Maternal Lutein Intake during Pregnancies with or without Gestational Diabetes Mellitus and Cognitive Development of Children at 2 Years of Age: A Prospective Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population and Study Procedures
2.2. Dietary Analysis
2.3. Plasma Lutein Measurement
2.4. Plasma Lipid Measurement
2.5. Placental Gene Expression Measurement
2.6. Bayley III Test
2.7. Salivary Cortisol Measurement
2.8. Statistical Analysis
3. Results
3.1. Maternal L + Z Intake and Circulating Levels Were Unaltered Yet Cord Blood Lutein Levels Were Reduced in GDM Pregnancies
3.2. Higher Maternal L + Z Intake Was Associated with Lower Blood Lutein Levels
3.3. Plasma HDL-c and LDL-c Levels Were Not Associated with Lutein Levels
3.4. Placental FATP1 Expression Was Associated with Cord Blood Lutein Levels Only in Non-GDM Pregnancies
3.5. There Were No Associations between Maternal L + Z Intake or Status and Neonatal Anthropometrics
3.6. L + Z Intake and Status during Pregnancy and Bayley Test Scores
3.7. Maternal L + Z Intake or Status Was Not Associated with Children’s Salivary Cortisol Levels
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stringham, J.M.; Johnson, E.J.; Hammond, B.R. Lutein across the Lifespan: From Childhood Cognitive Performance to the Aging Eye and Brain. Curr. Dev. Nutr. 2019, 3, nzz066. [Google Scholar] [CrossRef] [PubMed]
- Li, S.Y.; Fung, F.K.; Fu, Z.J.; Wong, D.; Chan, H.H.; Lo, A.C. Anti-inflammatory effects of lutein in retinal ischemic/hypoxic injury: In vivo and in vitro studies. Investig. Ophthalmol. Vis. Sci. 2012, 53, 5976–5984. [Google Scholar] [CrossRef] [PubMed]
- Erdman, J.W.; Smith, J.W.; Kuchan, M.J.; Mohn, E.S.; Johnson, E.J.; Rubakhin, S.S.; Wang, L.; Sweedler, J.V.; Neuringer, M. Lutein and Brain Function. Foods 2015, 4, 547–564. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.J.; Vishwanathan, R.; Johnson, M.A.; Hausman, D.B.; Davey, A.; Scott, T.M.; Green, R.C.; Miller, L.S.; Gearing, M.; Woodard, J.; et al. Relationship between Serum and Brain Carotenoids, α-Tocopherol, and Retinol Concentrations and Cognitive Performance in the Oldest Old from the Georgia Centenarian Study. J. Aging Res. 2013, 2013, 951786. [Google Scholar] [CrossRef] [PubMed]
- Vishwanathan, R.; Kuchan, M.J.; Sen, S.; Johnson, E.J. Lutein and preterm infants with decreased concentrations of brain carotenoids. J. Pediatr. Gastroenterol. Nutr. 2014, 59, 659–665. [Google Scholar] [CrossRef] [PubMed]
- Mulder, K.A.; Innis, S.M.; Rasmussen, B.F.; Wu, B.T.; Richardson, K.J.; Hasman, D. Plasma lutein concentrations are related to dietary intake, but unrelated to dietary saturated fat or cognition in young children. J. Nutr. Sci. 2014, 3, e11. [Google Scholar] [CrossRef] [PubMed]
- Wilson, L.M.; Tharmarajah, S.; Jia, Y.; Semba, R.D.; Schaumberg, D.A.; Robinson, K.A. The Effect of Lutein/Zeaxanthin Intake on Human Macular Pigment Optical Density: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 2244–2254. [Google Scholar] [CrossRef]
- Li, J.; Abdel-Aal, E.M. Dietary Lutein and Cognitive Function in Adults: A Meta-Analysis of Randomized Controlled Trials. Molecules 2021, 26, 5794. [Google Scholar] [CrossRef]
- Yeum, K.J.; Ferland, G.; Patry, J.; Russell, R.M. Relationship of plasma carotenoids, retinol and tocopherols in mothers and newborn infants. J. Am. Coll. Nutr. 1998, 17, 442–447. [Google Scholar] [CrossRef]
