Dietary Determinants of Metabolic and Gut Microbial Health in Patients with Inflammatory Bowel Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Clinical Data Collection and Processing
2.3. Dietary Information
2.4. Activity Monitoring, Calculation of Basal Metabolic Rate, and Assessment of Dietary Under-Reporting
2.5. Microbial Sampling and Analysis
2.6. Statistical Analyses
3. Results
3.1. Participant Characteristics, Dietary Intake, and Disease Activity
3.2. Associations between Diet, Anthropometric, and Metabolic Parameters
3.3. Comparing Stool Microbiota Diversity between the IBD and HC Groups
3.4. Associations between Stool Microbiota and Anthropometric, Dietary, Metabolic and Inflammatory Parameters
4. Discussion
5. Limitations and Future Directions
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynn, A.; Harmsen, W.; Aniwan, S.; Tremaine, W.; Loftus, E. Trends in the prevelence of overweight and obesity at the time of inflammatory bowel disease diagnosis: A population-based study. Gastroenterology 2018, 154, S614–S615. [Google Scholar] [CrossRef]
- Szilagyi, A. Relationship(s) between obesity and inflammatory bowel diseases: Possible intertwined pathogenic mechanisms. Clin. J. Gastroenterol. 2020, 13, 139–152. [Google Scholar] [CrossRef] [PubMed]
- Biondi, R.B.; Salmazo, P.S.; Bazan, S.G.Z.; Hueb, J.C.; de Paiva, S.A.R.; Sassaki, L.Y. Cardiovascular risk in individuals with inflammatory bowel disease. Clincal. Exp. Gastroenterol. 2020, 13, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Halfvarson, J.; Appelros, P.; Bergman, D.; Ebrahimi, F.; Roelstraete, B.; Olén, O.; Ludvigsson, J.F. Long-term risk of stroke in patients with inflammatory bowel disease. A population-based, sibling-controlled cohort study 1969–2019. Neurology 2023, 101, e653–e664. [Google Scholar] [CrossRef]
- Losurdo, G.; La Fortezza, R.F.; Iannone, A.; Contaldo, A.; Barone, M.; Ierardi, E.; Di Leo, A.; Principi, M. Prevalence and associated factors of obesity in inflammatory bowel disease: A case-control study. World J. Gastroenterol. 2020, 26, 7528–7537. [Google Scholar] [CrossRef]
- Schreiber, S.; Rubin, D.T.; Ng, S.C.; Peyrin-Biroulet, L.; Danese, S.; Modesto, I.; Guo, X.; Su, C.; Kwok, K.K.; Jo, H.; et al. Major Adverse Cardiovascular Events by Baseline Cardiovascular Risk in Patients with Ulcerative Colitis Treated with Tofacitanib: Data from the OCTAVE Clinical Programme. J. Crohn’s Colitis 2023, 17, 1761–1770. [Google Scholar] [CrossRef]
- Ytterberg, S.R.; Bhatt, D.L.; Mikuls, T.R.; Koch, G.G.; Fleischmann, R.; Rivas, J.L.; Germino, R.; Menon, S.; Sun, Y.; Wang, C.; et al. Cardiovascular and cancer risk with tofacitanib in rheumatoid arthritis. NEJM 2022, 386, 316–326. [Google Scholar] [CrossRef] [PubMed]
- Kurnool, S.; Nguyen, N.H.; Proudfoot, J.; Dulai, P.S.; Boland, B.S.; Casteele, N.V.; Evans, E.; Grunvald, E.L.; Zarrinpar, A.; Sandborn, W.J.; et al. High body mass index is associated with increased risk of treatment failure and surgery in biologic-treated patients with ulcerative colitis. Aliment. Pharmacol. Ther. 2018, 47, 1472–1479. [Google Scholar] [CrossRef]
- Johnson, A.; Loftus, E. Impact of Obesity on the Management of Inflammatory Bowel Disease. Gastroenterol. Hepatol. 2020, 16, 350–359. [Google Scholar]
