Associations of Advanced Glycation End Products with Sleep Disorders in Chinese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Plasma AGEs Quantification
2.3. Subjective Sleep Assessment
2.4. Objective Sleep Assessment
2.5. Assessment of Covariates
2.6. Statistical Analyses
3. Results
3.1. Participants’ Characteristics
3.2. Associations of Individual AGEs and Self-Reported Sleep Assessments
3.3. Joint Associations in the WQS Analysis
3.4. Joint Associations in the BKMR Analysis
3.5. Associations of AGEs and Actigraphy-Measured Sleep Variables
3.6. Associations of Dietary Intake and Plasma AGEs
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.; Wu, J.; Liu, J.; Meng, Y.; Li, J.; Zhou, P.; Xu, M.; Yan, Q.; Li, Q.; Yin, X.; et al. Prevalence of sleep disturbances and associated factors among Chinese residents: A web-based empirical survey of 2019. J. Glob. Health 2023, 13, 04071. [Google Scholar] [CrossRef] [PubMed]
- Matricciani, L.; Bin, Y.S.; Lallukka, T.; Kronholm, E.; Dumuid, D.; Paquet, C.; Olds, T. Past, present, and future: Trends in sleep duration and implications for public health. Sleep Health 2017, 3, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Han, H.; Wang, Y.; Li, T.; Feng, C.; Kaliszewski, C.; Su, Y.; Wu, Y.; Zhou, J.; Wang, L.; Zong, G. Sleep Duration and Risks of Incident Cardiovascular Disease and Mortality among People with Type 2 Diabetes. Diabetes Care 2023, 46, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Winer, J.R.; Deters, K.D.; Kennedy, G.; Jin, M.; Goldstein-Piekarski, A.; Poston, K.L.; Mormino, E.C. Association of Short and Long Sleep Duration with Amyloid-β Burden and Cognition in Aging. JAMA Neurol. 2021, 78, 1187–1196. [Google Scholar] [CrossRef]
- Delpino, F.M.; Figueiredo, L.M.; Flores, T.R.; Silveira, E.A.; Silva Dos Santos, F.; Werneck, A.O.; Louzada, M.; Arcêncio, R.A.; Nunes, B.P. Intake of ultra-processed foods and sleep-related outcomes: A systematic review and meta-analysis. Nutrition 2023, 106, 111908. [Google Scholar] [CrossRef]
- Sousa, R.D.S.; Bragança, M.; Oliveira, B.R.; Coelho, C.; Silva, A. Association between the Degree of Processing of Consumed Foods and Sleep Quality in Adolescents. Nutrients 2020, 12, 462. [Google Scholar] [CrossRef]
- Lane, K.E.; Davies, I.G.; Darabi, Z.; Ghayour-Mobarhan, M.; Khayyatzadeh, S.S.; Mazidi, M. The Association between Ultra-Processed Foods, Quality of Life and Insomnia among Adolescent Girls in Northeastern Iran. Int. J. Environ. Res. Public Health 2022, 19, 6338. [Google Scholar] [CrossRef]
- Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018, 28, 337–352. [Google Scholar] [CrossRef]
- Zhang, Q.; Wang, Y.; Fu, L. Dietary advanced glycation end-products: Perspectives linking food processing with health implications. Compr. Rev. Food Sci. Food Saf. 2020, 19, 2559–2587. [Google Scholar] [CrossRef]
- Vlassara, H.; Uribarri, J. Glycoxidation and diabetic complications: Modern lessons and a warning? Rev. Endocr. Metab. Disord. 2004, 5, 181–188. [Google Scholar] [CrossRef]
