Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy and Selection of Studies
2.2. Data Extraction
2.3. Data Extraction
Parameters | Inclusion | Exclusion | Extraction |
---|---|---|---|
P | Healthy active or trained adults | People with illnesses or children < 18 years of age | Number, age, sex, aerobic fitness level, caffeine habituation |
I | Caffeine | Caffeine in combination with other ergogenic aids or multi-ingredient supplements | Dosage, form of administration, and timing |
C | Placebo | Trials without a true placebo/control condition | Dosage, form of administration, and timing |
O | Aerobic continuous or incremental exercise at submaximal intensity | Anaerobic or strength exercise, different intensities between conditions, special environment conditions (environmental, hypoxia, etc.) | Fat oxidation rate, oxygen consumption (VO2) or carbon dioxide production (VCO2), and respiratory exchange ratio (RER) |
S | Single or double-blind crossover designs | Cross-sectional studies and meta-analyses, systematic reviews, symposiums, books, etc. | Type of experimental design and year of publication |
2.4. Statistical Analyses
3. Results
3.1. Study Selection
3.2. Risk of Bias
3.3. Characteristics of the Participants
3.4. Description of the Interventions
Study/Item | Design | Age | Sample Size | Physical Activity Level | Habitual Caffeine Intake |
---|---|---|---|---|---|
Acker-Hewitt et al., 2012 [46] | sRDB | 28 ± 9 | 12 males | Trained cyclists VO2max 66 ± 9 mL/kg/min | Not reported |
Ahrens et al., 2007 [47] | RDB | 19 ± 28 | 20 females | Enrolled in a personal fitness aerobics class | <50 mg/day |
Black et al., 2015 [48] | RDB | 22 ± 2 | 14 males (5) and females (9) | VO2max < 50 mL/kg/min | <40 mg/day |
Casal & Leon, 1985 [49] | RDB | 30 ± 1 | 9 females | VO2max 61.1 ± 1.3 mL/kg/min | Not reported |
Demura et al., 2007 [50] | RB | 21 ± 1 | 10 males | VO2max 43.8 ± 9.5 mL/kg/min | Not reported |
Glaister et al., 2016 [51] | RSB | 38 ± 8 | 16 males | Endurance trained VO2max > 50 mL/kg/min | 225 mg/day |
Glaister et al., 2021 [52] | RDB | 42 ± 9 | 40 males | Cyclists VO2max > 50 mL/kg/min | Habitual consumers |
Graham and Spriet, 1991 [53] | RDB | 28 ± 6 | 7 males (6) and females (1) | Runners VO2max 76.0 ± 1.5 mL/kg/min | Consumers and non-consumers |
Gutiérrez-Hellín and del Coso, 2018 [54] | RDB | 25 ± 7 | 13 males (11) and females (2) | Active participants VO2max > 50 mL/kg/min | <50 mg/day |
Hulton et al., 2020 [55] | DB | 20 ± 1 | 8 males | Recreational soccer players | Not reported |
Jacobson et al., 2001 [56] | RDB | 21 ± 4 | 8 males | VO2max 65.2 ± 3.2 mL/kg/min | Non-habitual |
Mcclaran and Wetter, 2007 [57] | RDB | 19 ± 25 | 9 males | Aerobically active VO2max 49.7 ± 6.3 mL/kg/min | Non-habitual caffeine use |
Nishijima et al., 2002 [58] | RDB | 25 ± 1 | 8 males | Physically active | Habitual consumers <500 mg/day |
Oskarsson and McGawley, 2018 [59] | DB | males (30 ± 6); females (31 ± 9) | 9 males (7) and females (2) | Runners VO2max > 50 mL/kg/min | Consumers and non-consumers |
Ramírez-Maldonado et al., 2021 [60] | RTB | 32 ± 7 | 15 males | Experience in endurance training | <50 mg/day |
