A Narrative Review on the Neuroprotective Potential of Brown Macroalgae in Alzheimer’s Disease
Abstract
1. Introduction
2. Neuroprotective Compound Extraction from Brown Seaweed
2.1. Conventional Solid–Liquid Extraction
2.2. Advanced Extraction Technologies for Brown Macroalgae Neuroprotection: A Greener Perspective
3. Chemical Characterization of Extracts from Brown Macroalgae
3.1. Liquid Chromatography
3.2. Other Techniques
Family | Compounds | Brown Algae Species | Separation Technique—Detection Instrument (GC/LC Column) | Stationary Phase and Mobile Phases | Ionization Source | References |
---|---|---|---|---|---|---|
Lipids | Fatty acids, phospholipid, glyceroglycolipid, diglyceride and triglyceride. | Alaria esculenta, Ascophyllum nodosum, Fucus vesiculosus, Himanthalia elongata, Saccharina latissima, Sargassum muticum, and Sargassum fusiforme. | HPLC–Orbitrap–MS/MS (Poreshell 120 EC-C18) | RP. A: ACN/water 60:40 (0.1% FA and 10 mM NH4HCO2); B: IPA/ACN 90:10 (0.1% FA and 10 mM NH4HCO2). | ESI+; ESI- | [28] |
Lipids | Sterols (saringosterol and fucosterol). | GC–MS (DB-XLB 122-1232) | - | EI | ||
Polyphenol | Dieckol. | Ecklonia cava. | HPLC–DAD (C18 Kromasil 100-5) | RP. A: water; B: MeOH. | - | [41] |
Amino acids, fatty acids, terpenoids, phenolics, aromatics, and cyclic ketones. | 6-aminocaproic acid, carnitine, 2-decenoic acid, docosahexaenoic acid, 5,8,11,14-eicosatetraynoic acid, 2,7,12,17-octadecanetetrol, 10,12-hexadecadienal, erucamide, 15-oxo-11,13-eicosadienoic acid, 16-hydroxypalmitic acid, 2-hydroxymyristic acid, 9,12,13-trihydroxy-15-octadecenoic acid, oleic acid, palmitic acid, 3,5-dibromo-4-hydroxybenzoic acid, 11-(2-hexyl-5-hydroxyphenoxy)-N- (2-hydroxyethyl) undecanamide, 6-gingerol, paradol, decanophenone, heptanophenone, haplamine, N-benzylformamide, 15-hydroxy-1-[2-(hydroxymethyl)-1-piperidinyl] prost-13-ene-1,9-dione, 8-[3-oxo-2-(2-penten-1-yl)-1-cyclopenten- 1-yl]octanoic acid, jasmone, laurendecumenyne A, coronaridine, ar-turmerone, retinaldehyde. | Laurencia snackeyi. | HPLC–DAD–Orbitrap MS/MS (Phenomenex C18) | RP A: water (0.1% FA); B: ACN (0.1% FA). | ESI+; ESI- | [42] |
Palisadin A, aplysistatin and 5-acetoxypalisadin B. | NMR. | |||||
Fatty acids, terpenoids | Vachanic acid methyl ester, (R)-ricinoleic acid, saikosaponin E, acanthoside D, and kansuinin D. | Petalonia binghamiae. | HPLC–DAD–QToF–MS (ZORBAX Eclipse Plus C18). | RP A: water (0.1% FA); B: CAN (0.1% FA). | ESI- | [43] |
Phenolics | Total of 49 compounds: 18 phenolic acids, 22 flavonoids, 6 other polyphenols, 1 lignan and 1 stillbene. | Phyllospora comosa, Ecklonia radiata, Durvillaea sp., Sargassum sp., Cystophora sp. | LC–ESI–QTOF–MS/MS (Synergi Hydro-Reverse Phase 80°A). | RP A: water (0.1% FA); B: ACN/water (0.1% FA) (95:5). | ESI+; ESI- | [49] |
Pigment | Fucoxanthin. | Sargassum mucclurei (1650.03 ± 7.10), S. binderi (296.07 ± 5.50), S. polycystum (3.82 ± 0.89), S. duplicatum (255.03 ± 5.71), S. denticarpum (24.25 ± 2.72), S. swartzii (217.60 ± 5.04), S. microcystum (161.52 ± 2.90), S. crassifolium (26.65 ± 2.86), S. oligocystum (2927.98 ± 8.01) *. | HPLC–DAD (Symmetry® C18). | RP ACN/MeOH (1:9, v/v). | - | [20] |
Phenolics | Phlorotannins. | Cystoseira abies-marina. | HILIC × RP–DAD–MS/MS (lichrospher diol-5; Ascentis Express C18). | HILIC A: ACN/AcOH (98:2, v/v) B: MeOH/Water/AcOH (95:3:2, v/v/v). RP A: water (0.1% FA); B: can. | Ion trap with ESI- | [45] |
Sulfate polysaccharide | Fucoidan. | Sargassum Horneri. | Fourier-transform infrared spectroscopy (FT-IR). | [47] | ||
Polysaccharide | Alginate (through the measure of monosaccharides xylose, galactose, glucose, mannose, fructose, and rhamnose). | Padina pavonica, Sargassum cinereum, Turbinaria turbinata, and Dictyota dichotoma. | HPLC–UV–vis (C18). | RP A: water/ACN (90:10, v/v); B: ACN (0.045% KH2PO4–0.05% trimethylamine). | [50] | |
Meroterpenoids | New sargasilols (9): (10′E)-10′-dehydroxy-11′,12′-dihydro-10′,11′-didehydro-12′-hydroperoxysargachromanol G; (10′E)-10′-dehydroxy-11′,12′-dihydro-10′,11′-dide-hydro-12′-hydroxysargachromanol G; 9′-deoxy-9′-oxo-11′,12′-dihydrosargachro-manol K; 9′-deoxysargachromanol K; 3′,4′-dihydro-4′,16′-didehydro-3′-oxosargachromanol E; 6′-hydroxy derivative of sargachromanol G; 15′-hydroxysargachromanol L; methylsargachro-manol E. | Sargassum siliquastrum. | NMR. | [51] |
4. Neuroprotection Assays of Brown Macroalgae Extracts
4.1. Cholinesterase Inhibitors
4.2. Amyloid-Beta (Aβ) Inhibition
4.3. Inhibition of Neurotoxic Effects in Cells
4.4. In Vivo Evaluation of Neuroprotective Effects
In vitro | |||||
---|---|---|---|---|---|
Species | Extraction Approach | Possible Bioactive Compound | Pharmacological Markers/Biological Tests | Neuroprotective Effect | References |
Sargassum Horneri | Enzyme-assisted extraction | Sulphated fucooligosaccharide | AChE and BChE | AChE (IC50: 4.0–14.4 µM) and BChE (IC50: 18.5–25.3 µM) inhibition | [47] |
Ecklonia cava | Ethanol reflux extraction | Polyphenol and fucoidan | Mitochondrial reactive oxygen species (ROS) content amyloid-β production; tau hyperphosphorylation-mediated proteins; mitochondrial membrane potential (MMP, ΔΨm); adenosine triphosphate (ATP) content; mitochondria-mediated protein analysis (BAX, cytochrome C) | Reduced AChE activity; reduced mitochondrial ROS; ATP production and MMP restored down-regulating amyloid-β production (by JNK/IRS-1/IDE pathway); reduced tau hyperphosphorylation (by PI3K/Akt/GSK-3 pathway) | [8] |
Ecklonia cava | Ethanol extraction | Phlorotannins | AChE and BChE | AChE (IC50: 0.9 ± 0.8 to 66.5 ± 0.4 μM) and BChE (IC50: 1.4 ± 3.8 to 25.2 ± 0.1 μM) inhibition | [56] |
Ecklonia cava | Ethanol extraction | Eckol, dieckol, phlorofucofuroeckol-A (PFFA) and 974-A | H2O2, t-BHP, Aβ1–42 | Effective in ROS scavenging but not in protecting against oxidative stress-evoked neurotoxicity; PFFA and 974-Al; provided broad neuroprotective activity, including protection against oxidative stress and Aβ1–42. | [70] |
Ecklonia cava | Ethanol extraction | Phlorotanninn and dieckol | AChE and BChE, AAPH and H2O2-induced oxidative stress in PC-12 and SH-SY5Y cells | AChE Inhibition (95.4%), BChE inhibition (74.7%), reduction in oxidative stress (26.3 to 51.1%) | [41] |