- Tian, Z.; Chen, S.; Shi, Y.; Wang, P.; Wu, Y.; Li, G. Dietary advanced glycation end products (dAGEs): An insight between modern diet and health. Food Chem. 2023, 415, 135735. [Google Scholar] [CrossRef] [PubMed]
- Liang, Z.; Chen, X.; Li, L.; Li, B.; Yang, Z. The fate of dietary advanced glycation end products in the body: From oral intake to excretion. Crit. Rev. Food Sci. Nutr. 2020, 60, 3475–3491. [Google Scholar] [CrossRef] [PubMed]
- Aragno, M.; Mastrocola, R. Dietary Sugars and Endogenous Formation of Advanced Glycation Endproducts: Emerging Mechanisms of Disease. Nutrients 2017, 9, 385. [Google Scholar] [CrossRef] [PubMed]
- Bansode, S.B.; Gacche, R.N. Glycation-induced modification of tissue-specific ECM proteins: A pathophysiological mechanism in degenerative diseases. Biochim. Biophys. Acta Gen. Subj. 2019, 1863, 129411. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, G.; Lakshmanan, D.K.; Raju, K.; Elangovan, A.; Nambirajan, G.; Devanesan, A.A.; Thilagar, S. Food advanced glycation end products as potential endocrine disruptors: An emerging threat to contemporary and future generation. Environ. Int. 2019, 123, 486–500. [Google Scholar] [CrossRef]
- Konishi, S.; Hatakeyama, S.; Imai, A.; Okita, K.; Kido, K.; Ozaki, Y.; Uemura, N.; Iwane, T.; Okamoto, T.; Yamamoto, H.; et al. Effect of advanced glycation end products on nocturia or sleep disorders: A longitudinal study. BJUI Compass 2022, 3, 162–168. [Google Scholar] [CrossRef]
- Ljubičić, M.; Baković, L.; Ćoza, M.; Pribisalić, A.; Kolčić, I. Awakening cortisol indicators, advanced glycation end products, stress perception, depression and anxiety in parents of children with chronic conditions. Psychoneuroendocrinology 2020, 117, 104709. [Google Scholar] [CrossRef]
- Quan, W.; Jiao, Y.; Li, Y.; Xue, C.; Liu, G.; Wang, Z.; Qin, F.; He, Z.; Zeng, M.; Chen, J. Metabolic changes from exposure to harmful Maillard reaction products and high-fat diet on Sprague-Dawley rats. Food Res. Int. 2021, 141, 110129. [Google Scholar] [CrossRef]
- Yuan, X.; Nie, C.; Liu, H.; Ma, Q.; Peng, B.; Zhang, M.; Chen, Z.; Li, J. Comparison of metabolic fate, target organs, and microbiota interactions of free and bound dietary advanced glycation end products. Crit. Rev. Food Sci. Nutr. 2023, 63, 3612–3633. [Google Scholar] [CrossRef]
- Chen, J.; Mooldijk, S.S.; Licher, S.; Waqas, K.; Ikram, M.K.; Uitterlinden, A.G.; Zillikens, M.C.; Ikram, M.A. Assessment of Advanced Glycation End Products and Receptors and the Risk of Dementia. JAMA Netw. Open 2021, 4, e2033012. [Google Scholar] [CrossRef]
- King, L.; Wang, Q.; Xia, L.; Wang, P.; Jiang, G.; Li, W.; Huang, Y.; Liang, X.; Peng, X.; Li, Y.; et al. Environmental exposure to perchlorate, nitrate and thiocyanate, and thyroid function in Chinese adults: A community-based cross-sectional study. Environ. Int. 2023, 171, 107713. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, Q.; Lv, Y.; Xu, W.; Jiang, G.; Li, Y.; Luo, P.; He, R.; Liu, L. Association of plasma advanced glycation end-products and their soluble receptor with type 2 diabetes among Chinese adults. Diabetes Metab. Res. Rev. 2024, 40, e3735. [Google Scholar] [CrossRef] [PubMed]
