BMI Mediates the Association between Macronutrient Subtypes and Phenotypic Age Acceleration
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Phenotypic Age Acceleration
2.3. Dietary Assessment
2.4. Covariates
2.5. Statistical Analysis
3. Result
3.1. Participant Characteristics
3.2. Association of Macronutrients with PhenoAgeAccel
3.3. Isocaloric Substitution Effects
3.4. Macronutrients and PhenoAgeAccel: The Mediating Role of BMI
3.5. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nations, U. World Population Prospects 2019: Highlights. Available online: https://www.un.org/en/academic-impact/97-billion-earth-2050-growth-rate-slowing-says-new-un-population-report (accessed on 9 August 2024).
- Kennedy, B.K.; Berger, S.L.; Brunet, A.; Campisi, J.; Cuervo, A.M.; Epel, E.S.; Franceschi, C.; Lithgow, G.J.; Morimoto, R.I.; Pessin, J.E.; et al. Geroscience: Linking aging to chronic disease. Cell 2014, 159, 709–713. [Google Scholar] [CrossRef] [PubMed]
- Niccoli, T.; Partridge, L. Ageing as a risk factor for disease. Curr. Biol. 2012, 22, R741–R752. [Google Scholar] [CrossRef]
- Fitzgerald, K.N.; Hodges, R.; Hanes, D.; Stack, E.; Cheishvili, D.; Szyf, M.; Henkel, J.; Twedt, M.W.; Giannopoulou, D.; Herdell, J.; et al. Potential reversal of epigenetic age using a diet and lifestyle intervention: A pilot randomized clinical trial. Aging 2021, 13, 9419–9432. [Google Scholar] [CrossRef] [PubMed]
- Ferrucci, L.; Levine, M.E.; Kuo, P.L.; Simonsick, E.M. Time and the Metrics of Aging. Circ. Res. 2018, 123, 740–744. [Google Scholar] [CrossRef] [PubMed]
- Kubben, N.; Misteli, T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat. Rev. Mol. Cell Biol. 2017, 18, 595–609. [Google Scholar] [CrossRef]
- Costantino, S.; Paneni, F.; Cosentino, F. Ageing, metabolism and cardiovascular disease. J. Physiol. 2016, 594, 2061–2073. [Google Scholar] [CrossRef]
- Finkel, D.; Whitfield, K.; McGue, M. Genetic and environmental influences on functional age: A twin study. J. Gerontol. B Psychol. Sci. Soc. Sci. 1995, 50, P104–P113. [Google Scholar] [CrossRef]
- Liu, Z.; Kuo, P.L.; Horvath, S.; Crimmins, E.; Ferrucci, L.; Levine, M. A new aging measure captures morbidity and mortality risk across diverse subpopulations from NHANES IV: A cohort study. PLoS Med. 2018, 15, e1002718. [Google Scholar] [CrossRef] [PubMed]
- Chang, X.; Zhou, Y.F.; Wang, L.; Liu, J.; Yuan, J.M.; Khor, C.C.; Heng, C.K.; Pan, A.; Koh, W.P.; Dorajoo, R. Genetic associations with healthy ageing among Chinese adults. NPJ Aging 2022, 8, 6. [Google Scholar] [CrossRef]
- Klopack, E.T.; Carroll, J.E.; Cole, S.W.; Seeman, T.E.; Crimmins, E.M. Lifetime exposure to smoking, epigenetic aging, and morbidity and mortality in older adults. Clin. Epigenetics 2022, 14, 72. [Google Scholar] [CrossRef]
- Topiwala, A.; Taschler, B.; Ebmeier, K.P.; Smith, S.; Zhou, H.; Levey, D.F.; Codd, V.; Samani, N.J.; Gelernter, J.; Nichols, T.E.; et al. Alcohol consumption and telomere length: Mendelian randomization clarifies alcohol’s effects. Mol. Psychiatry 2022, 27, 4001–4008. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Yang, G.; Li, X.; Fu, J.; Mohedaner, M.; Danzengzhuoga; Høj Jørgensen, T.S.; Agogo, G.O.; Wang, L.; Zhang, X.; et al. Weight change across adulthood and accelerated biological aging in middle-aged and older adults. Am. J. Clin. Nutr. 2023, 117, 1–11. [Google Scholar] [CrossRef]