Durvillaea incurvata | Ultrasound-assisted and conventional extraction | Crude ethanol extract | AChE and BChE | AChE (IC50: 48.55 ± 0.021 µg mL−1, 51.5% inhibition), BChE (IC50: 87.58 ± 0.044 µg mL−1, 32.8% inhibition) | [55] |
Petalonia binghamiae | Sequential maceration | Achanic acid methyl ester, (R)-ricinoleic acid, saikosaponin E, acanthoside D and cansunin D | Glutamate-induced excitotoxicity, ROS scavenging, cell viability | Protection HT-22 cells from glutamate-induced excitotoxicity, increased cell viability and preserved cell morphology, reduced intracellular ROS production and increased HO-1 expression via Nrf2 activation. | [43] |
Sargassum oligocystum Montagne | Maceration | Fucoxanthin | AChE, cytotoxic effect on C6 cells, neuroprotective effects against H2O2-induced oxidative stress and Aβ25–35-induced neurotoxicity, gene expression related to antioxidant enzymes (SOD, CAT, GPx), gene expression related to PI3K/Akt signaling (GSK-3β), ER stress and apoptosis-related gene expression (CHOP, Bax, caspase-3), gene expression related to ACh biosynthesis (ChAT, VAChT), protein translation (S6K1), autophagy regulation (p62, ATG5) | AChE (IC50: 130.12 ± 6.65 μg mL−1), protected C6 cells, viability increased to 91.23% at 100 μg mL−1 after H2O2 exposure, Increased cell survival rate significantly from 59.01% to 80.98% at 100 μg mL−1 after Aβ25–35 exposure; increased GPx activity by 105.81% at 100 μg mL−1 and CAT activity by 31.98% at 50 μg mL−1 after H2O2 exposure; increased mRNA expression of CAT and GPx; reversed the decrease in GSK3β induced by Aβ25–35; increased mRNA levels of ChAT and VAChT after Aβ25–35 treatment; inverted effect on S6K1 compared with galantamine; increased ATG5 mRNA levels and reduced p62 mRNA levels | [20] |
Himanthalia elongata (L.) | Subcritical water extraction | Crude extract | •NO and O2•− scavenging activity, AChE and BChE | 40% AChE and 40% BChE inhibition, protects against oxidative and nitrosative stresses | [54] |
Eisenia bicyclis (Kjellman) | Subcritical water extraction | Crude extract | •NO and O2•− scavenging activity, AChE and BChE | 50% AChE and 40% BChE inhibition, protects against oxidative and nitrosative stresses | [54] |
Sargassum angustifolium | Extraction with acidic solution | Fucoidan | AChE, cytotoxic effects on NB4 cell line, Alterations in cell proliferation and cell cycle-related gene expression, Bcl-2 gene | AChE (IC50:1.20 µg mL−1); induction of p53, p21, and pro-apoptotic genes; inhibition of anti-apoptotic Bcl-2 gene | [16] |
Padina tetrastromatica | Subcritical water hydrolysis | Low molecular weight peptides, flavonoids and phenolic compounds | AChE and α-amylase | AChE inhibition (IC50: 17.9 ± 0.1 to 65.9 ± 0.1 mg mL−1); α-amylase inhibition (2.4 ± 0.1 to 16.0 ± 0.5%) | [32] |
Ishige foliacea | Maceration | Crude ethanol extract | AChE, BACE1, ROS scavenging | AChE inhibition (IC50: 205.1 μg mL−1), BACE1 (IC50: 266.8 μg mL−1), reduces H2O2 and Aβ-induced cell death in SH-SY5Y cells | [59] |
Sargassum macrocarpum | Maceration | Terpenoid lactones | Human monoamine oxidases A and B | hMAO-A inhibition (42.18 ± 2.68% at 200 μM), any activity against hMAO-B | [62] |
Dictyota coriacea | Maceration | Acetoxypachydiol | Keap1-Nrf2/HO-1, ROS scavenging | Reduces OGD/R and H2O2-induced cell death in SH-SY5Y cells, increased the mRNA and protein levels of Nrf2 and HO-1, decreased the protein level of Keap1, promoted the transport of Nrf2 to the cell nucleus | [65] |
Padina gymnospora | Maceration | Crude extract and α-bisabolol | AChE, BACE1, ROS and RNS, apoptotic gene expression | Inhibition of cholinesterase (ChE) and β-secretase (BACE1) activity (specific inhibition values not stated); Reduction of ROS and RNS production; Attenuation of lipid and protein oxidation; Restoration of mitochondrial; Reduced Caspase-3 activation, increased Bcl-2 expression membrane potential | [66] |
Fucus vesiculosus | Maceration | Intracellular and cell wall-bound phlorotannins | Aβ25–35-induced AD model (SH-SY5Y cells) | Protection at 5 μg mL−1 and 10 μg mL−1 | [67] |
Pelvetia canaliculata | Maceration | Intracellular and cell wall-bound phlorotannins | Aβ25–35-induced AD model (SH-SY5Y cells) | Protection at all concentrations tested (1–10 µg mL−1) | [67] |
Ecklonia maxima | Maceration | Phloroglucinol, catechin, epicatechin, biochanin A, vulgaxanthin and 7,2,4—trihydoxyisoflavanol | Cell viability; apoptosis (AO/EB staining); SOD, CAT, GSH, MDA, NO, AChE | Increased cell viability in HT-22 cells treated with ZnSO4; reduced apoptosis in Zn-treated cells; increased SOD and CAT activities; increased GSH levels; reduced MDA levels; decreased NO levels; reduced AChE activity | [68] |
Gelidium pristoides | Maceration | Phloroglucinol, catechin, epicatechin, biochanin A, vulgaxanthin and 7,2,4—trihydoxyisoflavanol | Cell viability; apoptosis (AO/EB staining); SOD, CAT, GSH, MDA, NO, AChE | Increased cell viability in HT-22 cells treated with ZnSO4; reduced apoptosis in Zn-treated cells; increased SOD and CAT activities; increased GSH levels; reduced MDA levels; decreased NO levels; reduced AChE activity | [68] |
Ecklonia radiata | Enzyme-assisted extraction | Crude extract (CE), phlorotannin (PT), poly-saccharide (PS), free sugar (FS) | Aβ1–42 aggregation, H2O2-induced cytotoxicity, cell viability | High neuroprotective activity (viability >92% at 3.125–100 μg mL−1); inhibition of Aβ1–42 aggregation; antioxidant activity at 12.5–50 μg mL−1; enhanced neurite outgrowth (More than 19%) | [69] |
Ecklonia cava | Maceration | Dieckol | Cell viability, LDH, morphological assessment, ROS scavenging, mitochondrial function, ATP, mitochondrial membrane potential (ΔΨm), mitochondrial Ca2+ and ROS, Nrf2/HO-1 | Increased cell viability in primary cortical neurons and HT22 neurons; decreased LDH release indicating reduced cytotoxicity; improved neuronal morphology post-glutamate exposure; decreased intracellular ROS levels in both primary cortical neurons and HT22 cells; protected against glutamate-induced mitochondrial dysfunction; rescued ATP depletion in HT22 neurons; prevented ΔΨm disruption in HT22 neurons; attenuated mitochondrial Ca2+ overload in HT22 neurons; reduced mitochondrial ROS levels in HT22 neurons; increased HO-1 expression and Nrf2 nuclear translocation | [71] |