- Narula, N.; Wong, E.C.L.; Dehghan, M.; Mente, A.; Rangarajan, S.; Lanas, F.; Lopez-Jaramillo, P.; Rohatgi, P.; Lakshmi, P.V.M.; Varma, R.P.; et al. Association of ultra-processed food intake with risk of inflammatory bowel disease: Prospective cohort study. Br. Med. J. 2021, 374, n1554. [Google Scholar] [CrossRef]
- Jantchou, P.; Morois, S.; Clavel-Chapelon, F.; Boutron-Ruault, M.-C.; Carbonnel, F. Animal Protein Intake and Risk of Inflammatory Bowel Disease: The E3N Prospective Study. Am. J. Gastroenterol. 2010, 105, 2195–2201. [Google Scholar] [CrossRef] [PubMed]
- Amre, D.; D’Souza, S.; Morgan, K. Imbalances in dietary consumption of fatty acids, vegetables and fruits are associated with risk for Crohn’s Disease in children. Am. J. Gastroenterol. 2007, 102, 2016–2025. [Google Scholar] [CrossRef] [PubMed]
- Aldars-Garcia, L.; Chaparro, M.; Gisbert, J. Systematic Review: The Gut Microbiome and its potential clinical application in inflammatory bowel disease. Microorganisms 2021, 9, 977. [Google Scholar] [CrossRef] [PubMed]
- Read, E.; Curtis, M.; Neves, J. The role of oral bacteria in inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Paramsothy, S.; Nielsen, S.; Kamm, M.A.; Deshpande, N.P.; Faith, J.J.; Clemente, J.C.; Paramsothy, R.; Walsh, A.J.; van den Bogaerde, J.; Samuel, D.; et al. Specific bacteria and metabolites associated with response to fecal microbiota transplantation in patients with ulcerative colitis. Gastroenterology 2019, 156, 1440–1454. [Google Scholar] [CrossRef]
- Radhakrishnan, S.T.; Alexander, J.L.; Mullish, B.H.; Gallagher, K.I.; Powell, N.; Hicks, L.C.; Hart, A.L.; Li, J.V.; Marchesi, J.R.; Williams, H.R.T. Systematic review: The association between the gut microbiota and medical therapies in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2022, 55, 26–48. [Google Scholar] [CrossRef]
- Kiely, C.; Pavli, P.; O’Brien, C. The role of inflammation in temporal shifts in the inflammatory bowel disease mucosal microbiome. Gut Microbes 2018, 9, 477–485. [Google Scholar] [CrossRef]
- Cotillard, A.; Kennedy, S.P.; Kong, L.C.; Prifti, E.; Pons, N.; Le Chatelier, E.; Almeida, M.; Quinquis, B.; Levenez, F.; Galleron, N.; et al. Dietary intervention impact on gut microbial gene richness. Nature 2013, 500, 585–588. [Google Scholar] [CrossRef]
- Dao, M.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef]
- Forslund, K.; Hildebrand, F.; Nielsen, T.; Falony, G.; Le Chatelier, E.; Sunagawa, S.; Prifti, E.; Vieira-Silva, S.; Gudmundsdottir, V.; Krogh Pedersen, H.; et al. Disentangling the effects of type 2 diabetes and metformin in the human gut microbiota. Nature 2015, 528, 262–266. [Google Scholar] [CrossRef]
- Lamb, C.; Kennedy, N.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.H.; Lomer, M.C.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2021, 70, 1. [Google Scholar] [CrossRef] [PubMed]
- Atreya, R.; Siegmund, B. Location is important: Differentiation between ileal and colonic Crohn’s disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 544–558. [Google Scholar] [CrossRef]
- Roy, R.; Hebden, L.; Rangan, A.; Allman-Farinelli, M. The development, application and validation of a Healthy eating index for Australian Adults (HEIFA-2013). Nutrition 2016, 32, 432–440. [Google Scholar] [CrossRef] [PubMed]
- NHMRC. Eat for Health: Australian Dietary Guidelines. 2013. Available online: https://www.eatforhealth.gov.au/sites/default/files/files/the_guidelines/n55_australian_dietary_guidelines.pdf (accessed on 30 August 2024).
