Effect of Oral Zinc Supplementation on Phase Angle and Bioelectrical Impedance Vector Analysis in Duchenne Muscular Dystrophy: A Non-Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Intervention: Oral Zinc Supplementation
2.3. Serum Zinc Assessment
2.4. Anthropometric Assessment
2.5. Bioelectrical Impedance Parameters
2.6. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Costa, M.I.; Sarmento-Ribeiro, A.B.; Gonçalves, A.C. Zinc: From Biological Functions to Therapeutic Potential. Int. J. Mol. Sci. 2023, 24, 4822. [Google Scholar] [CrossRef] [PubMed]
- Chasapis, C.T.; Loutsidou, A.C.; Spiliopoulou, C.A.; Stefanidou, M.E. Zinc and Human Health: An Update. Arch. Toxicol. 2012, 86, 521–534. [Google Scholar] [CrossRef] [PubMed]
- Koury, J.C.; Oliveira-Junior, A.V.; Portugal, M.R.C.; Oliveira, K.J.F.; Donangelo, C.M. Bioimpedance Parameters in Adolescent Athletes in Relation to Bone Maturity and Biochemical Zinc Indices. J. Trace Elem. Med. Biol. 2018, 46, 26–31. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.J. Assessment of Marginal Zinc Status in Humans. J. Nutr. 2000, 130, 1350S–1354S. [Google Scholar] [CrossRef]
- Marreiro, D.; Cruz, K.; Morais, J.; Beserra, J.; Severo, J.; Oliveira, A. Zinc and Oxidative Stress: Current Mechanisms. Antioxidants 2017, 6, 24. [Google Scholar] [CrossRef]
- Lee, S.R. Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems. Oxid. Med. Cell Longev. 2018, 2018, 9156285. [Google Scholar] [CrossRef]
- Vermeulen, K.M.; Lopes, M.M.G.D.; Alves, C.X.; Brito, N.J.N.; Almeida, M.D.G.; Leite-Lais, L.; Vale, S.H.L.; Brandão-Neto, J. Bioelectrical Impedance Vector Analysis and Phase Angle on Different Oral Zinc Supplementation in Eutrophic Children: Randomized Triple-Blind Study. Nutrients 2019, 11, 1215. [Google Scholar] [CrossRef]
- Mattiello, R.; Amaral, M.A.; Mundstock, E.; Ziegelmann, P.K. Reference Values for the Phase Angle of the Electrical Bioimpedance: Systematic Review and Meta-Analysis Involving More than 250,000 Subjects. Clin. Nutr. 2020, 39, 1411–1417. [Google Scholar] [CrossRef]
- Pileggi, V.N.; Scalize, A.R.H.; Camelo Junior, J.S. Phase Angle and World Health Organization Criteria for the Assessment of Nutritional Status in Children with Osteogenesis Imperfecta. Rev. Paul. Pediatr. 2016, 34, 484–488. [Google Scholar] [CrossRef]
- Nwosu, A.C.; Mayland, C.R.; Mason, S.; Cox, T.F.; Varro, A.; Ellershaw, J. The Association of Hydration Status with Physical Signs, Symptoms and Survival in Advanced Cancer—The Use of Bioelectrical Impedance Vector Analysis (BIVA) Technology to Evaluate Fluid Volume in Palliative Care: An Observational Study. PLoS ONE 2016, 11, e0163114. [Google Scholar] [CrossRef]
- Bez Batti Angulski, A.; Hosny, N.; Cohen, H.; Martin, A.A.; Hahn, D.; Bauer, J.; Metzger, J.M. Duchenne Muscular Dystrophy: Disease Mechanism and Therapeutic Strategies. Front. Physiol. 2023, 14, 1183101. [Google Scholar] [CrossRef]
- Abou-Samra, M.; Boursereau, R.; Lecompte, S.; Noel, L.; Brichard, S.M. Potential Therapeutic Action of Adiponectin in Duchenne Muscular Dystrophy. Am. J. Pathol. 2017, 187, 1577–1585. [Google Scholar] [CrossRef] [PubMed]