Ryu et al., 2001 [61] | 19 ± 1 | 5 males | Rugby players VO2max 53.2 mL/kg/min | Non-habitual | |
Santos De Oliveira Cruz et al., 2015 [62] | RDB | 25 ± 4 | 8 males | Active VO2max 51 ± 5 mL/kg/min | Not reported |
Toner et al., 1982 [63] | DB | 28 ± 4 | 8 males | Trained and untrained | Consumers and non-consumers |
Study | Intake | Form | Dose | Protocol | From of Exercise | Type of Exercise | Time since the Last Meal |
---|---|---|---|---|---|---|---|
Acker-Hewitt et al., 2012 [46] | 60 min before | Capsule | 6 mg/kg | 20 min at 60%Wmax | CYC | CONT | 2 h |
Ahrens et al., 2007 [47] | 60 min before | Capsule | 3 and 6 mg/kg | 8 min SS at 3.5 mph | TRE | CONT | 1–2 h |
Black et al., 2015 [48] | 60 min before | Capsule | 5 mg/kg | 30 min at 60%VO2max | CYC | CONT | 2 h |
Casal and Leon, 1985 [49] | 60 min before | Powder | 400 mg | 45 min at 75%VO2max | TRE | CONT | 4 h |
Demura et al., 2007 [50] | 60 min before | Drink | 6 mg/kg | 1 h at 60% VO2max | CYC | CONT | 2 h |
Glaister et al., 2016 [51] | 45 min before | Capsule | 5 mg/kg | A six-stage test until OBLA | CYC | INC | 1 h |
Glaister et al., 2021 [52] | 60 min before | Capsule | 5 mg/kg | 40, 55, 70 and 85% VO2max | CYC | INC | 1 h |
Graham and Spriet, 1991 [53] | 60 min before | Capsule | 9 mg/kg | 85% VO2max | TRE | CONT | No fasted |
Gutiérrez-Hellín and del Coso, 2018 [54] | 60 min before | Capsule | 3 mg/kg | 30–90% VO2max | CYC | INC | 4 h |
Hulton et al., 2020 [55] | 45 min before | Powder | 5 mg/kg | Yo-yo intermittent endurance test | TRE | INC | No fasted |
Jacobson et al., 2001 [56] | 60 min before | Capsule | 6 mg/kg | 120 min at 70% VO2max | CYC | CONT | 1 h |
Mcclaran and Wetter, 2007 [57] | 30 min before | Capsule | 3 mg/kg | 60 W, 120 W and 180 W | CYC | INC | No fasted |
Nishijima et al., 2002 [58] | 120 min before | Capsule | 300 mg | 30 min SS at 40–50% VT | CYC | CONT | 125 min |
Oskarsson and McGawley, 2018 [59] | 45 min before | Capsule | 4.3–5.6 mg/kg | 5-min at 70% and 80% VO2max) | CYC | CONT | No fasted |
Ramírez-Maldonado et al., 2021 [60] | 30 min before | Powder | 3 mg/kg | 25 W increment until RER ≥ 1 | CYC | INC | 3 h |
Ryu et al., 2001 [61] | 60 min before | Powder | 5 mg/kg | 45 min at 60% VO2max | CYC | CONT | 2 h |
Santos De Oliveira Cruz et al., 2015 [62] | 60 min before | Capsule | 6 mg/kg | Until exhaustion at MLSS | CYC | CONT | 3–4 h |
Toner et al., 1982 [63] | 60 min before | Powder | 350 mg | 40 and 70% VO2max | CYC | CONT | 3 h |
3.5. Overall Effect of Caffeine on Fat Oxidation Rate during Fed-State Exercise
3.6. Dose-Related Effect of Caffeine on Fat Oxidation during Fed-State Exercise
3.7. Effect of Caffeine on Fat Oxidation during Fed-State Exercise Depending on Participants’ Fitness Level
3.8. Effect of Caffeine on Fat Oxidation during Fed-State Exercise Depending on Participants’ Habituation to Caffeine
3.9. Effect of Caffeine on Fat Oxidation during Fed-State Exercise Depending on the Fasting Period Duration
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Heckman, M.A.; Weil, J.; de Mejia, E.G. Caffeine (1, 3, 7-Trimethylxanthine) in Foods: A Comprehensive Review on Consumption, Functionality, Safety, and Regulatory Matters. J. Food Sci. 2010, 75, R77–R87. [Google Scholar] [CrossRef] [PubMed]