- Thoene, M.; Anderson-Berry, A.; Van Ormer, M.; Furtado, J.; Soliman, G.A.; Goldner, W.; Hanson, C. Quantification of Lutein + Zeaxanthin Presence in Human Placenta and Correlations with Blood Levels and Maternal Dietary Intake. Nutrients 2019, 11, 134. [Google Scholar] [CrossRef]
- Mahmassani, H.A.; Switkowski, K.M.; Scott, T.M.; Johnson, E.J.; Rifas-Shiman, S.L.; Oken, E.; Jacques, P.F. Maternal Intake of Lutein and Zeaxanthin during Pregnancy Is Positively Associated with Offspring Verbal Intelligence and Behavior Regulation in Mid-Childhood in the Project Viva Cohort. J. Nutr. 2021, 151, 615–627. [Google Scholar] [CrossRef] [PubMed]
- Ornoy, A. Prenatal origin of obesity and their complications: Gestational diabetes, maternal overweight and the paradoxical effects of fetal growth restriction and macrosomia. Reprod. Toxicol. 2011, 32, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Faleschini, S.; Rifas-Shiman, S.L.; Monthé-Drèze, C.; Oken, E.; Hivert, M.F.; Tiemeier, H. Maternal glucose tolerance in pregnancy and child cognitive and behavioural problems in early and mid-childhood. Paediatr. Perinat. Epidemiol. 2021, 35, 109–119. [Google Scholar] [CrossRef]
- Camprubi Robles, M.; Campoy, C.; Garcia Fernandez, L.; Lopez-Pedrosa, J.M.; Rueda, R.; Martin, M.J. Maternal Diabetes and Cognitive Performance in the Offspring: A Systematic Review and Meta-Analysis. PLoS ONE 2015, 10, e0142583. [Google Scholar] [CrossRef] [PubMed]
- Sudharshana Murthy, K.A.; Bhandiwada, A.; Chandan, S.L.; Gowda, S.L.; Sindhusree, G. Evaluation of Oxidative Stress and Proinflammatory Cytokines in Gestational Diabetes Mellitus and Their Correlation with Pregnancy Outcome. Indian J. Endocrinol. Metab. 2018, 22, 79–84. [Google Scholar] [CrossRef] [PubMed]
- Jack-Roberts, C.; Maples, P.; Kalkan, B.; Edwards, K.; Gilboa, E.; Djuraev, I.; Zou, S.; Hoepner, L.; Fordjour, L.; Lee, W.C.; et al. Gestational diabetes status and dietary intake modify maternal and cord blood allostatic load markers. BMJ Open Diabetes Res. Care. 2020, 8, e001468. [Google Scholar] [CrossRef] [PubMed]
- Harnack, L.; Stevens, M.; Van Heel, N.; Schakel, S.; Dwyer, J.T.; Himes, J. A computer-based approach for assessing dietary supplement use in conjunction with dietary recalls. J. Food Compost. Anal. 2008, 21, S78–S82. [Google Scholar] [CrossRef]
- Arab, L.; Tseng, C.H.; Ang, A.; Jardack, P. Validity of a multipass, web-based, 24-hour self-administered recall for assessment of total energy intake in blacks and whites. Am. J. Epidemiol. 2011, 174, 1256–1265. [Google Scholar] [CrossRef] [PubMed]
- Kadam, I.; Dalloul, M.; Hausser, J.; Huntley, M.; Hoepner, L.; Fordjour, L.; Hittelman, J.; Saxena, A.; Liu, J.; Futterman, I.D.; et al. Associations between nutrients in one-carbon metabolism and fetal DNA methylation in pregnancies with or without gestational diabetes mellitus. Clin. Epigenet. 2023, 15, 137. [Google Scholar] [CrossRef]
- Jiang, X.; Yan, J.; West, A.A.; Perry, C.A.; Malysheva, O.V.; Devapatla, S.; Pressman, E.; Vermeylen, F.; Caudill, M.A. Maternal choline intake alters the epigenetic state of fetal cortisol-regulating genes in humans. FASEB J. 2012, 26, 3563–3574. [Google Scholar] [CrossRef]