- Duan, H.; Pan, J.; Guo, M.; Li, J.; Yu, L.; Fan, L. Dietary strategies with anti-aging potential: Dietary patterns and supplements. Food Res. Int. 2022, 158, 111501. [Google Scholar] [CrossRef] [PubMed]
- Levine, M.E.; Suarez, J.A.; Brandhorst, S.; Balasubramanian, P.; Cheng, C.W.; Madia, F.; Fontana, L.; Mirisola, M.G.; Guevara-Aguirre, J.; Wan, J.; et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab. 2014, 19, 407–417. [Google Scholar] [CrossRef]
- Senior, A.M.; Nakagawa, S.; Raubenheimer, D.; Simpson, S.J. Global associations between macronutrient supply and age-specific mortality. Proc. Natl. Acad. Sci. USA 2020, 117, 30824–30835. [Google Scholar] [CrossRef]
- Assmann, K.E.; Lassale, C.; Andreeva, V.A.; Jeandel, C.; Hercberg, S.; Galan, P.; Kesse-Guyot, E. A Healthy Dietary Pattern at Midlife, Combined with a Regulated Energy Intake, Is Related to Increased Odds for Healthy Aging. J. Nutr. 2015, 145, 2139–2145. [Google Scholar] [CrossRef] [PubMed]
- Shammas, M.A. Telomeres, lifestyle, cancer, and aging. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Mathers, J.C. Impact of nutrition on the ageing process. Br. J. Nutr. 2015, 113, S18–S22. [Google Scholar] [CrossRef]
- Mirzaei, H.; Suarez, J.A.; Longo, V.D. Protein and amino acid restriction, aging and disease: From yeast to humans. Trends Endocrinol. Metab. 2014, 25, 558–566. [Google Scholar] [CrossRef]
- Dehghan, M.; Mente, A.; Zhang, X.; Swaminathan, S.; Li, W.; Mohan, V.; Iqbal, R.; Kumar, R.; Wentzel-Viljoen, E.; Rosengren, A.; et al. Associations of fats and carbohydrate intake with cardiovascular disease and mortality in 18 countries from five continents (PURE): A prospective cohort study. Lancet 2017, 390, 2050–2062. [Google Scholar] [CrossRef]
- Mendonça, N.; Granic, A.; Hill, T.R.; Siervo, M.; Mathers, J.C.; Kingston, A.; Jagger, C. Protein Intake and Disability Trajectories in Very Old Adults: The Newcastle 85+ Study. J. Am. Geriatr. Soc. 2019, 67, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Schoufour, J.D.; Franco, O.H.; Kiefte-de Jong, J.C.; Trajanoska, K.; Stricker, B.; Brusselle, G.; Rivadeneira, F.; Lahousse, L.; Voortman, T. The association between dietary protein intake, energy intake and physical frailty: Results from the Rotterdam Study. Br. J. Nutr. 2019, 121, 393–401. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Locquet, M.; Touvier, M.; Reginster, J.Y.; Bruyère, O. Association between dietary nutrient intake and sarcopenia in the SarcoPhAge study. Aging Clin. Exp. Res. 2019, 31, 815–824. [Google Scholar] [CrossRef] [PubMed]
- Moradell, A.; Fernández-García, Á.I.; Navarrete-Villanueva, D.; Sagarra-Romero, L.; Gesteiro, E.; Pérez-Gómez, J.; Rodríguez-Gómez, I.; Ara, I.; Casajús, J.A.; Vicente-Rodríguez, G.; et al. Functional Frailty, Dietary Intake, and Risk of Malnutrition. Are Nutrients Involved in Muscle Synthesis the Key for Frailty Prevention? Nutrients 2021, 13, 1231. [Google Scholar] [CrossRef]