Ecklonia radiata | Maceration | Dibenzodioxin-fucodiphloroethol | Cell viability, Aβ1–42 toxicity and aggregation, molecular docking, AChE, ROS scavenging | DFD (50 µM) does not induce toxicity in PC-12 cells; Rescued PC-12 cell viability at 1.0 and 1.5 µM Aβ1–42; Reduced Aβ1–42 aggregation; Attenuated ROS levels in PC-12 cells; AChE inhibition (IC50 = 41.09 µM); Binded to Aβ1–42 with a docking score of −43.28, forming hydrogen bonds with HIS14 and GLU11; Interacted with AChE with a docking score of −43.48, forming hydrogen bonds and π-π stacking; Binded to Aβ1–42 with a docking score of −43.28, forming hydrogen bonds with HIS14 and GLU11; Binded to Aβ1–42 pentamer with a docking score of −64.01, interacting with multiple residues | [28] |
Sargassum horneri | Maceration | Fucosterol | Cell viability, ROS scavenging, Nrf2/HO-1, TNF-α/IFN-γ, NF-κB/MAPK | Biocompatible with HDF cells up to 120 μM; decreased in a dose-dependent manner the intracellular ROS production in HDFs; upregulated Nrf2 and HO-1 expression in HDF cells; down-regulated inflammatory mediators in TNF-α/IFN-γ-stimulated HDF cells; reduced phosphorylation of NF-κB and MAPK mediators in a dose-dependent manner; decreased molecules related to connective tissue degradation | [70] |
Bifurcaria bifurcata | Maceration | Eleganolone | Cell viability, ROS scavenging, mitochondrial function, caspase-3, NF-κB, TNF-α, IL-6, IL-10 | Increased cell viability after 6-OHDA treatment; reduced ROS levels and H2O2 production in SH-SY5Y cells exposed to 6-OHDA; preserved mitochondrial membrane potential (MMP) and ATP levels in SH-SY5Y cells; reduced caspase-3 activity in SH-SY5Y cells exposed to 6-OHDA; inhibited NF-κB p65 translocation in SH-SY5Y cells after 6-OHDA exposure; reduced LPS-induced NO production; decreased TNF-α and IL-6 production in LPS-stimulated RAW 264.7 cells | [76] |
Fucus guiryi | Maceration | Phlorotannins | AChE, BChE, MAO-A, MAO-B | AChE inhibition (IC50 μg DE mL−1): 969.51 ± 76.99; BChE inhibition (IC50 μg DE mL−1): 1065.29 ± 35.35; MAO-A inhibition (IC50 μg DE mL−1): 168.24 ± 5.40; MAO-B inhibition (IC50 μg DE mL−1): >500; tyrosinaz inhibition (IC50 μg DE mL−1): 47.99 ± 0.59 | [72] |
Fucus serratus | Maceration | Phlorotannins | AChE, BChE, MAO-A, MAO-B | AChE inhibition (IC50 μg DE mL−1): 2709.58 ± 55.25; BChE inhibition (IC50 μg DE mL−1): 3539.79 ± 109.43; MAO-A inhibition (IC50 μg DE mL−1): 173.80 ± 25.52; MAO-B inhibition (IC50 μg DE mL−1): >500; tyrosinaz Inhibition (IC50 μg DE mL−1): 47.66 ± 2.84 | [72] |
Fucus spiralis L. | Maceration | Phlorotannins | AChE, BChE, MAO-A, MAO-B | AChE inhibition (IC50 μg DE mL−1): >5000; BChE inhibition (IC50 μg DE mL−1): >5000; MAO-A inhibition (IC50 μg DE mL−1): 1929.65 ± 100.44; MAO-B inhibition (IC50 μg DE mL−1): >500; tyrosinaz inhibition (IC50 μg DE mL−1): 861.73 ± 7.37 | [72] |
Fucus vesiculosus L. | Maceration | Phlorotannins | AChE, BChE, MAO-A, MAO-B | AChE inhibition (IC50 μg DE mL−1): >5000; BChE inhibition (IC50 μg DE mL−1): >5000; MAO-A inhibition (IC50 μg DE mL−1): >3000; MAO-B inhibition (IC50 μg DE mL−1): >500; tyrosinaz inhibition (IC50 μg DE mL−1): 2546.82 ± 98.00 | [72] |
Padina australis | Maceration | Fucosterol | Cell viability, apoptosis, APP mRNA, intracellular Aβ, BACE1, ROS scavenging | Increased cell viability in SH-SY5Y cells treated with 2 μM Aβ; reduced apoptosis (30.93%); reduced APP mRNA levels; reduced intracellular Aβ levels; noncompetitive inhibitor on β-secretase (BACE1); reduced oxidative stress by increasing anti-oxidant enzyme activities | [75] |
Dictyota coriacea | Maceration | Xenicane diterpenes | Cell viability, LDH, Nrf2/ARE | Increased cell viability in PC12 cells damaged by H2O2; reduced LDH levels released from PC12 cells; increased Nrf2 and HO-1 expression in PC12 cells; promoted nuclear translocation of Nrf2 | [77] |
Dictyota spp. | Maceration | Hydroazulene diterpenes | Cell viability, Nrf2/ARE | Increased cell viability in H2O2-damaged PC12 cells at a concentration of 2 μM; antioxidant effect by activating the Nrf2/ARE signaling pathway | [78] |
Dictyopteris polypodioides | Maceration | Meroterpenoids: yahazunol (1), zonarol (2), isozonarol (3), and four other meroterpenoids | NO production, iNOS, IL-6, and CCL2 mRNA expression, structure activity of compounds | Inhibited NO production in lipopolysaccharide (LPS)-stimulated RAW264 cells; inhibited iNOS, IL-6, and CCL2 mRNA expression. The hydroquinone unit is important in the anti-inflammatory activity of these sesquiterpenoids | [79] |
Sargassum siliquastrum | Maceration | Meroterpenoids | BV-2 microglial cells, anti-inflammatory cytokines | Reduced the expression of anti-inflammatory cytokines (IL-1β, IL-6, TNF-α); inhibited LPS-induced NO production in BV-2 microglial cells by targeting IKK/IκB/NF-κB pathways | [51] |
Fucus vesiculosus | Maceration | Fucoidan | CCK-8 (cell viability), LDH, Hoechst staining, MAP2 immunostaining, MitoSOX staining (for ROS), protein target identification (ATP5F1a) | Enhanced cell viability at concentrations of 5, 10, and 25 μM in MPP+-induced SH-SY5Y cells; reduced LDH release in MPP+-induced SH-SY5Y cells and primary neurons, indicating reduced cell damage. Decreased the proportion of apoptotic cells in MPP+-treated primary neurons; protected neurons from MPP+-induced axon loss and damage. Reduced mitochondrial ROS production in MPP+-treated SH-SY5Y cells. ATP5F1a knockdown reversed the neuroprotective effects of FvF, confirming its role in mitigating mitochondrial dysfunction and apoptosis | [80] |
Fucus vesiculosus | Maceration | Fucoidan | Aβ1–42 aggregation and cytotoxicity, ROS Scavenging, neurite outgrowth | Protected against Aβ1–42-induced cytotoxicity; inhibited Aβ1–42 aggregation; slight protection against hydrogen peroxide-induced cytotoxicity; inhibited apoptosis induced by Aβ1–42 | [22] |
