The Effect of Pre-Exercise Caffeine and Glucose Ingestion on Endurance Capacity in Hypoxia: A Double-Blind Crossover Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Sample Size Calculation
2.3. Experimental Design
2.4. Protocol
2.4.1. Preliminary Test
2.4.2. Main Trial
2.5. Test Drink
2.6. Blood Sample Collection
2.7. Blood Analysis
2.8. Statistical Analysis
3. Results
3.1. Exercise Performance
3.2. Plasma Concentrations of FFA, Glycerol, Lactate, Glucose, and Insulin
3.3. Fat Oxidation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dufour, S.P.; Ponsot, E.; Zoll, J.; Doutreleau, S.; Lonsdorfer-Wolf, E.; Geny, B.; Lampert, E.; Fluck, M.; Hoppeler, H.; Billat, V. Exercise training in normobaric hypoxia in endurance runners. I. Improvement in aerobic performance capacity. J. Appl. Physiol. 2006, 100, 1238–1248. [Google Scholar] [CrossRef] [PubMed]
- Hoppeler, H.; Klossner, S.; Vogt, M. Training in hypoxia and its effects on skeletal muscle tissue. Scand. J. Med. Sci. Sports 2008, 18, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Griffiths, A.; Shannon, O.; Matu, J.; King, R.; Deighton, K.; O’Hara, J.P. Response: Commentary on the effects of hypoxia on energy substrate use during exercise. J. Int. Soc. Sports Nutr. 2019, 16, 61. [Google Scholar] [CrossRef] [PubMed]
- Margolis, L.; Wilson, M.; Whitney, C.; Carrigan, C.; Murphy, N.; Radcliffe, P.; Gwin, J.; Young, A.; Pasiakos, S. Acute Hypoxia Suppresses Exogenous Glucose Oxidation, Lowers Fat Oxidation, and Increases Muscle Glycogenolysis During Steady-state Aerobic Exercise (P08-084-19). Curr. Dev. Nutr. 2019, 3, nzz044. [Google Scholar] [CrossRef]
- Katayama, K.; Goto, K.; Ishida, K.; Ogita, F. Substrate utilization during exercise and recovery at moderate altitude. Metabolism 2010, 59, 959–966. [Google Scholar] [CrossRef]
- Peronnet, F.; Massicotte, D.; Folch, N.; Melin, B.; Koulmann, N.; Jimenez, C.; Bourdon, L.; Launay, J.; Savourey, G. Substrate utilization during prolonged exercise with ingestion of 13 C-glucose in acute hypobaric hypoxia (4300 m). Eur. J. Appl. Physiol. 2006, 97, 527–534. [Google Scholar] [CrossRef]
- Ivy, J.L.; Res, P.T.; Sprague, R.C.; Widzer, M.O. Effect of a carbohydrate-protein supplement on endurance performance during exercise of varying intensity. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 382–395. [Google Scholar] [CrossRef]
- Jeukendrup, A.E. Carbohydrate intake during exercise and performance. Nutrition 2004, 20, 669–677. [Google Scholar] [CrossRef]
- Kimber, N.E.; Heigenhauser, G.J.; Spriet, L.L.; Dyck, D.J. Skeletal muscle fat and carbohydrate metabolism during recovery from glycogen-depleting exercise in humans. J. Physiol. 2003, 548, 919–927. [Google Scholar] [CrossRef]
- Margolis, L.M.; Wilson, M.A.; Whitney, C.C.; Carrigan, C.T.; Murphy, N.E.; Radcliffe, P.N.; Gwin, J.A.; Church, D.D.; Wolfe, R.R.; Ferrando, A.A. Acute hypoxia reduces exogenous glucose oxidation, glucose turnover, and metabolic clearance rate during steady-state aerobic exercise. Metabolism 2020, 103, 154030. [Google Scholar] [CrossRef]
- Hawley, J.A. Effect of increased fat availability on metabolism and exercise capacity. Med. Sci. Sports Exerc. 2002, 34, 1485–1491. [Google Scholar] [CrossRef] [PubMed]
- Lim, K.; Ryu, S.; Nho, H.-S.; Choi, S.-K.; Kwow, T.; Suh, H.; So, J.; Tomita, K.; Okuhara, Y.; Shigematsu, N. (-)-Hydroxycitric acid ingestion increases fat utilization during exercise in untrained women. J. Nutr. Sci. Vitaminol. 2003, 49, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Collado-Mateo, D.; Lavín-Pérez, A.M.; Merellano-Navarro, E.; Coso, J.D. Effect of acute caffeine intake on the fat oxidation rate during exercise: A systematic review and meta-analysis. Nutrients 2020, 12, 3603. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Battram, D.S.; Dela, F.; El-Sohemy, A.; Thong, F.S. Does caffeine alter muscle carbohydrate and fat metabolism during exercise? Appl. Physiol. Nutr. Metab. 2008, 33, 1311–1318. [Google Scholar] [CrossRef] [PubMed]
- Kalmar, J.M. The influence of caffeine on voluntary muscle activation. Med. Sci. Sports Exerc. 2005, 37, 2113–2119. [Google Scholar] [CrossRef]