- Grosso, G.; Godos, J.; Galvano, F.; Giovannucci, E.L. Coffee, Caffeine, and Health Outcomes: An Umbrella Review. Annu. Rev. Nutr. 2017, 37, 131–156. [Google Scholar] [CrossRef] [PubMed]
- Daly, J.W.; Bruns, R.F.; Snyder, S.H. Adenosine Receptors in the Central Nervous System: Relationship to the Central Actions of Methylxanthines. Life Sci. 1981, 28, 2083–2097. [Google Scholar] [CrossRef] [PubMed]
- Fisone, G.; Borgkvist, A.; Usiello, A. Caffeine as a Psychomotor Stimulant: Mechanism of Action. Cell Mol. Life Sci. 2004, 61, 857–872. [Google Scholar] [CrossRef] [PubMed]
- Guest, N.S.; VanDusseldorp, T.A.; Nelson, M.T.; Grgic, J.; Schoenfeld, B.J.; Jenkins, N.D.M.; Arent, S.M.; Antonio, J.; Stout, J.R.; Trexler, E.T.; et al. International Society of Sports Nutrition Position Stand: Caffeine and Exercise Performance. J. Int. Soc. Sports Nutr. 2021, 18, 1–37. [Google Scholar] [CrossRef]
- Tallis, J.; Duncan, M.J.; James, R.S. What Can Isolated Skeletal Muscle Experiments Tell Us about the Effects of Caffeine on Exercise Performance? Br. J. Pharmacol. 2015, 172, 3703–3713. [Google Scholar] [CrossRef]
- Grgic, J.; Trexler, E.T.; Lazinica, B.; Pedisic, Z. Effects of Caffeine Intake on Muscle Strength and Power: A Systematic Review and Meta-Analysis. J. Int. Soc. Sports Nutr. 2018, 15, 11. [Google Scholar] [CrossRef]
- Southward, K.; Rutherfurd-Markwick, K.J.; Ali, A. The Effect of Acute Caffeine Ingestion on Endurance Performance: A Systematic Review and Meta–Analysis. Sports Med. 2018, 48, 1913–1928. [Google Scholar] [CrossRef]
- Arguedas-Soley, A.; Townsend, I.; Hengist, A.; Betts, J. Acute Caffeine Supplementation and Live Match-Play Performance in Team-Sports: A Systematic Review (2000–2021). J. Sports Sci. 2022, 40, 717–732. [Google Scholar] [CrossRef]
- Spriet, L.L. Exercise and Sport Performance with Low Doses of Caffeine. Sports Med. 2014, 44 (Suppl. S2), S175–S184. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and Exercise Metabolism, Endurance and Performance. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, C.; Gutiérrez-Hellín, J.; Amaro-Gahete, F.J.; González-García, J.; Giráldez-Costas, V.; Pérez-García, V.; Del Coso, J. Caffeine Increases Whole-Body Fat Oxidation during 1 h of Cycling at Fatmax. Eur. J. Nutr. 2021, 60, 2077–2085. [Google Scholar] [CrossRef] [PubMed]
- Varillas-Delgado, D.; Aguilar-Navarro, M.; Muñoz, A.; López-Samanés, Á.; Ruiz-Moreno, C.; Posada-Ayala, M.; Amaro-Gahete, F.J.; Coso, J.D.; Gutiérrez-Hellín, J. Effect of 3 and 6 Mg/Kg of Caffeine on Fat Oxidation during Exercise in Healthy Active Females. Biol. Sport 2023, 40, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Jeukendrup, A.E.; Randell, R. Fat Burners: Nutrition Supplements That Increase Fat Metabolism. Obes. Rev. 2011, 12, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Collado-Mateo, D.; Lavín-Pérez, A.M.; Merellano-Navarro, E.; Coso, J. Del Effect of Acute Caffeine Intake on the Fat Oxidation Rate during Exercise: A Systematic Review and Meta-Analysis. Nutrients 2020, 12, 3603. [Google Scholar] [CrossRef] [PubMed]