- Schofield, W. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39, 5–41. [Google Scholar] [PubMed]
- Black, A. Critical evaluation of energy intake using the Goldberg cut-off for energy intake: Basal metabolic rate. A practical guide to its calculation, use and limitations. Int. J. Obes. 2000, 24, 1119–1130. [Google Scholar] [CrossRef]
- Sokol, H.; Brot, L.; Stefanescu, C.; Auzolle, C.; Barnich, N.; Buisson, A.; Fumery, M.; Pariente, B.; Le Bourhis, L.; Treton, X.; et al. Prominence of ileal mucosa-associated microbiota to predict postoperative endoscopic recurrence in Crohn’s disease. Gut 2019, 69, 462–472. [Google Scholar] [CrossRef]
- Kemp, K.M.; Orihuela, C.A.; Morrow, C.D.; Judd, S.E.; Evans, R.R.; Mrug, S. Associations between dietary habits, socio-demographics, and gut microbial composition in adolescents. Br. J. Nutr. 2023, 131, 809–820. [Google Scholar] [CrossRef]
- Ahsan, M.; Koutroumpakis, F.; Ramos-Rivers, C. High Sugar-Sweetened Beverage Consumption Is Associated with Increased Health Care Utilization in Patients with Inflammatory Bowel Disease: A Multiyear, Prospective Analysis. J. Acad. Nutr. Diet. 2022, 122, 1488–1498.e1. [Google Scholar] [CrossRef]
- Laffin, M.; Fedorak, R.; Zalasky, A.; Park, H.; Gill, A.; Agrawal, A.; Keshteli, A.; Hotte, N.; Madsen, K.L. A high-sugar diet rapidly enhances susceptibility to colitis via depletion of luminal short-chain fatty acids in mice. Sci. Rep. 2019, 9, 12294. [Google Scholar] [CrossRef] [PubMed]
- Manor, O.; Dai, C.L.; Kornilov, S.A.; Smith, B.; Price, N.D.; Lovejoy, J.C.; Gibbons, S.M.; Magis, A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Comun. 2020, 11, 5206. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Monteiro, C.; Cannon, G.; Lawrence, M.; da Costa Louzada, M.L.; Pereira Machado, P. Ultra-Processed Foods, Diet Quality, and Health Using the NOVA Classification System; Food and Agriculture Organisaion of the United Nations: Rome, Italy, 2019. [Google Scholar]
- Crooks, B.; McLaughlin, J.; Limdi, J. Dietary beliefs and recommendations in inflammatory bowel disease: A national survey of healthcare professionals in the UK. Frontline Gastroenterol. 2022, 13, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Loy, L.; Petronio, L.; Marcozzi, G.; Bezzio, C.; Armuzzi, A. Dietary Fiber in Inflammatory Bowel Disease: Are we ready to change the paradigm. Nutrients 2024, 16, 1108. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. Br. Med. J. 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Brotherton, C.S.; Martin, C.A.; Long, M.D.; Kappelman, M.D.; Sandler, R.S. Avoidance of fiber is associated with greater risk of Crohn’s disease flare in a 6-month period. Clin. Gastroenterol. Hepatol. 2016, 14, 1130–1136. [Google Scholar] [CrossRef]
- Lambert, K.; Pappas, D.; Miglioretto, C.; Javadpour, A.; Reveley, H.; Frank, L.; Grimm, M.C.; Samocha-Bonet, D.; Hold, G.L. Systematic review with meta-analysis: Dietary intake in adults with inflammatory bowel disease. Aliment. Pharmacol. Ther. 2021, 56, 742–754. [Google Scholar] [CrossRef]