- Palacios, C.; Rivas-Tumanyan, S.; Santiago-Rodríguez, E.J.; Sinigaglia, O.; Ríos, E.M.; Campos, M.; Diaz, B.; Willett, W. A Semi-Quantitative Food Frequency Questionnaire Validated in Hispanic Infants and Toddlers Aged 0 to 24 Months. J. Acad. Nutr. Diet 2017, 117, 526–535.e9. [Google Scholar] [CrossRef] [PubMed]
- Del Rosario, C.; Slevin, M.; Molloy, E.J.; Quigley, J.; Nixon, E. How to use the Bayley Scales of Infant and Toddler Development. Arch. Dis. Child. Educ. Pract. Ed. 2021, 106, 108–112. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.E.; Mitchell, D.C.; Harala, P.L.; Pettit, J.M.; Smiciklas-Wright, H.; Hartman, T.J. Development and evaluation of a method for calculating the Healthy Eating Index-2005 using the Nutrition Data System for Research. Public Health Nutr. 2011, 14, 306–313. [Google Scholar] [CrossRef] [PubMed]
- Guenther, P.M.; Casavale, K.O.; Reedy, J.; Kirkpatrick, S.I.; Hiza, H.A.; Kuczynski, K.J.; Kahle, L.L.; Krebs-Smith, S.M. Update of the Healthy Eating Index: HEI-2010. J. Acad. Nutr. Diet 2013, 113, 569–580. [Google Scholar] [CrossRef] [PubMed]
- Panizza, C.E.; Shvetsov, Y.B.; Harmon, B.E.; Wilkens, L.R.; Le Marchand, L.; Haiman, C.; Reedy, J.; Boushey, C.J. Testing the Predictive Validity of the Healthy Eating Index-2015 in the Multiethnic Cohort: Is the Score Associated with a Reduced Risk of All-Cause and Cause-Specific Mortality? Nutrients 2018, 10, 452. [Google Scholar] [CrossRef] [PubMed]
- Nam, J.; Greenwald, E.; Jack-Roberts, C.; Ajeeb, T.T.; Malysheva, O.V.; Caudill, M.A.; Axen, K.; Saxena, A.; Semernina, E.; Nanobashvili, K.; et al. Choline prevents fetal overgrowth and normalizes placental fatty acid and glucose metabolism in a mouse model of maternal obesity. J. Nutr. Biochem. 2017, 49, 80–88. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Gene Runner. Available online: www.generunner.net (accessed on 3 January 2020).
- Tran, L.M.; Nguyen, P.H.; Young, M.F.; Ramakrishnan, U.; Alderman, H. Home environment and nutritional status mitigate the wealth gap in child development: A longitudinal study in Vietnam. BMC Public Health 2023, 23, 286. [Google Scholar] [CrossRef]
- Finegood, E.D.; Wyman, C.; O’Connor, T.G.; Blair, C.B.; Investigators, F.L.P. Salivary cortisol and cognitive development in infants from low-income communities. Stress 2017, 20, 112–121. [Google Scholar] [CrossRef]
- Gopal, S.S.; Sukhdeo, S.V.; Vallikannan, B.; Ponesakki, G. Lutein ameliorates high-fat diet-induced obesity, fatty liver, and glucose intolerance in C57BL/6J mice. Phytother. Res. 2023, 37, 329–341. [Google Scholar] [CrossRef]
- Johnson, E.J.; McDonald, K.; Caldarella, S.M.; Chung, H.Y.; Troen, A.M.; Snodderly, D.M. Cognitive findings of an exploratory trial of docosahexaenoic acid and lutein supplementation in older women. Nutr. Neurosci. 2008, 11, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Hammond, B.R.; Miller, L.S.; Bello, M.O.; Lindbergh, C.A.; Mewborn, C.; Renzi-Hammond, L.M. Effects of Lutein/Zeaxanthin Supplementation on the Cognitive Function of Community Dwelling Older Adults: A Randomized, Double-Masked, Placebo-Controlled Trial. Front. Aging Neurosci. 2017, 9, 254. [Google Scholar] [CrossRef] [PubMed]
- Cheatham, C.L.; Sheppard, K.W. Synergistic Effects of Human Milk Nutrients in the Support of Infant Recognition Memory: An Observational Study. Nutrients 2015, 7, 9079–9095. [Google Scholar] [CrossRef] [PubMed]