Padina australis | Maceration | Crude ethanol extract | Cell viability, NO, prostaglandin E2, ROS scavenging, iNOS and COX-2 expression, TNF-α and IL-6 secretion | No cytotoxicity at concentrations of 0.25–2.0 mg mL−1, reduced at higher concentrations (4.0–8.0 mg mL−1); reduced NO production compared with LPS-stimulated levels dose-dependently (0.5–2.0 mg mL−1); suppressed PGE2 production at concentrations of 0.5–1.0 mg mL−1, increased PGE2 levels at higher concentration (2.0 mg mL−1); reduced intracellular ROS generation compared with LPS-stimulated levels dose-dependently; down-regulated iNOS and COX-2 expression induced by LPS; inhibited TNF-α and IL-6 secretion compared with LPS-stimulated levels | [81] |
In vivo | |||||
Species | Possible Bioactive Compound | Pharmacological Markers/Biological Tests | Neuroprotective Effect | References | |
Dictyopteris undulata | Zonarol | Brain tissue distribution after administration | Higher level in brain tissue than in other tissues | [82] | |
Ecklonia cava | Crude water extracts | Reduction of pro-inflammatory cytokines, NF-κB, STAT3 phosphorylation | Reduced neuroinflammation in LPS-induced model | [83] | |
Ishige foliacea | Crude ethanol extract | BDNF and TrkB expression, synaptic plasticity | Increased BDNF, TrkB-phosphorylated ERK expression | [59] | |
Sargassum fusiformis | Fucoxanthin (Fx) | Reduction of NO, ROS, cell death | Reduced inflammatory responses | [9] | |
Sargassum fusiformis | Phlorotannin and fucoidan mixture | Protection against Aβ-induced learning and memory impairments | Anti-amnesiac effect | [9] | |
Sargassum ilicifolium and Padina tetrastromatica | Crude chloroform and ethanol extracts | Improvement of memory impairments, oxidative enzyme protection, AChE inhibition | Cognitive improvement | [84] | |
Fucus vesiculosus | Fucoidan | Improvement of neuroinflammation, promotion of neurogenesis, reduced blood–brain and intestinal barrier permeability | Neuroprotective effects | [85] | |
Sargassum wightii Greville | Fucoidan | Behavioral assays, oxidative stress markers, hyperphosphorylated tau protein, amyloidosis symptoms | Improvement of cognitive impairments and oxidative stress | [86] | |
Padina gymnospora | Crude extract and α-bisabolol | Lifespan in CL2006 and CL4176 mutants | Lowering the expression of AD-related genes (ace-1, hsp-4) in C. Elegans | [66] | |
Dictyota coriacea | Xenicane diterpenes | CIRI Model | Reduced brain infarct size and neurological deficit score in the transient middle cerebral artery occlusion (MCAO) rat model | [83] | |
Dictyota spp. | Hydroazulene diterpenes | CIRI Model | Reduction in both brain infarct size and neurological deficit score in transient middle cerebral artery occlusion (MCAO) rat model | [78] | |
Fucus vesiculosus | Fucoidan (FvF) | MPTP mouse model | Improved motor coordination and balance; slowed loss of TH markers; mitigated dopamine neuron loss in the substantia nigra pars compacta (SNpc). | [80] | |
Laminaria japonica | Fucoidan | Adenine-induced CKD mice | Reduced signs associated with cognitive behavior; improvement in genes related to Alzheimer’s disease and memory; regulated of inflammatory response via microglia/macrophage polarization; ameliorated oxidative stress via Nrf2-HO-1 signaling pathway; improved cognitive impairments (new object recognition, object location, passive avoidance tests) | [87] | |
Fucus vesiculosus | Fucoidan | Mongolian gerbils (Meriones unguiculatus) | Reduced tGCI-induced hyperactivity; reduced the loss of NeuN+ pyramidal cells in the CA1 region after tGCI; reduced the number of F-J B+ cells in the CA1 region; reduced the activation of GFAP+ astroglia and the production of reactive oxygen species; reduced the activation of Iba-1+ microglia and the production of reactive oxygen species; reduced HNE immunoreactivity and lipid peroxidation in CA1 pyramidal cells; reduced superoxide levels in CA1 pyramidal cells; increased SOD1 and SOD2 expression in CA1 pyramidal cells | [88] | |
Laminaria digitata | Laminarin | Mongolian gerbils | Decreased superoxide anions; decreased IL-1β and TNF-α; increased SOD expression; increased IL-4 and IL-13 expression | [89] | |
Petalonia binghamiae | Water extract | MCAO/R mice model | Decreased neuronal death in ischemic lesion; attenuated sensorimotor deficits; reduced ROS levels; decreased apoptosis in ischemic area; enhanced Nrf2 nuclear translocation; increased HO-1 expression | [43] | |
Sargassum boveanum | Crude ethanolic extract | Sprague–Dawley rats | Increased antioxidant enzyme activities (SOD, GPx) and gene expressions (SOD, GPx, Nrf2, HO-1); decreased expression of antioxidant genes (SOD, GPx, Nrf2, HO-1); increased expression of inflammatory markers (TNF-α, NF-κB) | [90] | |
Sargassum angustifolium | Hydroalcoholic, methanolic, and hexane extract | Reversal of memory impairment, passive avoidance test, Morris water maze test | Improvement of cognitive functions | [91] |
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Lamisa, A.B.; Ahammad, I.; Bhattacharjee, A.; Hossain, M.U.; Ishtiaque, A.; Chowdhury, Z.M.; Das, K.C.; Salimullah, M.; Keya, C.A. A Meta-Analysis of Bulk RNA-Seq Datasets Identifies Potential Biomarkers and Repurposable Therapeutics against Alzheimer’s Disease. Sci. Rep. 2024, 14, 24717. [Google Scholar] [CrossRef] [PubMed]
- Ashrafian, H.; Zadeh, E.H.; Khan, R.H. Review on Alzheimer’s Disease: Inhibition of Amyloid Beta and Tau Tangle Formation. Int. J. Biol. Macromol. 2021, 167, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Alhazmi, H.A.; Albratty, M. An Update on the Novel and Approved Drugs for Alzheimer Disease. Saudi Pharm. J. 2022, 30, 1755–1764. [Google Scholar] [CrossRef] [PubMed]
- Guiry, M.D. How Many Species of Algae Are There? A Reprise. Four Kingdoms, 14 Phyla, 63 Classes and Still Growing. J. Phycol. 2024, 60, 214–228. [Google Scholar] [CrossRef]
- El-Manaway, I.M.; Rashedy, S.H. The Ecology and Physiology of Seaweeds: An Overview. In Sustainable Global Resources of Seaweeds Volume 1: Bioresources, Cultivation, Trade and Multifarious Applications; Ranga Rao, A., Ravishankar, G.A., Eds.; Springer: Cham, Switzerland, 2022; Volume 1, pp. 3–16. [Google Scholar]
- Wan, A.H.L.; Davies, S.J.; Soler-Vila, A.; Fitzgerald, R.; Johnson, M.P. Macroalgae as a Sustainable Aquafeed Ingredient. Rev. Aquac. 2019, 11, 458–492. [Google Scholar] [CrossRef]
