Energy Availability and Body Composition in Professional Athletes: Two Sides of the Same Coin
Abstract
:1. Introduction
2. Materials and Methods
- Population Studied:
- Methods:
2.1. Face-to-Face Interview
2.2. IPAQ Questionnaire
2.3. Body Composition Analysis
2.4. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Limitations and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Papageorgiou, M.; Dolan, E.; Elliott-Sale, K.J.; Sale, C. Reduced energy availability: Implications for bone health in physically active population. Eur. J. Nutr. 2018, 57, 847–859. [Google Scholar] [CrossRef] [PubMed]
- Loucks, A.B.; Kiens, B.; Wright, H.H. Energy availability in athletes. J. Sports Sci. 2011, 29, S7–S15. [Google Scholar] [CrossRef] [PubMed]
- Ihle, R.; Loucks, A.B. Dose-response relationships between energy availability and bone turnover in young exercising women. J. Bone. 2004, 19, 1231–1240. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) consensus statement on relative energy deficiency in sport (RED-S): 2018 update. Br. J. Sports Med. 2018, 52, 316–331. [Google Scholar] [CrossRef] [PubMed]
- Condo, D.; Lohman, R.; Kelly, M.; Carr, A. Nutritional intake, sports nutrition knowledge and energy availability in female australian rules football players. Nutrients 2019, 11, 971. [Google Scholar] [CrossRef]
- Keay, N.; Francis, G.; Entwistle, I.; Hind, K. Clinical evaluation of education relating to nutrition and skeletal loading in competitive male road cyclists at risk of relative energy deficiency in sports (RED-S): 6-monthrandomised controlled trial. BMJ Open Sport Exerc. Med. 2019, 5, e000523. [Google Scholar] [CrossRef]
- Heikura, I.A.; Uusitalo, A.L.T.; Stellingwer, T.; Bergland, D.; Mero, A.A.; Burke, L.M. Low energy availability is di_cult to assess but outcomes have large impact on bone injury rates in elite distance athletes. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 403–411. [Google Scholar] [CrossRef]
- Fagerberg, P. Negative consequences of low energy availability in natural male bodybuilding: A review. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 385–402. [Google Scholar] [CrossRef]
- Burger, S.; Bray, A.; Kim, B. The relationship between nutrition knowledge and low energy availability risk in collegiate athletes. J. Sci. Med. Sport. 2024, 27, 451–453. [Google Scholar] [CrossRef]
- Henninger, K.; Pritchett, K.; Brooke, N.K.; Dambacher, L. Low Energy Availability, Disordered Eating, Exercise Dependence, and Fueling Strategies in Trail Runners. Int. J. Exerc. Sci. 2024, 16, 1471–1486. [Google Scholar] [CrossRef]
- Melin, A.; Tornberg, A.B.; Skouby, S.; Faber, J.; Ritz, C.; Sjödin, A.; Sundgot-Borgen, J. The LEAF questionnaire: A screening tool for the identification of female athletes at risk for the female athlete triad. Br. J. Sports Med. 2014, 48, 540–545. [Google Scholar] [CrossRef] [PubMed]
- Lundy, B.; Torstveit, M.K.; Stenqvist, T.B.; Burke, L.M.; Garthe, I.; Slater, G.J.; Ritz, C.; Melin, A.K. Screening for Low Energy Availability in Male Athletes: Attempted Validation of LEAM-Q. Nutrients 2022, 14, 1873. [Google Scholar] [CrossRef] [PubMed]
- Craig, C.L.; Marshall, A.L.; Sjöström, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Oja, P. International Physical Activity Questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef]
- Fogelholm, M.; Malmberg, J.; Suni, J.; Santtila, M.; Kyrolainen, H.; Mantysaari, M. International Physical Activity Questionnaire: Validity against fitness. Med. Sci. Sports Exerc. 2006, 38, 753–760. [Google Scholar] [CrossRef] [PubMed]
- Hagströmer, M.; Oja, P.; Sjöström, M. The International Physical Activity Questionnaire (IPAQ): A study of concurrent and construct validity. Public Health Nutr. 2006, 9, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R.; Tudor-Locke, C.; Leon, A.S. 2011 Compendium of Physical Activities: A Second Update of Codes and MET Values. Med. Sci. Sports Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef]
- Meyer, N.L.; Sundgot-Borgen, J.; Lohman, T.G.; Ackland, T.R.; Stewart, A.D.; Maughan, R.J.; Smith, S.; Mountjoy, M.L. Body composition for health and performance: A survey of body composition assessment practices of sports science and sports medicine professionals from the British Olympic Association. Br. J. Sports Med. 2013, 47, 1044–1053. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef]