- Hirshkowitz, M.; Whiton, K.; Albert, S.M.; Alessi, C.; Bruni, O.; DonCarlos, L.; Hazen, N.; Herman, J.; Katz, E.S.; Kheirandish-Gozal, L.; et al. National Sleep Foundation’s sleep time duration recommendations: Methodology and results summary. Sleep Health 2015, 1, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Sutanto, C.N.; Loh, W.W.; Toh, D.W.K.; Lee, D.P.S.; Kim, J.E. Association Between Dietary Protein Intake and Sleep Quality in Middle-Aged and Older Adults in Singapore. Front. Nutr. 2022, 9, 832341. [Google Scholar] [CrossRef]
- Johns, M.W. A new method for measuring daytime sleepiness: The Epworth sleepiness scale. Sleep 1991, 14, 540–545. [Google Scholar] [CrossRef]
- Sletten, T.L.; Magee, M.; Murray, J.M.; Gordon, C.J.; Lovato, N.; Kennaway, D.J.; Gwini, S.M.; Bartlett, D.J.; Lockley, S.W.; Lack, L.C.; et al. Efficacy of melatonin with behavioural sleep-wake scheduling for delayed sleep-wake phase disorder: A double-blind, randomised clinical trial. PLoS Med. 2018, 15, e1002587. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, Q.; Zhang, T.; Cai, J.; Tang, X.; Wei, Y.; Mo, X.; Huang, S.; Lin, Y.; Li, Y.; et al. Association between multiple metals exposure and sleep disorders in a Chinese population: A mixture-based approach. Chemosphere 2023, 343, 140213. [Google Scholar] [CrossRef]
- Littner, M.; Kushida, C.A.; Anderson, W.M.; Bailey, D.; Berry, R.B.; Davila, D.G.; Hirshkowitz, M.; Kapen, S.; Kramer, M.; Loube, D.; et al. Practice parameters for the role of actigraphy in the study of sleep and circadian rhythms: An update for 2002. Sleep 2003, 26, 337–341. [Google Scholar] [CrossRef]
- Textor, J.; van der Zander, B.; Gilthorpe, M.S.; Liskiewicz, M.; Ellison, G.T. Robust causal inference using directed acyclic graphs: The R package ‘dagitty’. Int. J. Epidemiol. 2016, 45, 1887–1894. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Wang, L.; Wang, W.; Liu, B.; Liu, J.; Chen, M.; He, Q.; Liao, Y.; Yu, X.; et al. Prevalence of chronic kidney disease in China: A cross-sectional survey. Lancet 2012, 379, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.S.; Lay, S.; Yu, H.N.; Shen, S.R. Dietary Guidelines for Chinese Residents (2016): Comments and comparisons. J. Zhejiang Univ. Sci. B 2016, 17, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yin, J.; Zhu, Y.; Wang, X.; Hu, X.; Bao, W.; Huang, Y.; Chen, L.; Chen, S.; Yang, W.; et al. Effects of Whole Milk Supplementation on Gut Microbiota and Cardiometabolic Biomarkers in Subjects with and without Lactose Malabsorption. Nutrients 2018, 10, 1403. [Google Scholar] [CrossRef] [PubMed]
- Waldmann, E. Quantile regression: A short story on how and why. Stat. Model. 2018, 18, 203–218. [Google Scholar] [CrossRef]
- Carrico, C.; Gennings, C.; Wheeler, D.C.; Factor-Litvak, P. Characterization of Weighted Quantile Sum Regression for Highly Correlated Data in a Risk Analysis Setting. J. Agric. Biol. Environ. Stat. 2015, 20, 100–120. [Google Scholar] [CrossRef]