- Gopinath, B.; Flood, V.M.; Kifley, A.; Louie, J.C.; Mitchell, P. Association Between Carbohydrate Nutrition and Successful Aging Over 10 Years. J. Gerontol. A Biol. Sci. Med. Sci. 2016, 71, 1335–1340. [Google Scholar] [CrossRef]
- Verspoor, E.; Voortman, T.; van Rooij, F.J.A.; Rivadeneira, F.; Franco, O.H.; Kiefte-de Jong, J.C.; Schoufour, J.D. Macronutrient intake and frailty: The Rotterdam Study. Eur. J. Nutr. 2020, 59, 2919–2928. [Google Scholar] [CrossRef]
- De-la, O.A.; Jurado-Fasoli, L.; Gracia-Marco, L.; Henriksson, P.; Castillo, M.J.; Amaro-Gahete, F.J. Association of Energy and Macronutrients Intake with S-Klotho Plasma Levels in Middle-Aged Sedentary Adults: A Cross-Sectional Study. J. Nutr. Health Aging 2022, 26, 360–366. [Google Scholar] [CrossRef]
- Shan, Z.; Rehm, C.D.; Rogers, G.; Ruan, M.; Wang, D.D.; Hu, F.B.; Mozaffarian, D.; Zhang, F.F.; Bhupathiraju, S.N. Trends in Dietary Carbohydrate, Protein, and Fat Intake and Diet Quality Among US Adults, 1999–2016. JAMA 2019, 322, 1178–1187. [Google Scholar] [CrossRef]
- Wei, W.; Jiang, W.; Huang, J.; Xu, J.; Wang, X.; Jiang, X.; Wang, Y.; Li, G.; Sun, C.; Li, Y.; et al. Association of Meal and Snack Patterns with Mortality of All-Cause, Cardiovascular Disease, and Cancer: The US National Health and Nutrition Examination Survey, 2003 to 2014. J. Am. Heart Assoc. 2021, 10, e020254. [Google Scholar] [CrossRef]
- Levine, M.E.; Lu, A.T.; Quach, A.; Chen, B.H.; Assimes, T.L.; Bandinelli, S.; Hou, L.; Baccarelli, A.A.; Stewart, J.D.; Li, Y.; et al. An epigenetic biomarker of aging for lifespan and healthspan. Aging 2018, 10, 573–591. [Google Scholar] [CrossRef]
- Mekary, R.A.; Willett, W.C.; Hu, F.B.; Ding, E.L. Isotemporal substitution paradigm for physical activity epidemiology and weight change. Am. J. Epidemiol. 2009, 170, 519–527. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Gao, J.; Jiang, W.; Wei, W.; Wu, H.; Zhang, Y.; Sun, C.; Li, Y.; Han, T. Meal Timing of Subtypes of Macronutrients Consumption with Cardiovascular Diseases: NHANES, 2003 to 2016. J. Clin. Endocrinol. Metab. 2021, 106, e2480–e2490. [Google Scholar] [CrossRef] [PubMed]
- Han, T.; Gao, J.; Wang, L.; Li, C.; Qi, L.; Sun, C.; Li, Y. The Association of Energy and Macronutrient Intake at Dinner Versus Breakfast with Disease-Specific and All-Cause Mortality Among People with Diabetes: The U.S. National Health and Nutrition Examination Survey, 2003–2014. Diabetes Care 2020, 43, 1442–1448. [Google Scholar] [CrossRef]
- Sacks, F.M.; Lichtenstein, A.H.; Wu, J.H.Y.; Appel, L.J.; Creager, M.A.; Kris-Etherton, P.M.; Miller, M.; Rimm, E.B.; Rudel, L.L.; Robinson, J.G.; et al. Dietary Fats and Cardiovascular Disease: A Presidential Advisory from the American Heart Association. Circulation 2017, 136, e1–e23. [Google Scholar] [CrossRef]
- Xiao, Q.; Garaulet, M.; Scheer, F. Meal timing and obesity: Interactions with macronutrient intake and chronotype. Int. J. Obes. 2019, 43, 1701–1711. [Google Scholar] [CrossRef] [PubMed]
- Belfort-DeAguiar, R.; Seo, D. Food Cues and Obesity: Overpowering Hormones and Energy Balance Regulation. Curr. Obes. Rep. 2018, 7, 122–129. [Google Scholar] [CrossRef]