- Duan, D.; Goemans, N.; Takeda, S.; Mercuri, E.; Aartsma-Rus, A. Duchenne Muscular Dystrophy. Nat. Rev. Dis. Primers 2021, 7, 13. [Google Scholar] [CrossRef] [PubMed]
- Araujo, A.P.Q.C.; de Carvalho, A.A.S.; Cavalcanti, E.B.U.; Saute, J.A.M.; Carvalho, E.; França, M.C., Jr.; Martinez, A.R.M.; de Navarro, M.M.; Nucci, A.; de Resende, M.B.D.; et al. Brazilian Consensus on Duchenne Muscular Dystrophy. Part 1: Diagnosis, Steroid Therapy and Perspectives. Arq. Neuropsiquiatr. 2017, 75, 589–599. [Google Scholar] [CrossRef]
- Saure, C.; Caminiti, C.; Weglinski, J.; Perez, F.C.; Monges, S. Energy Expenditure, Body Composition, and Prevalence of Metabolic Disorders in Patients with Duchenne Muscular Dystrophy. Diabetes Metab. Syndr. Clin. Res. Rev. 2018, 12, 81–85. [Google Scholar] [CrossRef] [PubMed]
- Mok, E.; Béghin, L.; Gachon, P.; Daubrosse, C.; Fontan, J.; Cuisset, J.; Gottrand, F.; Hankard, R. Estimating Body Composition in Children with Duchenne Muscular Dystrophy: Comparison of Bioelectrical Impedance Analysis and Skinfold-Thickness Measurement. Am. J. Clin. Nutr. 2006, 83, 65–69. [Google Scholar] [CrossRef]
- Salera, S.; Menni, F.; Moggio, M.; Guez, S.; Sciacco, M.; Esposito, S. Nutritional Challenges in Duchenne Muscular Dystrophy. Nutrients 2017, 9, 594. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc: A Report of the Panel on Micronutrients ... [et al.], Standing Committee on the Scientific Eva; National Academies Pres: Washington, DC, USA, 2002; ISBN 0-309-07290-5. [Google Scholar]
- Alves, C.X.; de Brito, N.J.N.; Vermeulen, K.M.; Lopes, M.M.G.D.; França, M.C.; Bruno, S.S.; das Almeida, M.G.; Brandão-Neto, J. Serum Zinc Reference Intervals and Its Relationship with Dietary, Functional, and Biochemical Indicators in 6- to 9-Year-Old Healthy Children. Food Nutr. Res. 2016, 60, 30157. [Google Scholar] [CrossRef]
- IZiNCG Assessing Population Zinc Status with Serum Zinc Concentration. 2012. Available online: https://www.izincg.org/technical-briefs (accessed on 27 September 2023).
- World Health Organization. WHO Child Growth Standards: Length/Height-for-Age, Weight-for-Age, Weight-for-Length, Weight-for-Height and Body Mass Index-for-Age: Methods and Development; World Health Organization: Geneva, Switzerland, 2006; ISBN 924154693X. [Google Scholar]
- Lukaski, H.C.; Bolonchuk, W.W.; Hall, C.B.; Siders, W.A. Validation of Tetrapolar Bioelectrical Impedance Method to Assess Human Body Composition. J. Appl. Physiol. 1986, 60, 1327–1332. [Google Scholar] [CrossRef]
- Houtkooper, L.B.; Going, S.B.; Lohman, T.G.; Roche, A.F.; Loan, M.V. Bioelectrical Impedance Estimation of Fat-Free Body Mass in Children and Youth: A Cross-Validation Study. J. Appl. Physiol. 1992, 72, 366–373. [Google Scholar] [CrossRef]
- Baumgartner, R.N.; Chumlea, W.C.; Roche, A.F. Bioelectric Impedance Phase Angle and Body Composition. Am. J. Clin. Nutr. 1988, 48, 16–23. [Google Scholar] [CrossRef]