- Powell-Wiley, T.M.; Poirier, P.; Burke, L.E.; Després, J.-P.; Gordon-Larsen, P.; Lavie, C.J.; Lear, S.A.; Ndumele, C.E.; Neeland, I.J.; Sanders, P.; et al. Obesity and Cardiovascular Disease: A Scientific Statement From the American Heart Association. Circulation 2021, 143, e984–e1010. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Domínguez, S.J.; García-Mateo, S.; Gargallo-Puyuelo, C.J.; Gallego-Llera, B.; Callau, P.; Mendi, C.; Arroyo-Villarino, M.T.; Simón-Marco, M.; Ampuero, J.; Gomollón, F. Inflammatory bowel disease is an independent risk factor for metabolic dysfunction-associated steatotic liver disease in lean individuals. Inflamm Bowel Dis 2023, 30, 1274–1283. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, P.; Zhou, G.; Lin, J.; Li, L.; Zeng, Z.; Chen, M.; Zhang, S. Serum Biomarkers for Inflammatory Bowel Disease. Front. Med. 2020, 7, 123. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Ridker, P.M.; Buring, J.E.; Cook, N.R.; Rifai, N. C-reactive protein, the metabolic syndrome and risk of incident cardiovascular events: An 8-year follow-up study of 14 719 healthy American women. Cicrulation 2003, 107, 391–397. [Google Scholar] [CrossRef]
- Paluch, A.E.; Bajpai, S.; Bassett, D.R.; Carnethon, M.R.; Ekelund, U.; Evenson, K.R.; A Galuska, D.; Jefferis, B.J.; Kraus, W.E.; Lee, I.-M.; et al. Daily steps and all-cause mortality: A meta-analysis of 12 international cohorts. Lancet Public Health 2022, 7, E219–E228. [Google Scholar] [CrossRef]
- Piovani, D.; Danese, S.; Peyrin-Biroulet, L.; Nikolopoulos, G.K.; Lytras, T.; Bonovas, S. Environmental factors for inflammatory bowel diseases: An umbrella review of meta-analysis. Gastroenterology 2019, 157, 647–659. [Google Scholar] [CrossRef] [PubMed]
- Engels, M.; Cross, R.; Long, M. Exercise in patients with inflammatory bowel diseases: Current perspectives. Clin. Exp. Gastroenterol. 2018, 11, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Oppert, J.; Bellicha, A.; van Baak, M.A.; Battista, F.; Beaulieu, K.; Blundell, J.E.; Carraça, E.V.; Encantado, J.; Ermolao, A.; Pramono, A.; et al. Exercise training in the management of overweight and obesity in adults: Synthesis of the evidence and recommendations from the European Association for the Study of Obesity Physical Activity Working Group. Obes. Rev. 2021, 22 (Suppl. 4), e13273. [Google Scholar] [CrossRef] [PubMed]
- Levine, A.; Rhodes, J.M.; Lindsay, J.O.; Abreu, M.T.; Kamm, M.A.; Gibson, P.R.; Gasche, C.; Silverberg, M.S.; Mahadevan, U.; Boneh, R.S.; et al. Dietary guidance from the international organization for the study of inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2020, 18, 1381–1392. [Google Scholar] [CrossRef]
- Williams, A.-J.; Paramsothy, R.; Wu, N.; Ghaly, S.; Leach, S.; Paramsothy, S.; Corte, C.; O’Brien, C.; Burke, C.; Wark, G.; et al. Australia IBD Microbiome (AIM) Stidy: Protocol for a multicentre longitudinal prospective cohort study. BMJ Open 2021, 11, e042493. [Google Scholar] [CrossRef]