- Wu, Y.; Gao, H.; Wang, Y.; Peng, Z.; Guo, Z.; Ma, Y.; Zhang, R.; Zhang, M.; Wu, Q.; Xiao, J.; et al. Effects of Different Extraction Methods on Contents, Profiles, and Antioxidant Abilities of Free and Bound Phenolics of Sargassum polycystum from the South China Sea. J. Food Sci. 2022, 87, 968–981. [Google Scholar] [CrossRef]
- Park, S.K.; Kang, J.Y.; Kim, J.M.; Yoo, S.K.; Han, H.J.; Chung, D.H.; Kim, D.O.; Kim, G.H.; Heo, H.J. Fucoidan-Rich Substances from Ecklonia cava Improve Trimethyltin-Induced Cognitive Dysfunction via Down-Regulation of Amyloid β Production/Tau Hyperphosphorylation. Mar. Drugs 2019, 17, 591. [Google Scholar] [CrossRef]
- Dai, Y.L.; Jiang, Y.F.; Lu, Y.A.; Yu, J.B.; Kang, M.C.; Jeon, Y.J. Fucoxanthin-Rich Fraction from Sargassum fusiformis Alleviates Particulate Matter-Induced Inflammation in Vitro and in Vivo. Toxicol. Rep. 2021, 8, 349–358. [Google Scholar] [CrossRef]
- Martić, A.; Čižmek, L.; Ul’yanovskii, N.V.; Paradžik, T.; Perković, L.; Matijević, G.; Vujović, T.; Baković, M.; Babić, S.; Kosyakov, D.S.; et al. Intra-Species Variations of Bioactive Compounds of Two Dictyota Species from the Adriatic Sea: Antioxidant, Antimicrobial, Dermatological, Dietary, and Neuroprotective Potential. Antioxidants 2023, 12, 857. [Google Scholar] [CrossRef]
- Ciko, A.M.; Jokić, S.; Šubarić, D.; Jerković, I. Overview on the Application of Modern Methods for the Extraction of Bioactive Compounds from Marine Macroalgae. Mar. Drugs 2018, 16, 348. [Google Scholar] [CrossRef]
- Kadam, S.U.; Tiwari, B.K.; O’Donnell, C.P. Application of Novel Extraction Technologies for Bioactives from Marine Algae. J. Agric. Food Chem. 2013, 61, 4667–4675. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, A.; Fernandes, M.; Lima, M.; Gomes, J.P.; Silva, F.; Castro, S.; Sampaio, F.; Gomes, A.C. Nanotechnology to the Rescue: Therapeutic Strategies Based on Brown Algae for Neurodegenerative Diseases. Appl. Sci. 2023, 13, 1883. [Google Scholar] [CrossRef]
- Aakre, I.; Solli, D.D.; Markhus, M.W.; Mæhre, H.K.; Dahl, L.; Henjum, S.; Alexander, J.; Korneliussen, P.A.; Madsen, L.; Kjellevold, M. Commercially Available Kelp and Seaweed Products—Valuable Iodine Source or Risk of Excess Intake? Food Nutr. Res. 2021, 65, 7584. [Google Scholar] [CrossRef] [PubMed]
- Byoung, W.C.; Ryu, G.; Soo, H.P.; Eun, S.K.; Shin, J.; Seok, S.R.; Hyeon, C.S.; Bong, H.L. Anticholinesterase Activity of Plastoquinones from Sargassum sagamianum: Lead Compounds for Alzheimer’s Disease Therapy. Phytother. Res. 2007, 21, 423–426. [Google Scholar] [CrossRef]
- Hosseinpouri, A.; Mohammadi, M.; Ehsandoost, E.; Sharafi-Badr, P.; Obeidi, N. Chemical Identification, Antioxidant, Cholinesterase Inhibitory, and Cytotoxic Properties of Fucoidan Extracted from Persian Gulf Sargassum angustifolium. Acta Oceanol. Sin. 2022, 41, 133–141. [Google Scholar] [CrossRef]
- Ktari, L.; Mdallel, C.; Aoun, B.; Chebil Ajjabi, L.; Sadok, S. Fucoxanthin and Phenolic Contents of Six Dictyotales from the Tunisian Coasts with an Emphasis for a Green Extraction Using a Supercritical CO2 Method. Front. Mar. Sci. 2021, 8, 647159. [Google Scholar] [CrossRef]
- Jiang, H.; Kong, L.; Tang, H.; Wang, Z.; Liu, C.; Zhang, J.; Chen, Y.; Shen, J.; Zhou, Y. Study on the Preparation and Enzyme Inhibitory Activity of Polyphenols from Sargassum pallidum. PLoS ONE 2024, 19, e0297434. [Google Scholar] [CrossRef]
- Ruiz-Domínguez, M.C.; Mendiola, J.A.; Sánchez-Martínez, J.D.; Bueno, M.; Cerezal-Mezquita, P.; Ibáñez, E. Evaluation of the Antioxidant and Neuroprotective Activity of the Seaweed Durvillaea antarctica (Cochayuyo) Extracts Using Pressurized Liquids. J. Appl. Phycol. 2023, 35, 835–847. [Google Scholar] [CrossRef]
- Hong, D.D.; Thom, L.T.; Ha, N.C.; Thu, N.T.H.; Hien, H.T.M.; Tam, L.T.; Dat, N.M.; Duc, T.M.; Van Tru, N.; Hang, N.T.M.; et al. Isolation of Fucoxanthin from Sargassum oligocystum Montagne, 1845 Seaweed in Vietnam and Its Neuroprotective Activity. Biomedicines 2023, 11, 2310. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.P.; Montero, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Application of Hansen Solubility Approach for the Subcritical and Supercritical Selective Extraction of Phlorotannins from Cystoseira abies-marina. RSC Adv. 2016, 6, 94884–94895. [Google Scholar] [CrossRef]
- Alghazwi, M.; Smid, S.; Karpiniec, S.; Zhang, W. Comparative Study on Neuroprotective Activities of Fucoidans from Fucus vesiculosus and Undaria pinnatifida. Int. J. Biol. Macromol. 2019, 122, 255–264. [Google Scholar] [CrossRef] [PubMed]
- Ehrig, K.; Alban, S. Sulfated Galactofucan from the Brown Alga Saccharina latissima-Variability of Yield, Structural Composition and Bioactivity. Mar. Drugs 2015, 13, 76–101. [Google Scholar] [CrossRef] [PubMed]
- Palma, M.; Barbero, G.F.; PiñEiro, Z.; Liazid, A.; Barroso, C.G.; Rostagno, M.A.; Prado, J.M.; Meireles, M.A.A. Chapter 2: Extraction of Natural Products: Principles and Fundamental Aspects. In Natural Product Extraction: Principles and Applications; Green Chemistry Series; Royal Society of Chemistry: London, UK, 2013; pp. 58–88. [Google Scholar] [CrossRef]
- Dertli, H.; Saloglu, D. A Valorization Approach of Food Industry Wastewater Using Microwave-Assisted Extraction. In Advanced Technologies in Wastewater Treatment: Food Processing Industry; Elsevier: Amsterdam, The Netherlands, 2023; Chapter 6; pp. 155–178. [Google Scholar] [CrossRef]
- Shinoda, S.; Tozawa, Y.; Kurimoto, S.; Shigemori, H.; Sekiguchi, M. Three New Meroterpenoids from Sargassum macrocarpum and Their Inhibitory Activity against Amyloid β Aggregation. J. Nat. Med. 2023, 77, 508–515. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, S.; Johnston, M.R.; Zhang, W.; Smid, S.D. A Phlorotannin Isolated from Ecklonia radiata, Dibenzodioxin-Fucodiphloroethol, Inhibits Neurotoxicity and Aggregation of β-Amyloid. Phytomedicine Plus 2021, 1, 100125. [Google Scholar] [CrossRef]
- Martens, N.; Zhan, N.; Voortman, G.; Leijten, F.P.J.; van Rheenen, C.; van Leerdam, S.; Geng, X.; Huybrechts, M.; Liu, H.; Jonker, J.W.; et al. Activation of Liver X Receptors and Peroxisome Proliferator-Activated Receptors by Lipid Extracts of Brown Seaweeds: A Potential Application in Alzheimer’s Disease? Nutrients 2023, 15, 3004. [Google Scholar] [CrossRef]