- Vermeulen-Serpa, K.M.; Lopes, M.M.G.D.; de Miranda, C.T.; Alves, C.X.; Leite-Lais, L.; Brandão-Neto, J.; de Vale, S.H.L. Gender-Specific Bioelectrical Impedance Reference Values in Healthy Children. Clin. Nutr. Open Sci. 2023, 49, 77–87. [Google Scholar] [CrossRef]
- Piccoli, A.N. 2002 Background of BIVA. Order A J. Theory Ordered Sets Its Appl. 2002, 2002, 1–17. [Google Scholar]
- Amos, A.; Razzaque, M.S. Zinc and Its Role in Vitamin D Function. Curr. Res. Physiol. 2022, 5, 203–207. [Google Scholar] [CrossRef]
- Maunder-Sewry, C.A.; Gorodetsky, R.; Yarom, R.; Dubowitz, V. Element Analysis of Skeletal Muscle in Duchenne Muscular Dystrophy Using X-Ray Fluorescence Spectrometry. Muscle Nerve 1980, 3, 502–508. [Google Scholar] [CrossRef]
- Shapcott, D.; Giguère, R.; Lemieux, B. Zinc and Taurine in Freidreich’s Ataxia. Can. J. Neurol. Sci. J. Can. Sci. Neurol. 1984, 11, 623–625. [Google Scholar] [CrossRef] [PubMed]
- Bernabe-García, M.; Rodríguez-Cruz, M.; Atilano, S.; del Cruz-Guzmán, O.R.; Almeida-Becerril, T.; Calder, P.C.; González, J. Body Composition and Body Mass Index in Duchenne Muscular Dystrophy: Role of Dietary Intake. Muscle Nerve 2019, 59, 295–302. [Google Scholar] [CrossRef] [PubMed]
- He, M.; Cai, X.T.; Peng, W.T.; Song, J.; Zhou, H.M.; Li, X.R.; Wu, X.N. Cross-Sectional Study of Nutritional Status and Dietary Nutrient Intake in Children with Duchenne Muscular Dystrophy (DMD) in China. J. Sichuan Univ. (Med. Sci.) 2022, 53, 1068–1073. [Google Scholar] [CrossRef]
- Grounds, M.D.; Terrill, J.R.; Al-Mshhdani, B.A.; Duong, M.N.; Radley-Crabb, H.G.; Arthur, P.G. Biomarkers for Duchenne Muscular Dystrophy: Myonecrosis, Inflammation and Oxidative Stress. DMM Dis. Models Mech. 2020, 13, dmm043638. [Google Scholar] [CrossRef]
- da Silva, B.R.; Orsso, C.E.; Gonzalez, M.C.; Sicchieri, J.M.F.; Mialich, M.S.; Jordao, A.A.; Prado, C.M. Phase Angle and Cellular Health: Inflammation and Oxidative Damage. Rev. Endocr. Metab. Disord. 2023, 24, 543–562. [Google Scholar] [CrossRef]
- da Silva, B.R.; Gonzalez, M.C.; Cereda, E.; Prado, C.M. Exploring the Potential Role of Phase Angle as a Marker of Oxidative Stress: A Narrative Review. Nutrition 2022, 93, 111493. [Google Scholar] [CrossRef] [PubMed]
- Di Vincenzo, O.; Marra, M.; Di Gregorio, A.; Pasanisi, F.; Scalfi, L. Bioelectrical Impedance Analysis (BIA)—Derived Phase Angle in Sarcopenia: A Systematic Review. Clin. Nutr. 2021, 40, 3052–3061. [Google Scholar] [CrossRef] [PubMed]
- Tsuji, H.; Tetsunaga, T.; Misawa, H.; Nishida, K.; Ozaki, T. Association of Phase Angle with Sarcopenia in Chronic Musculoskeletal Pain Patients: A Retrospective Study. J. Orthop. Surg. Res. 2023, 18, 87. [Google Scholar] [CrossRef]
- Rutkove, S.B.; Aaron, R.; Shiffman, C.A. Localized Bioimpedance Analysis in the Evaluation of Neuromuscular Disease. Muscle Nerve 2002, 25, 390–397. [Google Scholar] [CrossRef] [PubMed]
- Bauermann, A.; de Costa e Silva, A.; Figueiredo, F.; Koury, J.C. Bioelectrical Impedance Vector Analysis and Body Composition in Cervical Spinal Cord Injury: A Pilot Study. Front. Nutr. 2022, 9, 935128. [Google Scholar] [CrossRef]