- Yeo, S.E.; Jentjens, R.L.; Wallis, G.A.; Jeukendrup, A.E. Caffeine increases exogenous carbohydrate oxidation during exercise. J. Appl. Physiol. 2005, 99, 844–850. [Google Scholar] [CrossRef]
- Fulco, C.S.; Zupan, M.; Muza, S.; Rock, P.; Kambis, K.; Payn, T.; Hannon, M.; Glickman, E.; Cymerman, A. Carbohydrate supplementation and endurance performance of moderate altitude residents at 4300 m. Int. J. Sports Med. 2007, 28, 437–443. [Google Scholar] [CrossRef]
- Bradbury, K.E.; Berryman, C.E.; Wilson, M.A.; Luippold, A.J.; Kenefick, R.W.; Young, A.J.; Pasiakos, S.M. Effects of carbohydrate supplementation on aerobic exercise performance during acute high altitude exposure and after 22 days of acclimatization and energy deficit. J. Int. Soc. Sports Nutr. 2020, 17, 4. [Google Scholar] [CrossRef]
- Fulco, C.S.; Kambis, K.; Friedlander, A.; Rock, P.; Muza, S.; Cymerman, A. Carbohydrate supplementation improves time-trial cycle performance during energy deficit at 4300-m altitude. J. Appl. Physiol. 2005, 99, 867–876. [Google Scholar] [CrossRef]
- Oliver, S.J.; Golja, P.; Macdonald, J.H. Carbohydrate supplementation and exercise performance at high altitude: A randomized controlled trial. High Alt. Med. Biol. 2012, 13, 22–31. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.-G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Frayn, K. Calculation of substrate oxidation rates in vivo from gaseous exchange. J. Appl. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T. International society of sports nutrition position stand: Caffeine and exercise performance. J. Int. Soc. Sports Nutr. 2021, 18, 1. [Google Scholar] [CrossRef] [PubMed]
- Tarnopolsky, M.A.; Dyson, K.; Atkinson, S.A.; MacDougall, D.; Cupido, C. Mixed carbohydrate supplementation increases carbohydrate oxidation and endurance exercise performance and attenuates potassium accumulation. Int. J. Sport Nutr. Exerc. Metab. 1996, 6, 323–336. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central nervous system effects of caffeine and adenosine on fatigue. Am. J. Physiol.-Regul. Integr. Comp. Physiol. 2003, 284, R399–R404. [Google Scholar] [CrossRef]
- Sachan, D.S.; Hongu, N. Increases in VO2max and metabolic markers of fat oxidation by caffeine, carnitine, and choline supplementation in rats. J. Nutr. Biochem. 2000, 11, 521–526. [Google Scholar] [CrossRef]
- Graham, T.E.; Helge, J.W.; MacLean, D.A.; Kiens, B.; Richter, E.A. Caffeine ingestion does not alter carbohydrate or fat metabolism in human skeletal muscle during exercise. J. Physiol. 2000, 529, 837–847. [Google Scholar] [CrossRef]
- Jacobson, T.L.; Febbraio, M.A.; Arkinstall, M.J.; Hawley, J.A. Effect of caffeine co-ingested with carbohydrate or fat on metabolism and performance in endurance-trained men. Exp. Physiol. 2001, 86, 137–144. [Google Scholar] [CrossRef]
Caff | CHO |
433.8 ± 85.1 s * | 377.9 ± 100.0 s * |
44.0 ± 23.9% (22.7–65.3%) | 31.1 ± 13.8% (18.6–43.3%) |
Caff−CHO | PLA 245.5 ± 60.4 s |
539.4 ± 94.0 s * | |
46.2 ± 32.9% (13.2–79.1%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiu, C.-H.; Chen, C.-C.; Ali, A.; Wu, S.-L.; Wu, C.-L. The Effect of Pre-Exercise Caffeine and Glucose Ingestion on Endurance Capacity in Hypoxia: A Double-Blind Crossover Trial. Nutrients 2024, 16, 3624. https://doi.org/10.3390/nu16213624
Chiu C-H, Chen C-C, Ali A, Wu S-L, Wu C-L. The Effect of Pre-Exercise Caffeine and Glucose Ingestion on Endurance Capacity in Hypoxia: A Double-Blind Crossover Trial. Nutrients. 2024; 16(21):3624. https://doi.org/10.3390/nu16213624
Chicago/Turabian StyleChiu, Chih-Hui, Chung-Chih Chen, Ajmol Ali, Shey-Lin Wu, and Ching-Lin Wu. 2024. "The Effect of Pre-Exercise Caffeine and Glucose Ingestion on Endurance Capacity in Hypoxia: A Double-Blind Crossover Trial" Nutrients 16, no. 21: 3624. https://doi.org/10.3390/nu16213624
APA StyleChiu, C.-H., Chen, C.-C., Ali, A., Wu, S.-L., & Wu, C.-L. (2024). The Effect of Pre-Exercise Caffeine and Glucose Ingestion on Endurance Capacity in Hypoxia: A Double-Blind Crossover Trial. Nutrients, 16(21), 3624. https://doi.org/10.3390/nu16213624