- Wang, C.; Zhong, G.; Liu, C.; Hong, S.; Guan, X.; Xiao, Y.; Fu, M.; Zhou, Y.; You, Y.; Wu, T.; et al. DNA methylation aging signatures of multiple metals exposure and their mediation effects in metal-associated mortality: Evidence from the Dongfeng-Tongji cohort study. J. Hazard. Mater. 2024, 465, 133200. [Google Scholar] [CrossRef]
- Chaudhary, P.; Sharma, A.; Singh, B.; Nagpal, A.K. Bioactivities of phytochemicals present in tomato. J. Food Sci. Technol. 2018, 55, 2833–2849. [Google Scholar] [CrossRef]
- Fang, E.F.; Waltz, T.B.; Kassahun, H.; Lu, Q.; Kerr, J.S.; Morevati, M.; Fivenson, E.M.; Wollman, B.N.; Marosi, K.; Wilson, M.A.; et al. Tomatidine enhances lifespan and healthspan in C. elegans through mitophagy induction via the SKN-1/Nrf2 pathway. Sci. Rep. 2017, 7, 46208. [Google Scholar] [CrossRef]
- Ratto, F.; Franchini, F.; Musicco, M.; Caruso, G.; Di Santo, S.G. A narrative review on the potential of tomato and lycopene for the prevention of Alzheimer’s disease and other dementias. Crit. Rev. Food Sci. Nutr. 2022, 62, 4970–4981. [Google Scholar] [CrossRef]
- Sievenpiper, J.L. Low-carbohydrate diets and cardiometabolic health: The importance of carbohydrate quality over quantity. Nutr. Rev. 2020, 78, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, A.; Mann, J.; Cummings, J.; Winter, N.; Mete, E.; Te Morenga, L. Carbohydrate quality and human health: A series of systematic reviews and meta-analyses. Lancet 2019, 393, 434–445. [Google Scholar] [CrossRef] [PubMed]
- Hou, W.; Han, T.; Sun, X.; Chen, Y.; Xu, J.; Wang, Y.; Yang, X.; Jiang, W.; Sun, C. Relationship Between Carbohydrate Intake (Quantity, Quality, and Time Eaten) and Mortality (Total, Cardiovascular, and Diabetes): Assessment of 2003–2014 National Health and Nutrition Examination Survey Participants. Diabetes Care 2022, 45, 3024–3031. [Google Scholar] [CrossRef]
- Lee, D.; Son, H.G.; Jung, Y.; Lee, S.V. The role of dietary carbohydrates in organismal aging. Cell Mol. Life Sci. 2017, 74, 1793–1803. [Google Scholar] [CrossRef]
- Waziry, R.; Ryan, C.P.; Corcoran, D.L.; Huffman, K.M.; Kobor, M.S.; Kothari, M.; Graf, G.H.; Kraus, V.B.; Kraus, W.E.; Lin, D.T.S.; et al. Effect of long-term caloric restriction on DNA methylation measures of biological aging in healthy adults from the CALERIE trial. Nat. Aging 2023, 3, 248–257. [Google Scholar] [CrossRef]
- Tucker, L.A. Fruit and Vegetable Intake and Telomere Length in a Random Sample of 5448 U.S. Adults. Nutrients 2021, 13, 1415. [Google Scholar] [CrossRef] [PubMed]
- Rafie, N.; Golpour Hamedani, S.; Barak, F.; Safavi, S.M.; Miraghajani, M. Dietary patterns, food groups and telomere length: A systematic review of current studies. Eur. J. Clin. Nutr. 2017, 71, 151–158. [Google Scholar] [CrossRef]
- Freitas-Simoes, T.M.; Ros, E.; Sala-Vila, A. Nutrients, foods, dietary patterns and telomere length: Update of epidemiological studies and randomized trials. Metabolism 2016, 65, 406–415. [Google Scholar] [CrossRef]
- Aubert, G.; Lansdorp, P.M. Telomeres and aging. Physiol. Rev. 2008, 88, 557–579. [Google Scholar] [CrossRef]