- Bobb, J.F.; Valeri, L.; Claus Henn, B.; Christiani, D.C.; Wright, R.O.; Mazumdar, M.; Godleski, J.J.; Coull, B.A. Bayesian kernel machine regression for estimating the health effects of multi-pollutant mixtures. Biostatistics 2015, 16, 493–508. [Google Scholar] [CrossRef]
- Bobb, J.F.; Claus Henn, B.; Valeri, L.; Coull, B.A. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ. Health 2018, 17, 67. [Google Scholar] [CrossRef]
- Preston, E.V.; Webster, T.F.; Claus Henn, B.; McClean, M.D.; Gennings, C.; Oken, E.; Rifas-Shiman, S.L.; Pearce, E.N.; Calafat, A.M.; Fleisch, A.F.; et al. Prenatal exposure to per- and polyfluoroalkyl substances and maternal and neonatal thyroid function in the Project Viva Cohort: A mixtures approach. Environ. Int. 2020, 139, 105728. [Google Scholar] [CrossRef]
- Valeri, L.; Mazumdar, M.M.; Bobb, J.F.; Claus Henn, B.; Rodrigues, E.; Sharif, O.I.A.; Kile, M.L.; Quamruzzaman, Q.; Afroz, S.; Golam, M.; et al. The Joint Effect of Prenatal Exposure to Metal Mixtures on Neurodevelopmental Outcomes at 20-40 Months of Age: Evidence from Rural Bangladesh. Environ. Health Perspect. 2017, 125, 067015. [Google Scholar] [CrossRef]
- Coker, E.; Chevrier, J.; Rauch, S.; Bradman, A.; Obida, M.; Crause, M.; Bornman, R.; Eskenazi, B. Association between prenatal exposure to multiple insecticides and child body weight and body composition in the VHEMBE South African birth cohort. Environ. Int. 2018, 113, 122–132. [Google Scholar] [CrossRef]
- López-Gil, J.F.; Smith, L.; Victoria-Montesinos, D.; Gutiérrez-Espinoza, H.; Tárraga-López, P.J.; Mesas, A.E. Mediterranean Dietary Patterns Related to Sleep Duration and Sleep-Related Problems among Adolescents: The EHDLA Study. Nutrients 2023, 15, 665. [Google Scholar] [CrossRef] [PubMed]
- Nowotny, K.; Schröter, D.; Schreiner, M.; Grune, T. Dietary advanced glycation end products and their relevance for human health. Ageing Res. Rev. 2018, 47, 55–66. [Google Scholar] [CrossRef]
- Prasad, C.; Imrhan, V.; Marotta, F.; Juma, S.; Vijayagopal, P. Lifestyle and Advanced Glycation End Products (AGEs) Burden: Its Relevance to Healthy Aging. Aging Dis. 2014, 5, 212–217. [Google Scholar] [CrossRef]
- Koska, J.; Gerstein, H.C.; Beisswenger, P.J.; Reaven, P.D. Advanced Glycation End Products Predict Loss of Renal Function and High-Risk Chronic Kidney Disease in Type 2 Diabetes. Diabetes Care 2022, 45, 684–691. [Google Scholar] [CrossRef]
- Hanssen, N.M.J.; Teraa, M.; Scheijen, J.; Van de Waarenburg, M.; Gremmels, H.; Stehouwer, C.D.A.; Verhaar, M.C.; Schalkwijk, C.G. Plasma Methylglyoxal Levels Are Associated with Amputations and Mortality in Severe Limb Ischemia Patients with and without Diabetes. Diabetes Care 2021, 44, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Chiu, C.J.; Rabbani, N.; Rowan, S.; Chang, M.L.; Sawyer, S.; Hu, F.B.; Willett, W.; Thornalley, P.J.; Anwar, A.; Bar, L.; et al. Studies of advanced glycation end products and oxidation biomarkers for type 2 diabetes. Biofactors 2018, 44, 281–288. [Google Scholar] [CrossRef] [PubMed]
