8 (53.33) | 1.000 |
Female | 7 (53.85) | 7 (46.67) | ||
Age (years) | Mean ± SD | 63.77 ± 2.26 | 61.07 ± 2.12 | 0.877 |
41–50 | 1 (7.69) | 2 (13.33) | ||
51–60 | 5 (38.46) | 5 (33.33) | ||
More than 60 | 7 (53.85) | 8 (53.34) | ||
Marital status | Single | 0 (0) | 2 (13.33) | 0.484 |
Married | 13 (100.00) | 13 (86.67) | ||
Education level | Lower than a bachelor’s degree | 4 (30.77) | 8 (53.33) | 0.276 |
Bachelor’s degree | 9 (69.23) | 7 (46.67) | ||
Monthly income (Bath) | 10,000–20,000 | 4 (30.77) | 7 (46.67) | 0.355 |
20,001–30,000 | 8 (61.54) | 8 (53.33) | ||
>30,000 | 1 (7.69) | 0 (0) | ||
Residences in Thailand | Bangkok and vicinity | 10 (76.92) | 11 (73.33) | 0.100 |
Central | 1 (7.69) | 4 (26.67) | ||
Northeastern | 2 (15.38) | 0 (0) | ||
Cancer staging | Stage 3 | 2 (15.38) | 3 (20.00) | 1.000 |
Stage 4 | 11 (84.62) | 12 (80.00) | ||
Chemotherapy formula | FOLFOX | 7 (53.85) | 6 (40.00) | 0.705 |
CAPOX | 6 (46.15) | 9 (60.00) |
Anthropometric Parameters | Study Group; (Mean ± SD) | |||
---|---|---|---|---|
Intervention Group (n = 13) | Comparison Group (n = 15) | p-Value | ||
Body weight (BW) (kg) | Baseline | 48.22 ± 2.12 | 48.06 ± 2.03 | 0.645 |
Visit2 | 49.82 ± 2.27 * | 48.6 ± 1.89 | 0.549 | |
Visit3 | 51.17 ± 2.30 *,** | 49.23 ± 11.90 | 0.461 | |
BW change (kg) | 2.95 ± 0.41 | 1.17 ± 0.64 | 0.036 | |
% BW change | 6.13 ± 0.73 | 2.74 ± 1.28 | 0.032 | |
BMI (kg/m2) | Baseline | 18.26 ± 0.50 | 18.27 ± 0.50 | 0.908 |
Visit2 | 18.87 ± 0.52 * | 18.50 ± 0.45 | 0.489 | |
Visit3 | 19.37 ± 0.55 *,** | 18.67 ± 0.48 | 0.341 | |
BMI change (kg/m2) | 1.11 ± 0.14 | 0.4 ± 0.21 | 0.013 | |
% BMI change | 6.10 ± 0.75 | 2.38 ± 1.21 | 0.018 | |
Fat % | Baseline | 15.43 ± 2.38 | 16.77 ± 2.21 | 0.684 |
Visit2 | 17.32 ± 2.28 * | 16.61 ± 2.31 | 0.832 | |
Visit3 | 18.01 ± 2.34 * | 17.55 ± 2.33 | 0.892 | |
% Fat change | 6.40 ± 6.36 | 5.24 ± 3.54 | 0.062 | |
Fat mass (kg) | Baseline | 7.41 ± 1.14 | 7.8 ± 0.97 | 0.798 |
Visit2 | 8.6 ± 1.17 * | 7.89 ± 1.06 | 0.655 | |
Visit3 | 9.31 ± 1.11 *,** | 8.51 ± 1.10 | 0.617 | |
Fat mass change (kg) | 1.89 ± 0.37 | 0.71 ± 0.26 | 0.189 | |
% Fat mass change | 8.49 ± 2.30 | 7.90 ± 4.24 | 0.357 | |
Muscle mass (kg) | Baseline | 38.99 ± 2.27 | 38.11 ± 2.32 | 0.79 |
Visit2 | 39.45 ± 2.26 *,** | 38.44 ± 2.11 | 0.748 | |
Visit3 | 40.38 ± 2.42 *,** | 38.48 ± 2.08 | 0.555 | |
Muscle mass change (kg) | 1.39 ± 0.34 | 0.37 ± 0.52 | 0.125 | |
% Muscle mass change | 3.52 ± 0.85 | 1.57 ± 1.30 | 0.237 |
Biochemical Parameters | Study Group; (Mean ± SD) | |||
---|---|---|---|---|
Intervention Group (n = 13) | Comparison Group (n = 15) | p-Value | ||
Hemoglobin (Hb) (g/dL): Normal range 13.5–17.5 g/dL | Baseline | 10.59 ± 0.51 | 10.61 ± 0.35 | 0.981 |
Visit2 | 11.15 ± 0.53 * | 10.94 ± 0.29 | 0.726 | |
Visit3 | 11.44 ± 0.55 * | 10.67 ± 0.41 | 0.269 | |
Change Hb | 0.85 ± 0.26 | 0.27 ± 0.28 | 0.070 | |
Hematocrit (Hct) (%): Normal range 40–52% | Baseline | 32.56 ± 1.55 | 32.67 ± 1.08 | 0.952 |
Visit2 | 34.11 ± 1.60 * | 33.31 ± 0.75 | 0.659 | |