- Crous-Bou, M.; Molinuevo, J.L.; Sala-Vila, A. Plant-Rich Dietary Patterns, Plant Foods and Nutrients, and Telomere Length. Adv. Nutr. 2019, 10, S296–S303. [Google Scholar] [CrossRef]
- Foscolou, A.; Magriplis, E.; Tyrovolas, S.; Chrysohoou, C.; Sidossis, L.; Matalas, A.L.; Rallidis, L.; Panagiotakos, D. The association of protein and carbohydrate intake with successful aging: A combined analysis of two epidemiological studies. Eur. J. Nutr. 2019, 58, 807–817. [Google Scholar] [CrossRef]
- Foscolou, A.; Critselis, E.; Tyrovolas, S.; Chrysohoou, C.; Naumovski, N.; Sidossis, L.S.; Rallidis, L.; Matalas, A.L.; Panagiotakos, D. The association of animal and plant protein with successful ageing: A combined analysis of MEDIS and ATTICA epidemiological studies. Public Health Nutr. 2021, 24, 2215–2224. [Google Scholar] [CrossRef]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.; Zhu, T.; Yang, G.; Zhao, L.; Li, F.; Park, Y.M.; Tabung, F.K.; Steck, S.E.; Li, X.; Wang, H. The Isocaloric Substitution of Plant-Based and Animal-Based Protein in Relation to Aging-Related Health Outcomes: A Systematic Review. Nutrients 2022, 14, 272. [Google Scholar] [CrossRef]
- de Souza, R.G.M.; Schincaglia, R.M.; Pimentel, G.D.; Mota, J.F. Nuts and Human Health Outcomes: A Systematic Review. Nutrients 2017, 9, 1311. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Gao, B.; Shi, H.; Slavin, M.; Huang, H.; Whent, M.; Sheng, Y.; Yu, L.L. Chemical composition of 13 commercial soybean samples and their antioxidant and anti-inflammatory properties. J. Agric. Food Chem. 2012, 60, 10027–10034. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Hu, J.; Pang, X.; Wang, X.; Xu, H.; Yan, X.; Zhang, J.; Pan, S.; Wei, W.; Li, Y. Association between plant and animal protein and biological aging: Findings from the UK Biobank. Eur. J. Nutr. 2024. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Green, C.L.; Wang, G.; Yang, D.; Li, L.; Li, B.; Wang, L.; Li, M.; Li, J.; Xu, Y.; et al. Effects of dietary macronutrients on the hepatic transcriptome and serum metabolome in mice. Aging Cell 2022, 21, e13585. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Claggett, B.; Cheng, S.; Henglin, M.; Shah, A.; Steffen, L.M.; Folsom, A.R.; Rimm, E.B.; Willett, W.C.; Solomon, S.D. Dietary carbohydrate intake and mortality: A prospective cohort study and meta-analysis. Lancet Public Health 2018, 3, e419–e428. [Google Scholar] [CrossRef]
- Hunter, J.E.; Zhang, J.; Kris-Etherton, P.M. Cardiovascular disease risk of dietary stearic acid compared with trans, other saturated, and unsaturated fatty acids: A systematic review. Am. J. Clin. Nutr. 2010, 91, 46–63. [Google Scholar] [CrossRef]
- Senior, A.M.; Legault, V.; Lavoie, F.B.; Presse, N.; Gaudreau, P.; Turcot, V.; Raubenheimer, D.; Le Couteur, D.G.; Simpson, S.J.; Cohen, A.A. Multidimensional associations between nutrient intake and healthy ageing in humans. BMC Biol. 2022, 20, 196. [Google Scholar] [CrossRef] [PubMed]
- Merino, J.; Dashti, H.S.; Sarnowski, C.; Lane, J.M.; Todorov, P.V.; Udler, M.S.; Song, Y.; Wang, H.; Kim, J.; Tucker, C.; et al. Genetic analysis of dietary intake identifies new loci and functional links with metabolic traits. Nat. Hum. Behav. 2022, 6, 155–163. [Google Scholar] [CrossRef] [PubMed]