- Priego-Capote, F.; De La Torre, M.D.P.D. Chapter 5: Accelerated Liquid Extraction. In Natural Product Extraction: Principles and Applications; Green Chemistry Series; Royal Society of Chemistry: London, UK, 2013; pp. 157–195. [Google Scholar] [CrossRef]
- Zohar, M.; Matzrafi, M.; Abu-Nassar, J.; Khoury, O.; Gaur, R.Z.; Posmanik, R. Subcritical Water Extraction as a Circular Economy Approach to Recover Energy and Agrochemicals from Sewage Sludge. J. Environ. Manag. 2021, 285, 112111. [Google Scholar] [CrossRef]
- Boucelkha, A.; Petit, E.; Elboutachfaiti, R.; Molinié, R.; Amari, S.; Yahaoui, R.Z. Production of Guluronate Oligosaccharide of Alginate from Brown Algae Stypocaulon scoparium Using an Alginate Lyase. J. Appl. Phycol. 2017, 29, 509–519. [Google Scholar] [CrossRef]
- Hans, N.; Solanki, D.; Nagpal, T.; Amir, H.; Naik, S.; Malik, A. Process Optimization and Characterization of Hydrolysate from Underutilized Brown Macroalgae (Padina tetrastromatica) after Fucoidan Extraction through Subcritical Water Hydrolysis. J. Environ. Manag. 2024, 349, 119497. [Google Scholar] [CrossRef]
- Pingret, D.; Fabiano-Tixier, A.S.; Chemat, F. Chapter 3: Ultrasound-Assisted Extraction. In Natural Product Extraction: Principles and Applications; Green Chemistry Series; Royal Society of Chemistry: London, UK, 2013; pp. 89–112. [Google Scholar] [CrossRef]
- Soares, C.; Paíga, P.; Marques, M.; Neto, T.; Carvalho, A.P.; Paiva, A.; Simões, P.; Costa, L.; Bernardo, A.; Fernández, N.; et al. Multi-Step Subcritical Water Extracts of Fucus vesiculosus L. and Codium tomentosum Stackhouse: Composition, Health-Benefits and Safety. Processes 2021, 9, 893. [Google Scholar] [CrossRef]
- Wee, A.S.; Nhu, T.D.; Khaw, K.Y.; Tang, K.S.; Yeong, K.Y. Linking Diabetes to Alzheimer’s Disease: Potential Roles of Glucose Metabolism and Alpha-Glucosidase. Curr. Neuropharmacol. 2022, 21, 2036–2048. [Google Scholar] [CrossRef]
- Cebrián-Lloret, V.; Cartan-Moya, S.; Martínez-Sanz, M.; Gómez-Cortés, P.; Calvo, M.V.; López-Rubio, A.; Martínez-Abad, A. Characterization of the Invasive Macroalgae Rugulopteryx Okamurae for Potential Biomass Valorisation. Food Chem. 2024, 440, 138241. [Google Scholar] [CrossRef] [PubMed]
- Olasehinde, T.A.; Olaniran, A.O.; Okoh, A.I. Macroalgae as a Valuable Source of Naturally Occurring Bioactive Compounds for the Treatment of Alzheimer’s Disease. Mar. Drugs 2019, 17, 609. [Google Scholar] [CrossRef] [PubMed]
- Quitain, A.T.; Kai, T.; Sasaki, M.; Goto, M. Microwave-Hydrothermal Extraction and Degradation of Fucoidan from Supercritical Carbon Dioxide Deoiled Undaria pinnatifida. Ind. Eng. Chem. Res. 2013, 52, 7940–7946. [Google Scholar] [CrossRef]
- Lama-Muñoz, A.; Contreras, M.M. Extraction Systems and Analytical Techniques for Food Phenolic Compounds: A Review. Foods 2022, 11, 3671. [Google Scholar] [CrossRef]
- Anjana, K.; Arunkumar, K. Brown Algae Biomass for Fucoxanthin, Fucoidan and Alginate; Update Review on Structure, Biosynthesis, Biological Activities and Extraction Valorisation. Int. J. Biol. Macromol. 2024, 280, 135632. [Google Scholar] [CrossRef]
- Nho, J.A.; Shin, Y.S.; Jeong, H.R.; Cho, S.; Heo, H.J.; Kim, G.H.; Kim, D.O. Neuroprotective Effects of Phlorotannin-Rich Extract from Brown Seaweed Ecklonia cava on Neuronal PC-12 and SH-SY5Y Cells with Oxidative Stress. J. Microbiol. Biotechnol. 2020, 30, 359–367. [Google Scholar] [CrossRef]
- Palaniveloo, K.; Ong, K.H.; Satriawan, H.; Abdul Razak, S.; Suciati, S.; Hung, H.Y.; Hirayama, S.; Rizman-Idid, M.; Tan, J.K.; Yong, Y.S.; et al. In Vitro and in Silico Cholinesterase Inhibitory Potential of Metabolites from Laurencia snackeyi (Weber-van Bosse) M. Masuda. 3 Biotech 2023, 13, 337. [Google Scholar] [CrossRef]
- Eom, S.H.; Hong, G.L.; Kang, H.B.; Lee, N.S.; Kim, D.K.; Jeong, Y.G.; Kim, C.S.; Yoo, Y.C.; Lee, B.H.; Jung, J.Y.; et al. Neuroprotective Effects of Water Extract from Brown Algae Petalonia Binghamiae in an Experimental Model of Focal Cerebral Ischemia In Vitro and In Vivo. Curr. Issues Mol. Biol. 2023, 45, 8427–8443. [Google Scholar] [CrossRef]
- van den Hurk, R.S.; Pursch, M.; Stoll, D.R.; Pirok, B.W.J. Recent Trends in Two-Dimensional Liquid Chromatography. TrAC Trends Anal. Chem. 2023, 166, 117166. [Google Scholar] [CrossRef]
- Montero, L.; Herrero, M.; Ibáñez, E.; Cifuentes, A. Separation and Characterization of Phlorotannins from Brown Algae Cystoseira Abies-Marina by Comprehensive Two-Dimensional Liquid Chromatography. Electrophoresis 2014, 35, 1644–1651. [Google Scholar] [CrossRef]
- Li, S.; Hu, M.; Tong, Y.; Xia, Z.; Tong, Y.; Sun, Y.; Cao, J.; Zhang, J.; Liu, J.; Zhao, S.; et al. A Review of Volatile Compounds in Edible Macroalgae. Food Res. Int. 2023, 165, 112559. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.J.; Zhang, H.Z.; Liu, Y.W.; Tang, M.; Jiang, Y.J.; Li, F.N.; Guan, L.P.; Jin, Q.H. Sulphated Fucooligosaccharide from Sargassum horneri: Structural Analysis and Anti-Alzheimer Activity. Neurochem. Res. 2024, 49, 1592–1602. [Google Scholar] [CrossRef] [PubMed]
- Montero, L.; Sánchez-Camargo, A.P.; García-Cañas, V.; Tanniou, A.; Stiger-Pouvreau, V.; Russo, M.; Rastrelli, L.; Cifuentes, A.; Herrero, M.; Ibáñez, E. Anti-Proliferative Activity and Chemical Characterization by Comprehensive Two-Dimensional Liquid Chromatography Coupled to Mass Spectrometry of Phlorotannins from the Brown Macroalga Sargassum muticum Collected on North-Atlantic Coasts. J. Chromatogr. A 2016, 1428, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Duan, X.; Agar, O.T.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A.R. Comparative Study on the Effect of Different Drying Techniques on Phenolic Compounds in Australian Beach-Cast Brown Seaweeds. Algal Res. 2023, 72, 103140. [Google Scholar] [CrossRef]
- El-Sheekh, M.; Kassem, W.M.A.; Alwaleed, E.A.; Saber, H. Optimization and Characterization of Brown Seaweed Alginate for Antioxidant, Anticancer, Antimicrobial, and Antiviral Properties. Int. J. Biol. Macromol. 2024, 278, 134715. [Google Scholar] [CrossRef]
- Qi, Y.; Wang, Z.; Zhang, J.; Tang, S.; Zhu, H.; Jiang, B.; Li, X.; Wang, J.; Sun, Z.; Zhao, M.; et al. Anti-Neuroinflammatory Meroterpenoids from a Chinese Collection of the Brown Alga Sargassum siliquastrum. J. Nat. Prod. 2023, 86, 1284–1293. [Google Scholar] [CrossRef]