- Conger, S.A.; Tuthill, L.M.; Millard-Stafford, M.L. Does Caffeine Increase Fat Metabolism? A Systematic Review and Meta-Analysis. Int. J. Sport. Nutr. Exerc. Metab. 2023, 33, 112–120. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.F.; Costa, R.R.; Macedo, R.C.O.; Coconcelli, L.; Kruel, L.F.M. Effects of Aerobic Exercise Performed in Fasted v. Fed State on Fat and Carbohydrate Metabolism in Adults: A Systematic Review and Meta-Analysis. Br. J. Nutr. 2016, 116, 1153–1164. [Google Scholar] [CrossRef]
- Jarrar, S.F.; Obeid, O.A. Timing of Caffeine Ingestion Alters Postprandial Metabolism in Rats. Nutrition 2014, 30, 107–111. [Google Scholar] [CrossRef]
- Lane, J.D.; Feinglos, M.N.; Surwit, R.S. Caffeine Increases Ambulatory Glucose and Postprandial Responses in Coffee Drinkers with Type 2 Diabetes. Diabetes Care 2008, 31, 221–222. [Google Scholar] [CrossRef]
- Moisey, L.L.; Kacker, S.; Bickerton, A.C.; Robinson, L.E.; Graham, T.E. Caffeinated Coffee Consumption Impairs Blood Glucose Homeostasis in Response to High and Low Glycemic Index Meals in Healthy Men. Am. J. Clin. Nutr. 2008, 87, 1254–1261. [Google Scholar] [CrossRef]
- Purdom, T.; Kravitz, L.; Dokladny, K.; Mermier, C. Understanding the Factors That Effect Maximal Fat Oxidation. J. Int. Soc. Sports Nutr. 2018, 15, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Muscella, A.; Stefàno, E.; Lunetti, P.; Capobianco, L.; Marsigliante, S. The Regulation of Fat Metabolism during Aerobic Exercise. Biomolecules 2020, 10, 1699. [Google Scholar] [CrossRef] [PubMed]
- Yeo, S.E.; Jentjens, R.L.P.G.; Wallis, G.A.; Jeukendrup, A.E. Caffeine Increases Exogenous Carbohydrate Oxidation during Exercise. J. Appl. Physiol. 2005, 99, 844–850. [Google Scholar] [CrossRef] [PubMed]
- López-Seoane, J.; Buitrago-Morales, M.; Jiménez, S.L.; Del Coso, J.; Pareja-Galeano, H. Synergy of Carbohydrate and Caffeine Ingestion on Physical Performance and Metabolic Responses to Exercise: A Systematic Review with Meta-Analysis. Crit. Rev. Food Sci. Nutr. 2022, in press. [Google Scholar] [CrossRef] [PubMed]
- Achten, J.; Jeukendrup, A.E. The Effect of Pre-Exercise Carbohydrate Feedings on the Intensity That Elicits Maximal Fat Oxidation. J. Sports Sci. 2003, 21, 1017–1024. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hellín, J.; Ruiz-Moreno, C.; Aguilar-Navarro, M.; Muñoz, A.; Varillas-Delgado, D.; Amaro-Gahete, F.J.; Roberts, J.D.; Del Coso, J. Placebo Effect of Caffeine on Substrate Oxidation during Exercise. Nutrients 2021, 13, 782. [Google Scholar] [CrossRef]
- Gutiérrez-Hellín, J.; Aguilar-Navarro, M.; Ruiz-Moreno, C.; Muñoz, A.; Varillas-Delgado, D.; Amaro-Gahete, F.J.; Del Coso, J. Effect of Caffeine Intake on Fat Oxidation Rate during Exercise: Is There a Dose-Response Effect? Eur. J. Nutr. 2023, 62, 311–319. [Google Scholar] [CrossRef]
- Muñoz, A.; Aguilar-Navarro, M.; Ruiz-Moreno, C.; Varillas-Delgado, D.; Amaro-Gahete, F.J.; Gutiérrez-Hellín, J.; Del Coso, J.; López-Samanes, Á. Influence of the Time of Day in the Effect of Caffeine on Maximal Fat Oxidation during Exercise in Women: A Randomized, Crossover, Double-Blind, and Placebo-Controlled Study. Eur. J. Appl. Physiol. 2023, 1–11. [Google Scholar] [CrossRef]