- Fenni, S.; Hammou, H.; Astier, J.; Bonnet, L.; Karkeni, E.; Couturier, C.; Tourniaire, F.; Landrier, J.F. Lycopene and tomato powder supplementation similarly inhibit high-fat diet induced obesity, inflammatory response, and associated metabolic disorders. Mol. Nutr. Food Res. 2017, 61, 1601083. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Cho, H.D.; Jeong, J.H.; Lee, M.K.; Jeong, Y.K.; Shim, K.H.; Seo, K.I. New vinegar produced by tomato suppresses adipocyte differentiation and fat accumulation in 3T3-L1 cells and obese rat model. Food Chem. 2013, 141, 3241–3249. [Google Scholar] [CrossRef]
- Heo, M.; Kim, R.S.; Wylie-Rosett, J.; Allison, D.B.; Heymsfield, S.B.; Faith, M.S. Inverse association between fruit and vegetable intake and BMI even after controlling for demographic, socioeconomic and lifestyle factors. Obes. Facts 2011, 4, 449–455. [Google Scholar] [CrossRef]
- Muhlhausler, B.S.; Ailhaud, G.P. Omega-6 polyunsaturated fatty acids and the early origins of obesity. Curr. Opin. Endocrinol. Diabetes Obes. 2013, 20, 56–61. [Google Scholar] [CrossRef]
- Chen, C.; Ye, Y.; Zhang, Y.; Pan, X.F.; Pan, A. Weight change across adulthood in relation to all cause and cause specific mortality: Prospective cohort study. Bmj 2019, 367, l5584. [Google Scholar] [CrossRef]
- Hayes, M.; Baxter, H.; Müller-Nordhorn, J.; Hohls, J.K.; Muckelbauer, R. The longitudinal association between weight change and health-related quality of life in adults and children: A systematic review. Obes. Rev. 2017, 18, 1398–1411. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, Z.; Zhou, C.; He, P.; Zhang, Y.; Li, H.; Li, Q.; Liu, C.; Wang, B.; Li, J.; et al. Relationship of Weight Change Patterns from Young to Middle Adulthood with Incident Cardiovascular Diseases. J. Clin. Endocrinol. Metab. 2021, 106, e812–e823. [Google Scholar] [CrossRef]
- Bacopoulou, F.; Landis, G.; Rentoumis, A.; Tsitsika, A.; Efthymiou, V. Mediterranean diet decreases adolescent waist circumference. Eur. J. Clin. Investig. 2017, 47, 447–455. [Google Scholar] [CrossRef]
- Chudek, A.; Owczarek, A.J.; Ficek, J.; Olszanecka-Glinianowicz, M.; Wieczorowska-Tobis, K.; Walencka, Z.; Almgren-Rachtan, A.; Chudek, J. A Stronger Effect of Body Mass Index and Waist Circumference on the Prevalence of Uncontrolled Hypertension among Caucasian Men than Women. Kidney Blood Press. Res. 2021, 46, 298–309. [Google Scholar] [CrossRef] [PubMed]
- Krakauer, N.Y.; Krakauer, J.C. Diet Composition, Anthropometrics, and Mortality Risk. Int. J. Environ. Res. Public Health 2022, 19, 12885. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Total (n = 6911) | PhenoAgeAccel | p-Value | |
---|---|---|---|---|
≤0 | >0 | |||
Gender, n (%) | 0.515 | |||
Male | 3300 (47.34) | 2583 (47.07) | 717 (48.71) | |
Female | 3611 (52.66) | 2880 (52.93) | 731 (51.29) | |
Race/ethnicity, n (%) | 0.012 | |||
Non-Hispanic white | 3391 (70.81) | 2695 (71.67) | 696 (66.36) | |
Other | 3520 (29.19) | 2768 (28.33) | 752 (33.64) | |
PIR, n (%) | <0.001 | |||
≤1.0 | 1228 (12.80) | 906 (11.69) | 322 (18.64) | |