- Koul, B.; Farooq, U.; Yadav, D.; Song, M. Phytochemicals: A Promising Alternative for the Prevention of Alzheimer’s Disease. Life 2023, 13, 999. [Google Scholar] [CrossRef]
- Pedro, B.; Guedes, L.; André, R.; Gaspar, H.; Vaz, P.; Ascensão, L.; Melo, R.; Luísa Serralheiro, M. Undaria pinnatifida (U. pinnatifida) Bioactivity: Antioxidant, Gastro-Intestinal Motility, Cholesterol Biosynthesis and Liver Cell Lines Proteome. J. Funct. Foods 2021, 83, 104567. [Google Scholar] [CrossRef]
- Gomes, I.; Rodrigues, H.; Rodrigues, C.; Marques, M.; Paíga, P.; Paiva, A.; Simões, P.; Fernandes, V.C.; Vieira, M.; Delerue-Matos, C.; et al. Evaluation of the Biological Potential of Himanthalia Elongata (L.) S.F.Gray and Eisenia Bicyclis (Kjellman) Setchell Subcritical Water Extracts. Foods 2022, 11, 746. [Google Scholar] [CrossRef]
- Muñoz-Molina, N.; Parada, J.; Simirgiotis, M.; Montecinos-González, R. The Potential of Using Cochayuyo (Durvillaea incurvata) Extract Obtained by Ultrasound-Assisted Extraction to Fight against Aging-Related Diseases. Foods 2024, 13, 269. [Google Scholar] [CrossRef]
- Park, S.R.; Kim, Y.H.; Yang, S.Y. Enzyme Kinetics and Molecular Docking Investigation of Acetylcholinesterase and Butyrylcholinesterase Inhibitors from the Marine Alga Ecklonia cava. Nat. Product. Sci. 2023, 29, 182–192. [Google Scholar] [CrossRef]
- Dhanabalan, A.K.; Kumar, P.; Vasudevan, S.; Chworos, A.; Velmurugan, D. Identification of a Novel Drug Molecule for Neurodegenerative Disease from Marine Algae through in-silico Analysis. J. Biomol. Struct. Dyn. 2024, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Chagas Monteiro, K.L.; dos Santos Alcântara, M.G.; Lins Freire, N.M.; Brandão, E.M.; do Nascimento, V.L.; dos Santos Viana, L.M.; de Aquino, T.M.; da Silva-Júnior, E.F. BACE-1 Inhibitors Targeting Alzheimer’s Disease. Curr. Alzheimer Res. 2023, 20, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.E.; Son, H.J.; Lim, D.W.; Yoon, M.; Lee, J.; Kim, Y.T.; Han, D.; Lee, C.; Um, M.Y. Memory-Enhancing Effects of Ishige foliacea Extract: In Vitro and in Vivo Study. J. Food Biochem. 2020, 44, e13162. [Google Scholar] [CrossRef] [PubMed]
- Dhanabalan, A.K.; Vasudevan, S.; Velmurugan, D.; Khan, M.S. Identification of Potential Marine Bioactive Compounds from Brown Seaweeds towards BACE1 Inhibitors: Molecular Docking and Molecular Dynamics Simulations Approach. In Silico Pharmacol. 2024, 12, 40. [Google Scholar] [CrossRef]
- Dezsi, L.; Vecsei, L. Monoamine Oxidase B Inhibitors in Parkinson’s Disease. CNS Neurol. Disord. Drug Targets 2017, 16, 425–439. [Google Scholar] [CrossRef]
- Kwon, J.; Lee, K.; Hwang, H.; Kim, S.H.; Park, S.E.; Durai, P.; Park, K.; Kim, H.S.; Jang, D.S.; Choi, J.S.; et al. New Monocyclic Terpenoid Lactones from a Brown Algae Sargassum macrocarpum as Monoamine Oxidase Inhibitors. Plants 2022, 11, 1998. [Google Scholar] [CrossRef]
- Tuppo, E.E.; Arias, H.R. The Role of Inflammation in Alzheimer’s Disease. Int. J. Biochem. Cell Biol. 2005, 37, 289–305. [Google Scholar] [CrossRef]
- Dhapola, R.; Beura, S.K.; Sharma, P.; Singh, S.K.; HariKrishnaReddy, D. Oxidative Stress in Alzheimer’s Disease: Current Knowledge of Signaling Pathways and Therapeutics. Mol. Biol. Rep. 2024, 51, 48. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, G.; Jin, S.; Jian, R.; Zou, Z.; Wang, C.; Zhang, Y.; Zhao, M.; Zhu, H.; Yan, P. Neuroprotective Effect of Acetoxypachydiol Against Oxidative Stress Through Activation of the Keap1-Nrf2/HO-1 Pathway. BMC Complement. Med. Ther. 2024, 24, 175. [Google Scholar] [CrossRef]
- Shanmuganathan, B.; Sathya, S.; Balasubramaniam, B.; Balamurugan, K.; Devi, K.P. Amyloid-β Induced Neuropathological Actions Are Suppressed by Padina gymnospora (Phaeophyceae) and Its Active Constituent α-Bisabolol in Neuro2a Cells and Transgenic Caenorhabditis elegans Alzheimer’s Model. Nitric Oxide 2019, 91, 52–66. [Google Scholar] [CrossRef]
- Meshalkina, D.; Tsvetkova, E.; Orlova, A.; Islamova, R.; Grashina, M.; Gorbach, D.; Babakov, V.; Francioso, A.; Birkemeyer, C.; Mosca, L.; et al. First Insight into the Neuroprotective and Antibacterial Effects of Phlorotannins Isolated from the Cell Walls of Brown Algae Fucus vesiculosus and Pelvetia canaliculata. Antioxidants 2023, 12, 696. [Google Scholar] [CrossRef] [PubMed]
- Olasehinde, T.A.; Olaniran, A.O.; Okoh, A.I. Neuroprotective Effects of Some Seaweeds against Zn—Induced Neuronal Damage in HT-22 Cells via Modulation of Redox Imbalance, Inhibition of Apoptosis and Acetylcholinesterase Activity. Metab. Brain Dis. 2019, 34, 1615–1627. [Google Scholar] [CrossRef] [PubMed]
- Alghazwi, M.; Charoensiddhi, S.; Smid, S.; Zhang, W. Impact of Ecklonia radiata Extracts on the Neuroprotective Activities against Amyloid Beta (Aβ1–42) Toxicity and Aggregation. J. Funct. Foods 2020, 68, 103893. [Google Scholar] [CrossRef]
- Shrestha, S.; Choi, J.S.; Zhang, W.; Smid, S.D. Neuroprotective Activity of Macroalgal Fucofuroeckols against Amyloid β Peptide-Induced Cell Death and Oxidative Stress. Int. J. Food Sci. Technol. 2022, 57, 4286–4295. [Google Scholar] [CrossRef]
- Cui, Y.; Amarsanaa, K.; Lee, J.H.; Rhim, J.K.; Kwon, J.M.; Kim, S.H.; Park, J.M.; Jung, S.C.; Eun, S.Y. Neuroprotective Mechanisms of Dieckol against Glutamate Toxicity through Reactive Oxygen Species Scavenging and Nuclear Factor-like 2/Heme Oxygenase-1 Pathway. Korean J. Physiol. Pharmacol. 2019, 23, 121–130. [Google Scholar] [CrossRef]
- Barbosa, M.; Valentão, P.; Ferreres, F.; Gil-Izquierdo, Á.; Andrade, P.B. In Vitro Multifunctionality of Phlorotannin Extracts from Edible Fucus species on Targets Underpinning Neurodegeneration. Food Chem. 2020, 333, 127456. [Google Scholar] [CrossRef]
- Lee, J.; Jun, M. Dual BACE1 and Cholinesterase Inhibitory Effects of Phlorotannins from Ecklonia cava—An In Vitro and in Silico Study. Mar. Drugs 2019, 17, 91. [Google Scholar] [CrossRef]
- Kirindage, K.G.I.S.; Jayasinghe, A.M.K.; Han, E.J.; Jee, Y.; Kim, H.J.; Do, S.G.; Fernando, I.P.S.; Ahn, G. Fucosterol Isolated from Dietary Brown Alga Sargassum horneri Protects TNF-α/IFN-γ-Stimulated Human Dermal Fibroblasts Via Regulating Nrf2/HO-1 and NF-ΚB/MAPK Pathways. Antioxidants 2022, 11, 1429. [Google Scholar] [CrossRef]