- Graham, T.E.; Helge, J.W.; MacLean, D.A.; Kiens, B.; Richter, E.A. Caffeine Ingestion Does Not Alter Carbohydrate or Fat Metabolism in Human Skeletal Muscle during Exercise. J. Physiol. 2000, 529 Pt 3, 837–847. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA Statement for Reporting Systematic Reviews and Meta-Analyses of Studies That Evaluate Health Care Interventions: Explanation and Elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, 71. [Google Scholar] [CrossRef] [PubMed]
- Del Coso, J.; Salinero, J.J.; González-Millán, C.; Abián-Vicén, J.; Pérez-González, B. Dose Response Effects of a Caffeine-Containing Energy Drink on Muscle Performance: A Repeated Measures Design. J. Int. Soc. Sports Nutr. 2012, 9, 21. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.; Green, S. Cochrane Handbook for Systematic Reviews of Interventions; John Wiley & Sons: Hoboken, NJ, USA, 2009; Volume 5, ISBN 9780470699515. [Google Scholar]
- Higgins, J.P.T.; Thompson, S.G. Quantifying Heterogeneity in a Meta-Analysis. Stat. Med. 2002, 21, 1539–1558. [Google Scholar] [CrossRef] [PubMed]
- Frayn, K.N. Calculation of Substrate Oxidation Rates in Vivo from Gaseous Exchange. J. Appl. Physiol. Respir. Environ. Exerc. Physiol. 1983, 55, 628–634. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hellín, J.; Del Coso, J.; Espada, M.C.; Hernández-Beltrán, V.; Ferreira, C.C.; Varillas-Delgado, D.; Mendoza Laiz, N.; Roberts, J.D.; Gamonales, J.M. Research Trends in the Effect of Caffeine Intake on Fat Oxidation: A Bibliometric and Visual Analysis. Nutrients 2023, 15, 4320. [Google Scholar] [CrossRef]
- Tooth, L.; Bennett, S.; McCluskey, A.; Hoffmann, T.; McKenna, K.; Lovarini, M. Appraising the Quality of Randomized Controlled Trials: Inter-Rater Reliability for the OTseeker Evidence Database. J. Eval. Clin. Pract. 2005, 11, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, F.L.; Oh, I.-S.; Hayes, T.L. Fixed- versus Random-Effects Models in Meta-Analysis: Model Properties and an Empirical Comparison of Differences in Results. Br. J. Math. Stat. Psychol. 2009, 62, 97–128. [Google Scholar] [CrossRef]
- Follmann, D.; Elliott, P.; Suh, I.; Cutler, J. Variance Imputation for Overviews of Clinical Trials with Continuous Response. J. Clin. Epidemiol. 1992, 45, 769–773. [Google Scholar] [CrossRef]
- Wang, Z.; Qiu, B.; Gao, J.; Del Coso, J. Effects of Caffeine Intake on Endurance Running Performance and Time to Exhaustion: A Systematic Review and Meta-Analysis. Nutrients 2022, 15, 148. [Google Scholar] [CrossRef]
- Brooks, J.; Wyld, K.; Chrismas, B. Acute Effects of Caffeine on Strength Performance in Trained and Untrained Individuals. J. Athl. Enhanc. 2016, 4, 1000217. [Google Scholar] [CrossRef]
- Vera, J.; Redondo, B.; Molina, R.; Bermúdez, J.; Jiménez, R. Effects of Caffeine on Intraocular Pressure Are Subject to Tolerance: A Comparative Study between Low and High Caffeine Consumers. Psychopharmacology 2019, 236, 811–819. [Google Scholar] [CrossRef] [PubMed]