- Barnett, S.M.; Khan, N.A.; Walk, A.M.; Raine, L.B.; Moulton, C.; Cohen, N.J.; Kramer, A.F.; Hammond, B.R.; Renzi-Hammond, L.; Hillman, C.H. Macular pigment optical density is positively associated with academic performance among preadolescent children. Nutr. Neurosci. 2018, 21, 632–640. [Google Scholar] [CrossRef] [PubMed]
- Mahmassani, H.A.; Switkowski, K.M.; Scott, T.M.; Johnson, E.J.; Rifas-Shiman, S.L.; Oken, E.; Jacques, P.F. Maternal diet quality during pregnancy and child cognition and behavior in a US cohort. Am. J. Clin. Nutr. 2022, 115, 128–141. [Google Scholar] [CrossRef]
- Ahn, Y.J.; Kim, H. Lutein as a Modulator of Oxidative Stress-Mediated Inflammatory Diseases. Antioxidants 2021, 10, 1448. [Google Scholar] [CrossRef]
- Li, S.Y.; Lo, A.C. Lutein protects RGC-5 cells against hypoxia and oxidative stress. Int. J. Mol. Sci. 2010, 11, 2109–2117. [Google Scholar] [CrossRef]
- Dilsiz, N.; Sahaboglu, A.; Yildiz, M.Z.; Reichenbach, A. Protective effects of various antioxidants during ischemia-reperfusion in the rat retina. Graefes Arch. Clin. Exp. Ophthalmol. 2006, 244, 627–633. [Google Scholar] [CrossRef]
- Mohn, E.S.; Erdman, J.W.; Kuchan, M.J.; Neuringer, M.; Johnson, E.J. Lutein accumulates in subcellular membranes of brain regions in adult rhesus macaques: Relationship to DHA oxidation products. PLoS ONE 2017, 12, e0186767. [Google Scholar] [CrossRef]
- Stahl, W.; Nicolai, S.; Briviba, K.; Hanusch, M.; Broszeit, G.; Peters, M.; Martin, H.D.; Sies, H. Biological activities of natural and synthetic carotenoids: Induction of gap junctional communication and singlet oxygen quenching. Carcinogenesis 1997, 18, 89–92. [Google Scholar] [CrossRef]
- Zhang, L.X.; Cooney, R.V.; Bertram, J.S. Carotenoids enhance gap junctional communication and inhibit lipid peroxidation in C3H/10T1/2 cells: Relationship to their cancer chemopreventive action. Carcinogenesis 1991, 12, 2109–2114. [Google Scholar] [CrossRef]
- Sobki, S.H.; Al-Senaidy, A.M.; Al-Shammari, T.A.; Inam, S.S.; Al-Gwiser, A.A.; Bukhari, S.A. Impact of gestational diabetes on lipid profiling and indices of oxidative stress in maternal and cord plasma. Saudi Med. J. 2004, 25, 876–880. [Google Scholar]
- Madazli, R.; Tuten, A.; Calay, Z.; Uzun, H.; Uludag, S.; Ocak, V. The incidence of placental abnormalities, maternal and cord plasma malondialdehyde and vascular endothelial growth factor levels in women with gestational diabetes mellitus and nondiabetic controls. Gynecol. Obstet. Investig. 2008, 65, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Pagán, A.; Prieto-Sánchez, M.T.; Blanco-Carnero, J.E.; Gil-Sánchez, A.; Parrilla, J.J.; Demmelmair, H.; Koletzko, B.; Larqué, E. Materno-fetal transfer of docosahexaenoic acid is impaired by gestational diabetes mellitus. Am. J. Physiol. Endocrinol. Metab. 2013, 305, E826–E833. [Google Scholar] [CrossRef] [PubMed]
- Min, Y.; Djahanbakhch, O.; Hutchinson, J.; Eram, S.; Bhullar, A.S.; Namugere, I.; Ghebremeskel, K. Efficacy of docosahexaenoic acid-enriched formula to enhance maternal and fetal blood docosahexaenoic acid levels: Randomized double-blinded placebo-controlled trial of pregnant women with gestational diabetes mellitus. Clin. Nutr. 2016, 35, 608–614. [Google Scholar] [CrossRef] [PubMed]