- Campa, F.; Gobbo, L.A.; Stagi, S.; Cyrino, L.T.; Toselli, S.; Marini, E.; Coratella, G. Bioelectrical impedance analysis versus reference methods in the assessment of body composition in athletes. Eur. J. Appl. Physiol. 2022, 122, 561–589. [Google Scholar] [CrossRef]
- Marini, E.; Campa, F.; Buffa, R.; Stagi, S.; Matias, C.N.; Toselli, S.; Sardinha, L.B.; Silva, A.M. Phase angle and bioelectrical impedance vector analysis in the evaluation of body composition in athletes. Clin. Nutr. 2020, 39, 447–454. [Google Scholar] [CrossRef]
- Lukaski, H.C. Body Composition: Health and Performance in Exercise and Sport, 1st ed.; CRC Press Taylor & Francis Group: Orlando, FL, USA, 2017. [Google Scholar]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part I: Review of principles and methods. Clin. Nutr. 2004, 23, 1226–1243. [Google Scholar] [CrossRef] [PubMed]
- Koehler, K.; Mathai, S. Low Energy Availability in Male Athletes: A Review of Physiological and Performance Effects. Eur. J. Sport Sci. 2020, 20, 783–793. [Google Scholar]
- Wasserfurth, P.; Palmowski, J.; Hahn, A.; Krüger, K. Reasons for and consequences of low energy availability in female and male athletes: Social environment, adaptations, and prevention. Sports Med. Open. 2020, 6, 44. [Google Scholar] [CrossRef]
- Tiller, N.B.; Roberts, J.D.; Beasley, L.; Smith, L.; Cook, M.D. Differences in pre- and post-training energy availability in endurance and resistance-trained males. J. Int. Soc. Sports Nutr. 2019, 16, 1–10. [Google Scholar]
- Saidi, O.; Souabni, M.; Del Sordo, G.C.; Maviel, C.; Peyrel, P.; Maso, F.; Vercruyssen, F.; Duché, P. Association between Low Energy Availability (LEA) and Impaired Sleep Quality in Young Rugby Players. Nutrients 2024, 16, 609. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Wilborn, C.D.; Roberts, M.D.; Smith-Ryan, A.; Kleiner, S.M.; Jäger, R.; Collins, R.; Cooke, M.; Davis, J.N.; Galvan, E.; et al. ISSN exercise and sports nutrition review update: Research and recommendations. J. Int. Soc. Sports Nutr. 2018, 15, 38. [Google Scholar] [CrossRef]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International Society of Sports Nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef]
Rugby Players | Endurance Athletes | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
t | df | Mean Difference | 95% Confidence Interval of the Difference | t | df | Mean Difference | 95% Confidence Interval of the Difference | |||||
Lower | Upper | Lower | Upper | p Value | ||||||||
EI | 122.3 | 35 | 3237.28 | 3183.55 | 3291.01 | EI | 18.8 | 17 | 1796.88 | 1595.26 | 1998.51 | p < 0.01 |
EEE | 10.8 | 35 | 839.51 | 682.59 | 996.43 | EEE | 15.59 | 17 | 1144.41 | 989.59 | 1299.23 | p = 0.01 |
EA | 32.08 | 35 | 35.44 | 33.2 | 37.68 | EA | 5.49 | 17 | 11.72 | 7.21 | 16.22 | p < 0.01 |
MB | 122.18 | 35 | 1904.33 | 1872.70 | 1935.97 | MB | 48.40 | 17 | 1681.77 | 1608.46 | 1755.08 | p < 0.01 |
FFM% | 108.29 | 35 | 0.78 | 0.76 | 0.8 | FFM% | 49.40 | 17 | 0.76 | 0.73 | 0.80 | p < 0.01 |
FM | 29.94 | 35 | 0.21 | 0.20 | 0.23 | FM | 19.62 | 17 | 0.22 | 0.19 | 0.24 | p < 0.01 |
ASMM (Kg) | 35.13 | 35 | 27.22 | 25.64 | 28.79 | ASMM (Kg) | 19.65 | 17 | 30.01 | 26.78 | 33.23 | p > 0.05 |
Phase Angle | 76.68 | 35 | 7.08 | 6.89 | 7.27 | Phase Angle | 44.40 | 17 | 6.44 | 6.13 | 6.75 | p < 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palazzo, R.; Parisi, T.; Rosa, S.; Corsi, M.; Falconi, E.; Stefani, L. Energy Availability and Body Composition in Professional Athletes: Two Sides of the Same Coin. Nutrients 2024, 16, 3507. https://doi.org/10.3390/nu16203507
Palazzo R, Parisi T, Rosa S, Corsi M, Falconi E, Stefani L. Energy Availability and Body Composition in Professional Athletes: Two Sides of the Same Coin. Nutrients. 2024; 16(20):3507. https://doi.org/10.3390/nu16203507
Chicago/Turabian StylePalazzo, Roberto, Tommaso Parisi, Sara Rosa, Marco Corsi, Edoardo Falconi, and Laura Stefani. 2024. "Energy Availability and Body Composition in Professional Athletes: Two Sides of the Same Coin" Nutrients 16, no. 20: 3507. https://doi.org/10.3390/nu16203507
APA StylePalazzo, R., Parisi, T., Rosa, S., Corsi, M., Falconi, E., & Stefani, L. (2024). Energy Availability and Body Composition in Professional Athletes: Two Sides of the Same Coin. Nutrients, 16(20), 3507. https://doi.org/10.3390/nu16203507