- Beaudoin, M.S.; Allen, B.; Mazzetti, G.; Sullivan, P.J.; Graham, T.E. Caffeine Ingestion Impairs Insulin Sensitivity in a Dose-Dependent Manner in Both Men and Women. Appl. Physiol. Nutr. Metab. 2013, 38, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Lara, B.; Ruiz-Moreno, C.; Salinero, J.J.; Coso, J. Del Time Course of Tolerance to the Performance Benefits of Caffeine. PLoS ONE 2019, 14, e0210275. [Google Scholar] [CrossRef] [PubMed]
- Acker-Hewitt, T.L.; Shafer, B.M.; Saunders, M.J.; Goh, Q.; Luden, N.D. Independent and Combined Effects of Carbohydrate and Caffeine Ingestion on Aerobic Cycling Performance in the Fed State. Appl. Physiol. Nutr. Metab. 2012, 37, 276–283. [Google Scholar] [CrossRef]
- Ahrens, J.N.; Crixell, S.H.; Lloyd, L.K.; Walker, J.L. The Physiological Effects of Caffeine in Women during Treadmill Walking. J. Strength Cond. Res. 2007, 21, 164–168. [Google Scholar] [CrossRef]
- Black, C.D.; Waddell, D.E.; Gonglach, A.R. Caffeine’s Ergogenic Effects on Cycling: Neuromuscular and Perceptual Factors. Med. Sci. Sports Exerc. 2015, 47, 1145–1158. [Google Scholar] [CrossRef]
- Casal, D.C.; Leon, A.S. Failure of Caffeine to Affect Substrate Utilization during Prolonged Running. Med. Sci. Sports Exerc. 1985, 17, 174–179. [Google Scholar] [CrossRef]
- Demura, S.; Yamada, T.; Terasawa, N. Effect of Coffee Ingestion on Physiological Responses and Ratings of Perceived Exertion during Submaximal Endurance Exercise. Percept. Mot. Skills 2007, 105, 1109–1116. [Google Scholar] [CrossRef]
- Glaister, M.; Williams, B.H.; Muniz-Pumares, D.; Balsalobre-Fernández, C.; Foley, P. The Effects of Caffeine Supplementation on Physiological Responses to Submaximal Exercise in Endurance-Trained Men. PLoS ONE 2016, 11, e0161375. [Google Scholar] [CrossRef]
- Glaister, M.; Chopra, K.; Pereira De Sena, A.L.; Sternbach, C.; Morina, L.; Mavrommatis, Y. Caffeine, Exercise Physiology, and Time-Trial Performance: No Effect of ADORA2A or CYP1A2 Genotypes. Appl. Physiol. Nutr. Metab. 2021, 46, 541–551. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Spriet, L.L. Performance and Metabolic Responses to a High Caffeine Dose during Prolonged Exercise. J. Appl. Physiol. 1991, 71, 2292–2298. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Hellín, J.; Del Coso, J. Effects of P-Synephrine and Caffeine Ingestion on Substrate Oxidation during Exercise. Med. Sci. Sports Exerc. 2018, 50, 1899–1906. [Google Scholar] [CrossRef] [PubMed]
- Hulton, A.T.; Vitzel, K.; Doran, D.A.; MacLaren, D.P.M. Addition of Caffeine to a Carbohydrate Feeding Strategy Prior to Intermittent Exercise. Int. J. Sports Med. 2020, 41, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, T.L.; Febbraio, M.A.; Arkinstall, M.J.; Hawley, J.A. Effect of Caffeine Co-Ingested with Carbohydrate or Fat on Metabolism and Performance in Endurance-Trained Men. Exp. Physiol. 2001, 86, 137–144. [Google Scholar] [CrossRef]
- McClaran, S.R.; Wetter, T.J. Low Doses of Caffeine Reduce Heart Rate during Submaximal Cycle Ergometry. J. Int. Soc. Sports Nutr. 2007, 4, 11. [Google Scholar] [CrossRef]
- Nishijima, Y.; Ikeda, T.; Takamatsu, M.; Kiso, Y.; Shibata, H.; Fushiki, T.; Moritani, T. Influence of Caffeine Ingestion on Autonomic Nervous Activity during Endurance Exercise in Humans. Eur. J. Appl. Physiol. 2002, 87, 475–480. [Google Scholar] [CrossRef]