- Gan, S.Y.; Wong, L.Z.; Wong, J.W.; Tan, E.L. Fucosterol Exerts Protection against Amyloid β-Induced Neurotoxicity, Reduces Intracellular Levels of Amyloid β and Enhances the MRNA Expression of Neuroglobin in Amyloid β-Induced SH-SY5Y Cells. Int. J. Biol. Macromol. 2019, 121, 207–213. [Google Scholar] [CrossRef]
- Silva, J.; Alves, C.; Pinteus, S.; Susano, P.; Simões, M.; Guedes, M.; Martins, A.; Rehfeldt, S.; Gaspar, H.; Goettert, M.; et al. Disclosing the Potential of Eleganolone for Parkinson’s Disease Therapeutics: Neuroprotective and Anti-Inflammatory Activities. Pharmacol. Res. 2021, 168, 105589. [Google Scholar] [CrossRef]
- Qi, Y.; Liu, G.; Fang, C.; Jing, C.; Tang, S.; Li, G.; Wang, C.; Zhu, H.; Zhao, M.; Sun, Z.; et al. Antioxidant and Neuroprotective Xenicane Diterpenes from the Brown Alga Dictyota coriacea. ACS Omega 2023, 8, 8034–8044. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Xi, Y.; Li, G.; Zheng, Y.; Wang, Z.; Wang, J.; Fang, C.; Sun, Z.; Hu, L.; Jiang, W.; et al. Hydroazulene Diterpenes from A Dictyota Brown Alga and Their Antioxidant and Neuroprotective Effects against Cerebral Ischemia-Reperfusion Injury. J. Nat. Prod. 2021, 84, 1306–1315. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, M.; Matsuda, A.; Shiiba, N.; Tsuruta, T.; Endo, H.; Nishikawa, K.; Morimoto, Y. Structure-Activity Relationship of Anti-Inflammatory Meroterpenoids Isolated from Dictyopteris polypodioides in RAW264 Cells. Biosci. Biotechnol. Biochem. 2024, 88, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Xing, M.; Li, G.; Liu, Y.; Yang, L.; Zhang, Y.; Zhang, Y.; Ding, J.; Lu, M.; Yu, G.; Hu, G. Fucoidan from Fucus vesiculosus Prevents the Loss of Dopaminergic Neurons by Alleviating Mitochondrial Dysfunction through Targeting ATP5F1a. Carbohydr. Polym. 2023, 303, 120470. [Google Scholar] [CrossRef]
- Subermaniam, K.; Lew, S.Y.; Yow, Y.Y.; Lim, S.H.; Yu, W.S.; Lim, L.W.; Wong, K.H. Malaysian Brown Macroalga Padina australis Mitigates Lipopolysaccharide-Stimulated Neuroinflammation in BV2 Microglial Cells. Iran. J. Basic. Med. Sci. 2023, 26, 669. [Google Scholar] [CrossRef]
- Fei, J.; Yamada, S.; Satoh, T.; Koyama, T. Pharmacokinetic Analysis of Zonarol, a Marine Algal Hydroquinone, in Mice Using HPLC with Fluorescence Detection. Antibiotics 2023, 12, 1013. [Google Scholar] [CrossRef]
- Jo, S.L.; Yang, H.; Jeong, K.J.; Lee, H.W.; Hong, E.J. Neuroprotective Effects of Ecklonia cava in a Chronic Neuroinflammatory Disease Model. Nutrients 2023, 15, 2007. [Google Scholar] [CrossRef]
- Yende, S.R.; Arora, S.K.; Ittadwar, A.M. Antioxidant and Cognitive Enhancing Activities of Sargassum ilicifolium and Padina tetrastromatica in Scopolamine Treated Mice. J. Biol. Act. Prod. Nat. 2021, 11, 11–21. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Q.; Duan, L.; Li, X.; Yang, W.; Huang, T.; Kong, M.; Guan, F.; Ma, S. Fucoidan Ameliorates LPS-Induced Neuronal Cell Damage and Cognitive Impairment in Mice. Int. J. Biol. Macromol. 2022, 222, 759–771. [Google Scholar] [CrossRef]
- Ramu, S.; Anbu, J.; Ammunje, D.N.; Krishnaraj, K. Fucoidan Isolated from Sargassum wightii Greville Ameliorates Intracerebro-Ventricular Streptozotocin Induced Cognitive Deficits, Oxidative Stress and Amyloidosis in Wistar Rats. Bioact. Carbohydr. Diet. Fibre 2022, 27, 100309. [Google Scholar] [CrossRef]
- Ma, Z.; Yang, Z.; Feng, X.; Deng, J.; He, C.; Li, R.; Zhao, Y.; Ge, Y.; Zhang, Y.; Song, C.; et al. The Emerging Evidence for a Protective Role of Fucoidan from Laminaria Japonica in Chronic Kidney Disease-Triggered Cognitive Dysfunction. Mar. Drugs 2022, 20, 258. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Ahn, J.H.; Song, M.; Kim, D.W.; Lee, T.K.; Lee, J.C.; Kim, Y.M.; Kim, J.D.; Cho, J.H.; Hwang, I.K.; et al. Pretreated Fucoidan Confers Neuroprotection against Transient Global Cerebral Ischemic Injury in the Gerbil Hippocampal CA1 Area via Reducing of Glial Cell Activation and Oxidative Stress. Biomed. Pharmacother. 2019, 109, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.K.; Ahn, J.H.; Park, C.W.; Kim, B.; Park, Y.E.; Lee, J.C.; Park, J.H.; Yang, G.E.; Shin, M.C.; Cho, J.H.; et al. Pre-Treatment with Laminarin Protects Hippocampal CA1 Pyramidal Neurons and Attenuates Reactive Gliosis Following Transient Forebrain Ischemia in Gerbils. Mar. Drugs 2020, 18, 52. [Google Scholar] [CrossRef] [PubMed]
- Janahmadi, Z.; Jaberie, H.; Esmaili, A.; Nabipour, I. Hepatoprotective Effects of Brown Algae Sargassum Boveanum on Bile Duct-Ligated Cholestasis in Rats Are Mediated by Modulating NF-ΚB/TNF-α and Nrf2/HO-1 Gene Expression. Avicenna J. Phytomed. 2023, 13, 513–530. [Google Scholar] [CrossRef]
- Hassanzadeh, A.; Yegdaneh, A.; Rabbani, M. Effects of Hydroalcoholic, Methanolic, and Hexane Extracts of Brown Algae Sargassum Angustifolium on Scopolamine-Induced Memory Impairment and Learning Deficit in Rodents. Res Pharm Sci 2023, 18, 292–302. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cokdinleyen, M.; dos Santos, L.C.; de Andrade, C.J.; Kara, H.; Colás-Ruiz, N.R.; Ibañez, E.; Cifuentes, A. A Narrative Review on the Neuroprotective Potential of Brown Macroalgae in Alzheimer’s Disease. Nutrients 2024, 16, 4394. https://doi.org/10.3390/nu16244394
Cokdinleyen M, dos Santos LC, de Andrade CJ, Kara H, Colás-Ruiz NR, Ibañez E, Cifuentes A. A Narrative Review on the Neuroprotective Potential of Brown Macroalgae in Alzheimer’s Disease. Nutrients. 2024; 16(24):4394. https://doi.org/10.3390/nu16244394
Chicago/Turabian StyleCokdinleyen, Melis, Luana Cristina dos Santos, Cristiano José de Andrade, Huseyin Kara, Nieves R. Colás-Ruiz, Elena Ibañez, and Alejandro Cifuentes. 2024. "A Narrative Review on the Neuroprotective Potential of Brown Macroalgae in Alzheimer’s Disease" Nutrients 16, no. 24: 4394. https://doi.org/10.3390/nu16244394
APA StyleCokdinleyen, M., dos Santos, L. C., de Andrade, C. J., Kara, H., Colás-Ruiz, N. R., Ibañez, E., & Cifuentes, A. (2024). A Narrative Review on the Neuroprotective Potential of Brown Macroalgae in Alzheimer’s Disease. Nutrients, 16(24), 4394. https://doi.org/10.3390/nu16244394