>1.0 | 5144 (87.20) | 4144 (88.31) | 1000 (81.36) | |
Smoking status, n (%) | <0.001 | |||
Yes | 3227 (47.66) | 2430 (45.60) | 797 (58.30) | |
No | 3682 (52.34) | 3031 (54.40) | 651 (41.70) | |
Drinking, n (%) | 0.009 | |||
Yes | 1129 (19.44) | 952 (20.43) | 177 (14.31) | |
No | 5782 (80.56) | 4511 (79.57) | 1271 (85.69) | |
Whether overweight or not, n (%) | <0.001 | |||
No | 1981 (31.73) | 1736 (34.45) | 245 (17.39) | |
Yes | 4851 (68.27) | 3690 (65.55) | 1161 (82.61) | |
Moderate or vigorous exercise, n (%) | <0.001 | |||
Yes | 1036 (20.33) | 919 (22.14) | 117 (10.95) | |
No | 5875 (79.67) | 4544 (77.86) | 1331 (89.05) | |
Energy intake (kcal/d), mean (sd) | 2053.99 (15.46) | 2078.00 (16.40) | 2929.91 (31.81) | <0.001 |
Total high-quality carbohydrates, serving/d, mean (sd) | 2.14 (0.05) | 2.20 (0.05) | 1.81 (0.08) | <0.001 |
Whole grain, mean (sd) | 0.80 (0.03) | 0.83 (0.03) | 0.65 (0.04) | <0.001 |
Beans, mean (sd) | 0.11 (0.01) | 0.11 (0.01) | 0.10 (0.01) | 0.005 |
Fruit, mean (sd) | 0.68 (0.02) | 0.69 (0.02) | 0.60 (0.03) | <0.001 |
Tomatoes, mean (sd) | 0.32 (0.01) | 0.33 (0.01) | 0.26 (0.01) | <0.001 |
Dark green vegetables, mean (sd) | 0.14 (0.01) | 0.14 (0.01) | 0.12 (0.01) | 0.003 |
Other vegetables, mean (sd) | 0.09 (0.004) | 0.09 (0.004) | 0.07 (0.01) | <0.001 |
Total low-quality carbohydrates, serving/d, mean (sd) | 23.20 (0.40) | 23.29 (0.40) | 22.74 (0.85) | 0.173 |
Total animal protein, serving/d, mean (sd) | 3.50 (0.04) | 3.53 (0.04) | 3.38 (0.09) | 0.001 |
Total plant protein, serving/d, mean (sd) | 7.48 (0.09) | 7.63 (0.10) | 6.68 (0.17) | <0.001 |
Refined grains, mean (sd) | 5.57 (0.07) | 5.65 (0.07) | 5.13 (0.15) | <0.001 |
Beans, mean (sd) | 0.45 (0.02) | 0.46 (0.02) | 0.39 (0.03) | 0.005 |
Nuts, mean (sd) | 0.59 (0.02) | 0.61 (0.03) | 0.48 (0.04) | <0.001 |
Soybeans, mean (sd) | 0.07 (0.01) | 0.08 (0.01) | 0.04 (0.01) | <0.001 |
Total SFAs, g/d, mean (sd) | 25.67(0.25) | 25.82 (0.26) | 24.94 (0.57) | 0.002 |
Total USFAs, g/d, mean (sd) | 45.22 (0.44) | 45.59 (0.45) | 43.31 (1.06) | <0.001 |
Total carbohydrates, serving/d, mean (sd) | 25.33 (0.37) | 25.49 (0.38) | 24.54 (0.79) | 0.016 |
Total protein, serving/d, mean (sd) | 10.98 (0.12) | 11.16(0.12) | 10.06 (0.24) | <0.001 |
Total fat, g/d, mean (sd) | 70.89 (0.65) | 71.40 (0.67) | 68.25 (1.58) | <0.001 |
Total Macronutrient Consumption | Q1 | Q2 | Q3 | Q4 | p for Trend | Continuous | p Value |
---|---|---|---|---|---|---|---|
β (95% CI) | β (95% CI) | β (95% CI) | β (95% CI) | β (95% CI) | |||
Total carbohydrates | |||||||
Model 1 | reference | 0.33 (−0.37, 1.02) | −0.24 (−0.94, 0.45) | −0.03 (−0.78, 0.73) | 0.701 | −0.001 (−0.02, 0.02) | 0.898 |
Model 2 | reference | 0.23 (−0.43, 0.89) | −0.08 (−0.78, 0.62) | −0.15 (−0.99, 0.69) | 0.566 | 0.01 (−0.02, 0.04) | 0.476 |
High-quality carbohydrates | |||||||
Model 1 | reference | −0.29 (−0.94, 0.36) | −1.30 (−1.99, −0.61) | −1.87 (−2.74, −0.99) | <0.001 | −0.29 (−0.52, −0.06) | 0.015 |
Model 2 | reference | 0.30 (−0.40, 1.00) | −0.78 (−1.50, −0.05) | −1.01 (−1.91, −0.12) | 0.005 | −0.11 (−0.35, 0.13) | 0.368 |
Low-quality carbohydrates | |||||||