- Oliveira, K.J.F.; Koury, J.C.; Donangelo, C.M. Micronutrients and Antioxidant Capacity in Sedentary Adolescents and Runners. Rev. Nutr. 2007, 20, 171–179. [Google Scholar] [CrossRef]
Groups | Parameters | T1 | T2 | p |
---|---|---|---|---|
G1 (n = 8) | Serum zinc (μg/dL) * | 68 (58; 86) | 75 (62; 95) | 0.599 |
WAZ * | −0.64 (−1.32; 0.51) | −0.88 (−1.48; 0.62) | – | |
HAZ * | −1.66 (−2.48; −0.57) | −1.80 (−2.73; −0.49) | – | |
BAZ * | 0.46 (−0.22; 1.88) | 0.42 (−0.46; 2.09) | – | |
FFM (%) * | 80.8 (68.8; 87.8) | 81.2 (66.6; 89.3) | – | |
R (Ω) * | 645.5 (595.5; 810.7) | 650.5 (607.7; 856.3) | 0.093 | |
Xc (Ω) * | 35.5 (30.93; 45.6) | 36.0 (31.7; 46.3) | 0.156 | |
PA (°) * | 3.22 (2.36; 4.11) | 3.05 (2.28; 4.12) | 0.262 | |
G2 (n = 14) | Serum zinc (μg/dL) | 75 (11.0) | 80 (10.0) | 0.466 |
HAZ | −0.81 (1.44) | −0.92 (1.43) | – | |
BAZ | 0.25 (2.86) | 0.29 (2.79) | – | |
FFM (%) | 57.4 (13.5) | 57.5 (14.6) | – | |
R (Ω) | 919.5 (174.2) | 904.3 (139.6) | 0.508 | |
Xc (Ω) | 41.3 (5.70) | 39.4 (7.70) | 0.234 | |
PA (°) | 2.67 (0.64) | 2.58 (0.71) | 0.181 | |
G3 (n = 11) | Serum zinc (μg/dL) | 74 (13.0) | 78 (22.0) | 0.459 |
HAZ | −2.60 (0.60) | −2.81 (0.71) | – | |
BAZ | −1.40 (3.40) | −1.35 (3.29) | – | |
FFM (%) | 54.4 (17.36) | 54.0 (16.60) | – | |
R (Ω) | 1091 (152) | 1119 (157) | 0.401 | |
Xc (Ω) | 38.5 (11.1) | 35.6 (8.72) | 0.553 | |
PA (°) | 2.02 (0.51) | 1.85 (0.52) | 0.490 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vermeulen-Serpa, K.M.; Lopes, M.M.G.D.; Alves, C.X.; Grilo, E.C.; Cunha, T.A.; Miranda, C.T.d.O.F.; Bezerra, B.G.P.; Leite-Lais, L.; Brandão-Neto, J.; Vale, S.H.d.L. Effect of Oral Zinc Supplementation on Phase Angle and Bioelectrical Impedance Vector Analysis in Duchenne Muscular Dystrophy: A Non-Randomized Clinical Trial. Nutrients 2024, 16, 3299. https://doi.org/10.3390/nu16193299
Vermeulen-Serpa KM, Lopes MMGD, Alves CX, Grilo EC, Cunha TA, Miranda CTdOF, Bezerra BGP, Leite-Lais L, Brandão-Neto J, Vale SHdL. Effect of Oral Zinc Supplementation on Phase Angle and Bioelectrical Impedance Vector Analysis in Duchenne Muscular Dystrophy: A Non-Randomized Clinical Trial. Nutrients. 2024; 16(19):3299. https://doi.org/10.3390/nu16193299
Chicago/Turabian StyleVermeulen-Serpa, Karina Marques, Márcia Marilia Gomes Dantas Lopes, Camila Xavier Alves, Evellyn Camara Grilo, Thais Alves Cunha, Carolinne Thaisa de Oliveira Fernandes Miranda, Breno Gustavo Porfirio Bezerra, Lucia Leite-Lais, José Brandão-Neto, and Sancha Helena de Lima Vale. 2024. "Effect of Oral Zinc Supplementation on Phase Angle and Bioelectrical Impedance Vector Analysis in Duchenne Muscular Dystrophy: A Non-Randomized Clinical Trial" Nutrients 16, no. 19: 3299. https://doi.org/10.3390/nu16193299
APA StyleVermeulen-Serpa, K. M., Lopes, M. M. G. D., Alves, C. X., Grilo, E. C., Cunha, T. A., Miranda, C. T. d. O. F., Bezerra, B. G. P., Leite-Lais, L., Brandão-Neto, J., & Vale, S. H. d. L. (2024). Effect of Oral Zinc Supplementation on Phase Angle and Bioelectrical Impedance Vector Analysis in Duchenne Muscular Dystrophy: A Non-Randomized Clinical Trial. Nutrients, 16(19), 3299. https://doi.org/10.3390/nu16193299