- van Dongen, K.C.W.; Linkens, A.M.A.; Wetzels, S.M.W.; Wouters, K.; Vanmierlo, T.; van de Waarenburg, M.P.H.; Scheijen, J.; de Vos, W.M.; Belzer, C.; Schalkwijk, C.G. Dietary advanced glycation endproducts (AGEs) increase their concentration in plasma and tissues, result in inflammation and modulate gut microbial composition in mice; evidence for reversibility. Food Res. Int. 2021, 147, 110547. [Google Scholar] [CrossRef] [PubMed]
- Scheijen, J.; Hanssen, N.M.J.; van Greevenbroek, M.M.; Van der Kallen, C.J.; Feskens, E.J.M.; Stehouwer, C.D.A.; Schalkwijk, C.G. Dietary intake of advanced glycation endproducts is associated with higher levels of advanced glycation endproducts in plasma and urine: The CODAM study. Clin. Nutr. 2018, 37, 919–925. [Google Scholar] [CrossRef]
- Nie, C.; Li, Y.; Qian, H.; Ying, H.; Wang, L. Advanced glycation end products in food and their effects on intestinal tract. Crit. Rev. Food Sci. Nutr. 2022, 62, 3103–3115. [Google Scholar] [CrossRef]
- Ahiawodzi, P.D.; Kerber, R.A.; Taylor, K.C.; Groves, F.D.; O’Brien, E.; Ix, J.H.; Kizer, J.R.; Djoussé, L.; Tracy, R.P.; Newman, A.B.; et al. Sleep-disordered breathing is associated with higher carboxymethyllysine level in elderly women but not elderly men in the cardiovascular health study. Biomarkers 2017, 22, 361–366. [Google Scholar] [CrossRef]
- Hernández, A.F.; Tsatsakis, A.M. Human exposure to chemical mixtures: Challenges for the integration of toxicology with epidemiology data in risk assessment. Food Chem. Toxicol. 2017, 103, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, J.; Ten, S.; Zhang, J.; Yuan, Y.; Yu, J.; An, X. Plasma heparanase is associated with blood glucose levels but not urinary microalbumin excretion in type 2 diabetic nephropathy at the early stage. Ren. Fail. 2017, 39, 698–701. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.I.; Ashfaq, F.; Alsayegh, A.A.; Hamouda, A.; Khatoon, F.; Altamimi, T.N.; Alhodieb, F.S.; Beg, M.M.A. Advanced glycation end product signaling and metabolic complications: Dietary approach. World J. Diabetes 2023, 14, 995–1012. [Google Scholar] [CrossRef]
- Sotomayor, C.G.; Gomes-Neto, A.W.; van Londen, M.; Gans, R.O.B.; Nolte, I.M.; Berger, S.P.; Navis, G.J.; Rodrigo, R.; Leuvenink, H.G.D.; Schalkwijk, C.G.; et al. Circulating Advanced Glycation Endproducts and Long-Term Risk of Cardiovascular Mortality in Kidney Transplant Recipients. Clin. J. Am. Soc. Nephrol. 2019, 14, 1512–1520. [Google Scholar] [CrossRef] [PubMed]
- Hanssen, N.M.; Engelen, L.; Ferreira, I.; Scheijen, J.L.; Huijberts, M.S.; van Greevenbroek, M.M.; van der Kallen, C.J.; Dekker, J.M.; Nijpels, G.; Stehouwer, C.D.; et al. Plasma levels of advanced glycation endproducts Nε-(carboxymethyl)lysine, Nε-(carboxyethyl)lysine, and pentosidine are not independently associated with cardiovascular disease in individuals with or without type 2 diabetes: The Hoorn and CODAM studies. J. Clin. Endocrinol. Metab. 2013, 98, E1369–E1373. [Google Scholar] [CrossRef]
- Helou, C.; Nogueira Silva Lima, M.T.; Niquet-Leridon, C.; Jacolot, P.; Boulanger, E.; Delguste, F.; Guilbaud, A.; Genin, M.; Anton, P.M.; Delayre-Orthez, C.; et al. Plasma Levels of Free N(ε)-Carboxymethyllysine (CML) after Different Oral Doses of CML in Rats and after the Intake of Different Breakfasts in Humans: Postprandial Plasma Level of sRAGE in Humans. Nutrients 2022, 14, 1890. [Google Scholar] [CrossRef]