- Oskarsson, J.; McGawley, K. No Individual or Combined Effects of Caffeine and Beetroot-Juice Supplementation during Submaximal or Maximal Running. Appl. Physiol. Nutr. Metab. 2018, 43, 697–703. [Google Scholar] [CrossRef]
- Ramírez-Maldonado, M.; Jurado-Fasoli, L.; Del Coso, J.; Ruiz, J.R.; Amaro-Gahete, F.J. Caffeine Increases Maximal Fat Oxidation during a Graded Exercise Test: Is There a Diurnal Variation? J. Int. Soc. Sports Nutr. 2021, 18, 5. [Google Scholar] [CrossRef]
- Ryu, S.; Choi, S.K.; Joung, S.S.; Suh, H.; Cha, Y.S.; Lee, S.; Lim, K. Caffeine as a Lipolytic Food Component Increases Endurance Performance in Rats and Athletes. J. Nutr. Sci. Vitaminol. 2001, 47, 139–146. [Google Scholar] [CrossRef]
- Cruz, R.S.d.O.; de Aguiar, R.A.; Turnes, T.; Guglielmo, L.G.A.; Beneke, R.; Caputo, F. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State. Nutrients 2015, 7, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Toner, M.M.; Kirkendall, D.T.; Delio, D.J.; Chase, J.M.; Cleary, P.A.; Fox, E.L. Metabolic and Cardiovascular Responses to Exercise with Caffeine. Ergonomics 1982, 25, 1175–1183. [Google Scholar] [CrossRef] [PubMed]
- Ercan-Fang, N.; Nuttall, F. The Effect of Caffeine and Caffeine Analogs on Rat Liver Phosphorylase a Activity. J. Pharmacol. Exp. Ther. 1997, 280, 1312–1318. [Google Scholar]
- McCall, A.L.; Millington, W.R.; Wurtman, R.J. Blood-Brain Barrier Transport of Caffeine: Dose-Related Restriction of Adenine Transport. Life Sci. 1982, 31, 2709–2715. [Google Scholar] [CrossRef] [PubMed]
- Fredholm, B.B.; Yang, J.; Wang, Y. Low, but Not High, Dose Caffeine Is a Readily Available Probe for Adenosine Actions. Mol. Aspects Med. 2017, 55, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; Spriet, L.L. Metabolic, Catecholamine, and Exercise Performance Responses to Various Doses of Caffeine. J. Appl. Physiol. 1995, 78, 867–874. [Google Scholar] [CrossRef] [PubMed]
- Ruíz-Moreno, C.; Lara, B.; Brito de Souza, D.; Gutiérrez-Hellín, J.; Romero-Moraleda, B.; Cuéllar-Rayo, Á.; Del Coso, J. Acute Caffeine Intake Increases Muscle Oxygen Saturation during a Maximal Incremental Exercise Test. Br. J. Clin. Pharmacol. 2020, 86, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Doherty, M.; Smith, P.M. Effects of Caffeine Ingestion on Rating of Perceived Exertion during and after Exercise: A Meta-Analysis. Scand. J. Med. Sci. Sports 2005, 15, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Magkos, F.; Kavouras, S.A. Caffeine Use in Sports, Pharmacokinetics in Man, and Cellular Mechanisms of Action. Crit. Rev. Food Sci. Nutr. 2005, 45, 535–562. [Google Scholar] [CrossRef] [PubMed]
- Burke, L.M.; Cox, G.R.; Cummings, N.K.; Desbrow, B. Guidelines for Daily Carbohydrate Intake: Do Athletes Achieve Them? Sports Med. 2001, 31, 267–299. [Google Scholar] [CrossRef]
- Ruiz-Moreno, C.; Lara, B.; Gutiérrez-hellín, J.; González-garcía, J.; Del Coso, J. Time Course and Magnitude of Tolerance to the Ergogenic Effect of Caffeine on the Second Ventilatory Threshold. Life 2020, 10, 343. [Google Scholar] [CrossRef] [PubMed]