- Dionne, G.; Boivin, M.; Séguin, J.R.; Pérusse, D.; Tremblay, R.E. Gestational diabetes hinders language development in offspring. Pediatrics 2008, 122, e1073–e1079. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Lawlor, D.A. Long-term health outcomes in offspring born to women with diabetes in pregnancy. Curr. Diab. Rep. 2014, 14, 489. [Google Scholar] [CrossRef]
- Rahnemaei, F.A.; Pakzad, R.; Amirian, A.; Pakzad, I.; Abdi, F. Effect of gestational diabetes mellitus on lipid profile: A systematic review and meta-analysis. Open Med. 2022, 17, 70–86. [Google Scholar] [CrossRef]
- Hu, J.; Gillies, C.L.; Lin, S.; Stewart, Z.A.; Melford, S.E.; Abrams, K.R.; Baker, P.N.; Khunti, K.; Tan, B.K. Association of maternal lipid profile and gestational diabetes mellitus: A systematic review and meta-analysis of 292 studies and 97,880 women. EClinicalMedicine 2021, 34, 100830. [Google Scholar] [CrossRef]
- Renzi, L.M.; Hammond, B.R.; Dengler, M.; Roberts, R. The relation between serum lipids and lutein and zeaxanthin in the serum and retina: Results from cross-sectional, case-control and case study designs. Lipids Health Dis. 2012, 11, 33. [Google Scholar] [CrossRef]
- Giordano, E.; Quadro, L. Lutein, zeaxanthin and mammalian development: Metabolism, functions and implications for health. Arch. Biochem. Biophys. 2018, 647, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, R.K.; Shanmugasundaram, R.; Klasing, K.C. Effects of dietary lutein and PUFA on PPAR and RXR isomer expression in chickens during an inflammatory response. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2010, 157, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.X.; Jiao, J.H.; Li, Z.Y.; Liu, R.R.; Shi, Q.; Ma, L. Lutein supplementation reduces plasma lipid peroxidation and C-reactive protein in healthy nonsmokers. Atherosclerosis 2013, 227, 380–385. [Google Scholar] [CrossRef] [PubMed]
- Barbour, L.A.; Hernandez, T.L. Maternal Lipids and Fetal Overgrowth: Making Fat from Fat. Clin. Ther. 2018, 40, 1638–1647. [Google Scholar] [CrossRef] [PubMed]
- Handelman, G.J.; Nightingale, Z.D.; Lichtenstein, A.H.; Schaefer, E.J.; Blumberg, J.B. Lutein and zeaxanthin concentrations in plasma after dietary supplementation with egg yolk. Am. J. Clin. Nutr. 1999, 70, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Lin, X.M.; Xu, X.R.; Zou, Z.Y.; Wang, Z.X.; Huang, Y.M.; Li, Y. Serum lutein and its dynamic changes during supplementation with lutein in Chinese subjects. Asia. Pac. J. Clin. Nutr. 2009, 18, 318–325. [Google Scholar]
- Johnson, E.J.; Hammond, B.R.; Yeum, K.J.; Qin, J.; Wang, X.D.; Castaneda, C.; Snodderly, D.M.; Russell, R.M. Relation among serum and tissue concentrations of lutein and zeaxanthin and macular pigment density. Am. J. Clin. Nutr. 2000, 71, 1555–1562. [Google Scholar] [CrossRef]
- Olmedilla-Alonso, B.; Beltrán-de-Miguel, B.; Estévez-Santiago, R.; Cuadrado-Vives, C. Markers of lutein and zeaxanthin status in two age groups of men and women: Dietary intake, serum concentrations, lipid profile and macular pigment optical density. Nutr. J. 2014, 13, 52. [Google Scholar] [CrossRef]
Completed Follow-Up (n = 38) | Lost to Follow-Up (n = 38) | p | |
---|---|---|---|
Maternal age (year) | 33.4 ± 4.9 | 31.3 ± 5.4 | 0.027 |
Maternal BMI (kg/m2) | 30.4 ± 7.1 | 31.9 ± 8.5 | 0.39 |
GDM diagnosis | 18 (47%) | 24 (63%) | 0.37 |
First pregnancy (n, %) | 9 (24%) | 8 (21%) | 0.43 |