- Jia, W.; Guo, A.; Zhang, R.; Shi, L. Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem. 2023, 404 Pt A, 134541. [Google Scholar] [CrossRef]
- Tan, X.; Zhao, T.; Wang, Z.; Wang, J.; Wang, Y.; Liu, Z.; Liu, X. Acrylamide Defects the Expression Pattern of the Circadian Clock and Mitochondrial Dynamics in C57BL/6J Mice Liver and HepG2 Cells. J. Agric. Food Chem. 2018, 66, 10252–10266. [Google Scholar] [CrossRef]
- Covassin, N.; Somers, V.K. Sleep, melatonin, and cardiovascular disease. Lancet Neurol. 2023, 22, 979–981. [Google Scholar] [CrossRef]
- Meyer, N.; Harvey, A.G.; Lockley, S.W.; Dijk, D.J. Circadian rhythms and disorders of the timing of sleep. Lancet 2022, 400, 1061–1078. [Google Scholar] [CrossRef]
- St-Onge, M.P. Sleep-obesity relation: Underlying mechanisms and consequences for treatment. Obes. Rev. 2017, 18 (Suppl. S1), 34–39. [Google Scholar] [CrossRef] [PubMed]
Characteristics | All Participants |
---|---|
Age, years | 51.91 (11.55) |
Female, n (%) | 999 (57.68) |
Ethnicity/Han, n (%) | 1697 (97.98) |
Body mass index, kg/m2 | 24.55 (3.16) |
Fasting blood glucose, mmol/L | 5.10 (4.71, 5.75) |
eGFR, mL/min/1.73 m2 | 113.55 (99.04, 132.71) |
Current smoker, n (%) | 261 (15.07) |
Current drinker, n (%) | 695 (40.13) |
High animal food intake, n (%) | 385 (22.23) |
Insufficient vegetable intake, n (%) | 1193 (68.88) |
Regular physical activity, n (%) | 1262 (72.86) |
Morbidity burden, n (%) | |
None (0) | 629 (36.32) |
Moderate (1–3) | 1033(59.99) |
Significant (4+) | 64 (3.70) |
Self-reported sleep characteristics a | |
Sleep duration, min | 425 (390, 470) |
Categorical sleep duration, n (%) | |
Short sleep duration (<7 h) | 713 (41.17) |
Normal sleep duration (≥7 h) | 1019 (58.83) |
PSQI score | 5 (4, 8) |
Categorical PSQI, n (%) | |
Normal (0–5) | 193 (50.39) |
Poor sleep quality (>5) | 190 (49.61) |
Insomnia, n (%) | 50 (13.06) |
ESS score | 5 (2, 8) |
Categorical ESS, n (%) | |
Normal/borderline (0–9) | 311 (81.20) |
Excessive daytime sleepiness (>9) | 72 (18.80) |
Objective actigraphy-measured sleep characteristics b | |
No. nights per participants | 4 (3, 6) |
Total sleep time, min | 360.95 (333.33, 394.00) |
Sleep efficiency, % | 81.74 (77.04, 86.24) |
Wake after sleep onset, min | 73.94 (56.63, 96.25) |
Energy, kcal/day b | 1468.40 (1209.80, 1756.30) |
Protein, g/day b | 48.76 (38.10, 59.05) |
Fat, g/day b | 51.74 (41.50, 64.97) |
Carbohydrate, g/day b | 197.66 (160.22, 241.38) |
Tea/coffee consumer b | 70 (38.46) |
Short Sleep Duration (<7 h) | Poor Sleep Quality (PSQI >5) | Excessive Daytime Sleepiness (ESS > 9) | Insomnia | |||||
---|---|---|---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
CML | ||||||||
Crude model | 1.12 (1.01, 1.23) | 0.027 | 1.36 (1.13, 1.64) | 0.001 | 1.34 (1.12, 1.59) | <0.001 | 1.35 (1.12, 1.63) | 0.001 |
Model 1 | 1.11 (1.01, 1.23) | 0.031 | 1.33 (1.10, 1.60) | 0.003 | 1.32 (1.11, 1.58) | 0.002 | 1.32 (1.09, 1.61) | 0.005 |