Model 1 | reference | −0.16 (−0.83, 0.51) | −0.65 (−1.27, −0.03) | −0.50 (−1.21, 0.22) | 0.214 | −0.01 (−0.03, 0.01) | 0.436 |
Model 2 | reference | −0.14 (−0.80, 0.52) | −0.51 (−1.13, 0.10) | −0.59 (−1.42, 0.24) | 0.143 | 0.01 (−0.02, 0.04) | 0.696 |
Total protein | |||||||
Model 1 | reference | −1.19 (−1.94, −0.44) | −1.65 (−2.53, −0.78) | −2.74 (−3.87, −1.61) | <0.001 | −0.25 (−0.34, −0.16) | <0.001 |
Model 2 | reference | −0.94 (−1.66, −0.23) | −1.39 (−2.35, −0.43) | −2.00 (−3.16, −0.84) | 0.001 | −0.16 (−0.26, −0.06) | 0.002 |
Animal protein | |||||||
Model 1 | reference | −0.12 (−0.98, 0.75) | −0.03 (−0.78, 0.73) | −0.42 (−1.33, 0.49) | 0.313 | −0.18 (−0.38, 0.02) | 0.074 |
Model 2 | reference | −0.14 (−1.02, 0.74) | −0.06 (−0.84, 0.72) | −0.51 (−1.41, 0.40) | 0.199 | −0.10 (−0.34, 0.14) | 0.400 |
Plant protein | |||||||
Model 1 | reference | −0.78 (−1.50, −0.05) | −1.11 (−1.92, −0.30) | −1.96 (−2.87, −1.05) | <0.001 | −0.20 (−0.29, −0.10) | <0.001 |
Model 2 | reference | −0.65 (−1.35, 0.05) | −1.10 (−1.87, −0.32) | −1.65 (−2.52, −0.78) | <0.001 | −0.15 (−0.25, −0.05) | 0.004 |
Total fat | |||||||
Model 1 | reference | 0.46 (−0.08, 0.99) | 0.86 (0.15, 1.57) | 0.83 (−0.04, 1.71) | 0.093 | 0.02 (0.01, 0.03) | 0.007 |
Model 2 | reference | 0.32 (−0.28, 0.92) | 0.75 (−0.05, 1.54) | 0.92 (−0.14, 1.98) | 0.119 | 0.03 (0.01, 0.04) | <0.001 |
SFAs | |||||||
Model 1 | reference | 0.67 (−0.12, 1.46) | 1.02 (0.11, 1.94) | 1.54 (0.48, 2.60) | 0.009 | 0.04 (0.01, 0.08) | 0.020 |
Model 2 | reference | 0.68 (−0.03, 1.39) | 1.07 (0.23, 1.92) | 1.77 (0.72, 2.81) | 0.002 | 0.05 (0.02, 0.09) | 0.003 |
USFAs | |||||||
Model 1 | reference | −0.26 (−0.99, 0.48) | −0.38 (−1.23, 0.47) | −0.72 (−1.80, 0.36) | 0.252 | −0.01 (−0.02, 0.01) | 0.618 |
Model 2 | reference | −0.35 (−1.00, 0.29) | −0.56 (−1.36, 0.24) | −0.83 (−1.99, 0.33) | 0.226 | 0.01 (−0.02, 0.03) | 0.548 |
Isocaloric Substitution Effect | Total |
---|---|
Substitution of low-quality carbohydrates by high-quality carbohydrates | −0.25 (−0.45, −0.05) |
Substitution of animal protein by plant protein | −0.17 (−0.34, −0.002) |
Substitution of SFAs by USFAs | −0.06 (−0.10, −0.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, K.; Xu, T.; Song, X.; Fang, J.; Jiang, K.; Hu, C.; He, X.; Tao, Y.; Jin, L. BMI Mediates the Association between Macronutrient Subtypes and Phenotypic Age Acceleration. Nutrients 2024, 16, 3436. https://doi.org/10.3390/nu16203436
He K, Xu T, Song X, Fang J, Jiang K, Hu C, He X, Tao Y, Jin L. BMI Mediates the Association between Macronutrient Subtypes and Phenotypic Age Acceleration. Nutrients. 2024; 16(20):3436. https://doi.org/10.3390/nu16203436
Chicago/Turabian StyleHe, Kai, Tong Xu, Xingxu Song, Jiaxin Fang, Kexin Jiang, Chengxiang Hu, Xue He, Yuchun Tao, and Lina Jin. 2024. "BMI Mediates the Association between Macronutrient Subtypes and Phenotypic Age Acceleration" Nutrients 16, no. 20: 3436. https://doi.org/10.3390/nu16203436
APA StyleHe, K., Xu, T., Song, X., Fang, J., Jiang, K., Hu, C., He, X., Tao, Y., & Jin, L. (2024). BMI Mediates the Association between Macronutrient Subtypes and Phenotypic Age Acceleration. Nutrients, 16(20), 3436. https://doi.org/10.3390/nu16203436