Race/ethnicity (n, %) | 0.13 | ||
Non-Hispanic white | 1 (3%) | 0 (0%) | |
Non-Hispanic black | 34 (89%) | 33 (87%) | |
Hispanic white | 3 (8%) | 2 (5%) | |
Asian | 0 (0%) | 3 (8%) | |
Maternal education level (n, %) | 0.11 | ||
≤High school | 24 (63%) | 28 (74%) | |
≥Some college | 14 (37%) | 10 (26%) | |
Unemployment (n, %) | 12 (32%) | 12 (32%) | 1 |
Cesarean section (n, %) | 22 (58%) | 20 (53%) | 0.36 |
Pre-term delivery (n, %) | 6 (16%) | 7 (18%) | 0.52 |
Sex (female) (n, %) | 22 (58%) | 23 (61%) | 0.36 |
Small-for-gestational-age (n, %) | 5 (13%) | 5 (13%) | 1 |
Large-for-gestational-age (n, %) | 9 (24%) | 2 (5%) | 0.078 |
Birth weight (g) | 3111 ± 552 | 3329 ± 715 | 0.15 |
Breastfeeding rate | 0.75 | ||
Exclusive breastfeeding rate | 0.61 | ||
Average breastfeeding duration (month) | 3.1 ± 3.8 |
Non-GDM | GDM | p Value | |
---|---|---|---|
Maternal lutein/zeaxanthin intake (mg) | 2.1 ± 3.0 | 1.8 ± 1.8 | 0.58 |
Maternal plasma lutein (ng/mL) | 57.6 ± 11.6 | 60.5 ± 8.5 | 0.26 |
Cord plasma lutein (ng/mL) | 55.6 ± 20.4 | 44.4 ± 5.1 | 0.022 |
Cognitive | Language | Motor | ||||
---|---|---|---|---|---|---|
β | p Value | β | p Value | β | p Value | |
Maternal lutein/zeaxanthin intake | 0.002 | 0.038 | 0.003 | 0.001 | 0.001 | 0.71 |
Maternal α-carotene intake | 0.002 | 0.31 | −0.001 | 0.79 | 0.001 | 0.61 |
Maternal β-carotene intake | 0.001 | 0.28 | 0.001 | 0.95 | 0.001 | 0.77 |
Maternal lycopene intake | 0.001 | 0.51 | 0.001 | 0.83 | 0.001 | 0.18 |
Total vitamin A intake | 0.001 | 0.33 | 0.001 | 0.93 | 0.001 | 1.0 |
Maternal plasma lutein | −0.02 | 0.92 | −0.31 | 0.25 | 0.11 | 0.64 |
Cord plasma lutein | −0.15 | 0.47 | −0.03 | 0.87 | −0.26 | 0.17 |
Children’s lutein/zeaxanthin intake | 0.001 | 0.99 | 0.001 | 0.96 | 0.001 | 0.074 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kadam, I.; Nebie, C.; Dalloul, M.; Hittelman, J.; Fordjour, L.; Hoepner, L.; Futterman, I.D.; Minkoff, H.; Jiang, X. Maternal Lutein Intake during Pregnancies with or without Gestational Diabetes Mellitus and Cognitive Development of Children at 2 Years of Age: A Prospective Observational Study. Nutrients 2024, 16, 328. https://doi.org/10.3390/nu16020328
Kadam I, Nebie C, Dalloul M, Hittelman J, Fordjour L, Hoepner L, Futterman ID, Minkoff H, Jiang X. Maternal Lutein Intake during Pregnancies with or without Gestational Diabetes Mellitus and Cognitive Development of Children at 2 Years of Age: A Prospective Observational Study. Nutrients. 2024; 16(2):328. https://doi.org/10.3390/nu16020328
Chicago/Turabian StyleKadam, Isma’il, Chauntelle Nebie, Mudar Dalloul, Joan Hittelman, Lawrence Fordjour, Lori Hoepner, Itamar D. Futterman, Howard Minkoff, and Xinyin Jiang. 2024. "Maternal Lutein Intake during Pregnancies with or without Gestational Diabetes Mellitus and Cognitive Development of Children at 2 Years of Age: A Prospective Observational Study" Nutrients 16, no. 2: 328. https://doi.org/10.3390/nu16020328
APA StyleKadam, I., Nebie, C., Dalloul, M., Hittelman, J., Fordjour, L., Hoepner, L., Futterman, I. D., Minkoff, H., & Jiang, X. (2024). Maternal Lutein Intake during Pregnancies with or without Gestational Diabetes Mellitus and Cognitive Development of Children at 2 Years of Age: A Prospective Observational Study. Nutrients, 16(2), 328. https://doi.org/10.3390/nu16020328