- Bangsbo, J.; Jacobsen, K.; Nordberg, N.; Christensen, N.J.; Graham, T. Acute and Habitual Caffeine Ingestion and Metabolic Responses to Steady-State Exercise. J. Appl. Physiol. 1992, 72, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Moreno, C.; Lara, B.; Salinero, J.J.; Brito de Souza, D.; Ordovás, J.M.; Del Coso, J. Time Course of Tolerance to Adverse Effects Associated with the Ingestion of a Moderate Dose of Caffeine. Eur. J. Nutr. 2020, 59, 3293–3302. [Google Scholar] [CrossRef] [PubMed]
Study/Item | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Score |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Acker-Hewitt et al., 2012 [46] | N | N | Y | Y | Y | Y | N | N | Y | Y | Y | 7 |
Ahrens et al., 2007 [47] | N | Y | Y | Y | Y | Y | N | N | Y | Y | Y | 8 |
Black et al., 2015 [48] | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 9 |
Casal and Leon, 1985 [49] | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 9 |
Demura et al., 2007 [50] | Y | Y | Y | Y | Y | N | N | Y | Y | Y | Y | 8 |
Glaister et al., 2016 [51] | Y | Y | Y | Y | Y | N | N | Y | Y | Y | Y | 8 |
Glaister et al., 2021 [52] | N | Y | Y | Y | Y | Y | N | N | Y | Y | Y | 8 |
Graham and Spriet, 1991 [53] | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 9 |
Gutiérrez-Hellín and del Coso, 2018 [54] | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 9 |
Hulton et al., 2020 [55] | Y | N | Y | Y | Y | Y | N | Y | Y | Y | Y | 8 |
Jacobson et al., 2001 [56] | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 9 |
Mcclaran and Wetter, 2007 [57] | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 9 |
Nishijima et al., 2002 [58] | Y | Y | Y | Y | Y | N | N | Y | Y | Y | Y | 8 |
Oskarsson and McGawley, 2018 [59] | Y | N | Y | Y | Y | Y | N | Y | Y | Y | Y | 8 |
Ramírez-Maldonado et al., 2021 [60] | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | 9 |
Ryu et al., 2001 [61] | Y | N | N | Y | Y | N | N | Y | Y | Y | Y | 6 |
Santos De Oliveira Cruz et al., 2015 [62] | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | 9 |
Toner et al., 1982 [63] | N | N | Y | Y | Y | Y | N | Y | Y | Y | Y | 8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-Sánchez, J.; Trujillo-Colmena, D.; Rodríguez-Castaño, A.; Lavín-Pérez, A.M.; Del Coso, J.; Casado, A.; Collado-Mateo, D. Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients 2024, 16, 207. https://doi.org/10.3390/nu16020207
Fernández-Sánchez J, Trujillo-Colmena D, Rodríguez-Castaño A, Lavín-Pérez AM, Del Coso J, Casado A, Collado-Mateo D. Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients. 2024; 16(2):207. https://doi.org/10.3390/nu16020207
Chicago/Turabian StyleFernández-Sánchez, Javier, Daniel Trujillo-Colmena, Adrián Rodríguez-Castaño, Ana Myriam Lavín-Pérez, Juan Del Coso, Arturo Casado, and Daniel Collado-Mateo. 2024. "Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis" Nutrients 16, no. 2: 207. https://doi.org/10.3390/nu16020207
APA StyleFernández-Sánchez, J., Trujillo-Colmena, D., Rodríguez-Castaño, A., Lavín-Pérez, A. M., Del Coso, J., Casado, A., & Collado-Mateo, D. (2024). Effect of Acute Caffeine Intake on Fat Oxidation Rate during Fed-State Exercise: A Systematic Review and Meta-Analysis. Nutrients, 16(2), 207. https://doi.org/10.3390/nu16020207