Model 2 | 1.11 (1.00, 1.22) | 0.046 | 1.34 (1.10, 1.61) | 0.003 | 1.33 (1.11, 1.59) | 0.002 | 1.30 (1.06, 1.59) | 0.014 |
Model 3 | 1.11 (1.00, 1.23) | 0.044 | 1.33 (1.10, 1.60) | 0.004 | 1.33 (1.11, 1.60) | 0.002 | 1.29 (1.05, 1.59) | 0.017 |
CEL | ||||||||
Crude model | 1.17 (1.06, 1.30) | 0.003 | 1.55 (1.20, 2.00) | 0.001 | 1.26 (0.95, 1.68) | 0.107 | 1.33 (0.96, 1.83) | 0.084 |
Model 1 | 1.11 (1.00, 1.24) | 0.052 | 1.50 (1.16, 1.94) | 0.002 | 1.23 (0.91, 1.65) | 0.176 | 1.24 (0.88, 1.75) | 0.211 |
Model 2 | 1.16 (1.03, 1.30) | 0.012 | 1.52 (1.17, 1.98) | 0.004 | 1.24 (0.92, 1.67) | 0.156 | 1.24 (0.87, 1.76) | 0.238 |
Model 3 | 1.16 (1.04, 1.30) | 0.001 | 1.53 (1.17, 2.00) | 0.002 | 1.23 (0.91, 1.67) | 0.180 | 1.22 (0.86, 1.74) | 0.271 |
MG-H1 | ||||||||
Crude model | 1.04 (0.95, 1.15) | 0.395 | 1.64 (1.28, 2.11) | <0.001 | 1.35 (1.07, 1.71) | 0.011 | 1.27 (0.98, 1.83) | 0.072 |
Model 1 | 1.03 (0.93, 1.13) | 0.563 | 1.61 (1.25, 2.07) | <0.001 | 1.36 (1.07, 1.72) | 0.011 | 1.25 (0.95, 1.63) | 0.108 |
Model 2 | 1.02 (0.92, 1.12) | 0.722 | 1.65 (1.28, 2.13) | <0.001 | 1.37 (1.08, 1.73) | 0.010 | 1.27 (0.96, 1.68) | 0.090 |
Model 3 | 1.02 (0.92, 1.12) | 0.722 | 1.61 (1.25, 2.07) | <0.001 | 1.39 (1.09, 1.77) | 0.008 | 1.26 (0.95, 1.66) | 0.109 |
Outcomes | Direction | WQS Mixture Results | Component Weights (%) | |||
---|---|---|---|---|---|---|
OR | 95% CI | p-Value | ||||
Short sleep duration (<7 h) | Positive | 1.16 | (0.99, 1.37) | 0.065 | lnCML | 59.58 |
lnCEL | 38.63 | |||||
lnMG-H1 | 1.79 | |||||
Poor sleep quality (PSQI > 5) | Positive | 1.57 | (1.15, 2.15) | 0.005 | lnCML | 53.26 |
lnCEL | 5.07 | |||||
lnMG-H1 | 41.67 | |||||
Excessive daytime sleepiness (ESS > 9) | Positive | 1.69 | (1.13, 2.53) | 0.009 | lnCML | 91.95 |
lnCEL | 4.25 | |||||
lnMG-H1 | 3.79 | |||||
Insomnia | Positive | 1.93 | (1.05, 3.52) | 0.027 | lnCML | 61.41 |
lnCEL | 32.78 | |||||
lnMG-H1 | 5.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Guo, J.; Liang, X.; Huang, Y.; Wang, Q.; Luo, Y.; King, L.; Chen, L.; Peng, X.; Yan, H.; et al. Associations of Advanced Glycation End Products with Sleep Disorders in Chinese Adults. Nutrients 2024, 16, 3282. https://doi.org/10.3390/nu16193282
Li L, Guo J, Liang X, Huang Y, Wang Q, Luo Y, King L, Chen L, Peng X, Yan H, et al. Associations of Advanced Glycation End Products with Sleep Disorders in Chinese Adults. Nutrients. 2024; 16(19):3282. https://doi.org/10.3390/nu16193282
Chicago/Turabian StyleLi, Linyan, Jianhe Guo, Xiaoling Liang, Yue Huang, Qiang Wang, Yuxi Luo, Lei King, Liangkai Chen, Xiaolin Peng, Hong Yan, and et al. 2024. "Associations of Advanced Glycation End Products with Sleep Disorders in Chinese Adults" Nutrients 16, no. 19: 3282. https://doi.org/10.3390/nu16193282
APA StyleLi, L., Guo, J., Liang, X., Huang, Y., Wang, Q., Luo, Y., King, L., Chen, L., Peng, X., Yan, H., He, R., Wang, J., Peng, X., & Liu, L. (2024). Associations of Advanced Glycation End Products with Sleep Disorders in Chinese Adults. Nutrients, 16(19), 3282. https://doi.org/10.3390/nu16193282