Visit3 | 35.06 ± 1.57 * | 32.81 ± 1.47 | 0.304 | |
Change Hct | 2.50 ± 0.77 | 0.13 ± 0.88 | 0.090 | |
Total protein (TP) (g/dL): Normal range 6.6–8.3 g/dL | Baseline | 7.12 ± 0.28 | 7.52 ± 0.22 | 0.263 |
Visit2 | 7.61 ± 0.16 | 7.27 ± 0.24 | 0.695 | |
Visit3 | 7.69 ± 0.22 * | 7.42 ± 0.26 | 0.695 | |
Change TP | 0.57 ± 0.17 | −0.10 ± 0.15 | 0.008 | |
Globulin (g/dL): Normal range 2.5–3.5 g/dL | Baseline | 3.67 ± 0.24 | 3.82 ± 0.17 | 0.597 |
Visit2 | 3.80 ± 0.19 | 3.61 ± 0.18 | 0.488 | |
Visit3 | 3.87 ± 0.26 | 3.57 ± 0.18 | 0.353 | |
Change Globulin | 0.20 ± 0.09 | −0.25 ± 0.12 | 0.009 | |
Albumin (g/dL): Normal range 3.5–5.2 g/dL | Baseline | 3.41 ± 0.09 | 3.66 ± 0.16 | 0.174 |
Visit2 | 3.78 ± 0.08 * | 3.65 ± 0.16 | 0.490 | |
Visit3 | 3.85 ± 0.06 * | 3.85 ± 0.17 | 0.999 | |
Change Albumin | 0.43 ± 0.08 | 0.18 ± 0.07 | 0.026 | |
ESR (mm/hour): Normal range 0–15 mg/dL | Baseline | 65.61 ± 10.27 | 60.73 ± 10.37 | 0.742 |
Visit2 | 52.15 ± 10.45 | 45.80 ± 8.90 | 0.645 | |
Visit3 | 47.61 ± 8.29 * | 55.00 ± 10.48 | 0.594 | |
Change ESR | −18.00 ± 6.17 | −5.13 ± 8.19 | 0.254 |
Dietary Parameters | Study Group; (Mean ± SD) | |||
---|---|---|---|---|
Intervention Visit | Intervention Group (n = 13) | Comparison Group (n = 15) | p-Value | |
Total Calories (kcal/day) | Baseline | 1344.79 ± 72.55 | 1239.15 ± 66.71 | 0.293 |
Visit2 | 1603.35 ± 71.53 * | 1491.84 ± 79.24 * | 0.312 | |
Visit3 | 1797.06 ± 84.99 *,** | 1486.37 ± 100.14 | 0.028 | |
Calories change (Visit3-Baseline) | 452.27 ± 56.87 | 247.22 ± 106.91 | 0.105 | |
% Calorie change (Visit3—Baseline) | 35.17 ± 5.27 | 23.62 ± 9.22 | 0.288 | |
Protein intake (g/day) | Baseline | 48.44 ± 3.86 | 46.72 ± 3.13 | 0.729 |
Visit2 | 69.16 ± 4.17 * | 56.13 ± 3.73 | 0.018 | |
Visit3 | 80.68 ± 5.55 *,** | 61.14 ± 3.82 * | 0.006 | |
A gram of protein change (Visit3—Baseline) | 32.24 ± 4.68 | 14.42 ± 4.09 | 0.008 | |
% Protein change (Visit3—Baseline) | 74.35 ± 13.52 | 36.46 ± 9.44 | 0.027 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunthanawanich, P.; Wichansawakun, S.; Luangjinda, C.; Hudthagosol, C. Effectiveness of Web Applications on Improving Nutritional Status of Patients with Colorectal Cancer. Nutrients 2024, 16, 408. https://doi.org/10.3390/nu16030408
Nunthanawanich P, Wichansawakun S, Luangjinda C, Hudthagosol C. Effectiveness of Web Applications on Improving Nutritional Status of Patients with Colorectal Cancer. Nutrients. 2024; 16(3):408. https://doi.org/10.3390/nu16030408
Chicago/Turabian StyleNunthanawanich, Pornpimon, Sanit Wichansawakun, Cholrit Luangjinda, and Chatrapa Hudthagosol. 2024. "Effectiveness of Web Applications on Improving Nutritional Status of Patients with Colorectal Cancer" Nutrients 16, no. 3: 408. https://doi.org/10.3390/nu16030408
APA StyleNunthanawanich, P., Wichansawakun, S., Luangjinda, C., & Hudthagosol, C. (2024). Effectiveness of Web Applications on Improving Nutritional Status of Patients with Colorectal Cancer. Nutrients, 16(3), 408. https://doi.org/10.3390/nu16030408