- Öhman, L.; Lasson, A.; Strömbeck, A.; Isaksson, S.; Hesselmar, M.; Simrén, M.; Strid, H.; Magnusson, M.K. Fecal microbiota dynamics during disease activity and remission in newly diagnosed and established ulcerative colitis. Sci. Rep. 2021, 11, 8641. [Google Scholar] [CrossRef]
- Gallagher, K.; Catesson, A.; Griffin, J.L.; Holmes, E.; Williams, H.R.T. Metabolomic Analysis in Inflammatory Bowel Disease: A Systematic Review. J. Crohn’s Colitis 2021, 15, 813–826. [Google Scholar] [CrossRef]
Parameter | HC | CI (95%) | IBD | CI (95%) | p |
---|---|---|---|---|---|
Number | 24 | 57 | |||
Age (mean, years) | 38.0 | 33.1–42.8 | 38.7 | 35.7–41.7 | 0.79 |
Female sex (n) | 11 | 22 | 0.72 | ||
Smoking Status | |||||
Current | 1 (4%) | 5 (9%) | 0.04 * | ||
Past | 0 (0%) | 11 (19%) | |||
Never | 23 (96%) | 41 (72%) | |||
Anthropometric measures | |||||
BMI (kg/m2) | 24.8 ± 2.9 | 25.2 ± 4.3 | 0.63 | ||
BMI 18.5–25 | 12/25 (48%) | 27/57 (47.4%) | |||
BMI > 25 | 12/25 (48%) | 25/57 (44%) | |||
BMI > 30 | 1/25 (4%) | 5/57 (9%) | |||
Waist circumference (cm) | 81 | 77–85 | 84 | 79–88 | 0.42 |
Waist-to-Hip Ratio | 0.9 | 0.8–0.9 | 0.9 | 0.8–0.9 | 0.65 |
Laboratory/Biochemical tests | |||||
Hemoglobin (g/L) | 139.5 | 134.3–144.6 | 141.4 | 139.0–143.9 | 0.44 |
Fasting plasma glucose (mmol/L) | 4.4 | 4.2–4.6 | 4.5 | 4.3–4.7 | 0.4 |
HbA1c (%) | 5.2 | 5.0–5.3 | 4.9 | 4.8–5.0 | <0.01 * |
Insulin (mU/L) | 4.8 | 3.9–5.8 | 6.2 | 5.1–7.3 | 0.12 |
Cholesterol (mmol/L) | 4.7 | 4.3–5.1 | 5.1 | 4.9–5.4 | 0.1 |
Triglycerides (mmol/L) | 1.1 | 0.9–1.2 | 1.2 | 0.9–1.5 | 0.39 |
LDL (mmol/L) | 2.7 | 2.3–3.0 | 3.1 | 2.9–3.4 | 0.09 |
HDL (mmol/L) | 1.5 | 1.4–1.7 | 1.5 | 1.4–1.6 | 0.88 |
CRP (mg/L) | 1.8 | 1.1–2.5 | 2.2 | 1.5–2.8 | 0.47 |
Stool | |||||
FC (µg/g) (Median) | 14.8 | (IQR) 6.3–30.2 | 17.4 | (IQR) 8.5–74 | 0.25 |
Parameter | HC | SD± | IBD | SD± | p-Value | CI |
---|---|---|---|---|---|---|
Steps (avg/day) | 10,942 | 2746 | 9135 | 3784 | 0.047 * | 25–33,588 |
Estimated BMR kJ/day | 6816 | 1088 | 6916 | 1381 | 0.75 | −532.2–731.9 |
Recorded energy intake (kJ/day) | 9769 | 2652 | 9184 | 2342 | 0.33 | −1774–602.6 |
Average PAL (EI/BMR) | 1.42 | 0.2 | 1.35 | 0.3 | 0.12 | −0.22–0.08 |
Under-reporting (EI/BMR < 1.07)/ did not record | 4 | 15 | 0.35 | n/a (chi-square test) | ||
Protein (g) | 100 | 26 | 95 | 29 | 0.5 | −18–9 |
Fat (g) | 92 | 25 | 89 | 27 | 0.59 | −16–9 |
Saturated Fat (g) | 35 | 10 | 33 | 12 | 0.43 | −8–3 |
Trans Fat (g) | 1.4 | 0.5 | 1.3 | 0.5 | 0.69 | −0.3–0.2 |
PUFA (g) | 12 | 3.9 | 12 | 4.7 | 0.66 | −2–3 |
MUFA (g) | 33 | 9.4 | 33 | 12.0 | 0.97 | −7–5 |
Carbohydrate (g) | 222 | 82 | 220 | 60 | 0.93 | −34–31 |
Sugar (g) | 97 | 44 | 87 | 33 | 0.33 | −30–10 |
Alcohol (g) | 16 | 14 | 12 | 16 | 0.28 | −11–3 |
Dietary fibre (g) | 25 | 10 | 23 | 10 | 0.43 | −7–292 |
Sodium (mg) | 2463 | 690 | 3070 | 3342 | 0.38 | −769–1983 |
Calcium (mg) | 919 | 295 | 815 | 330 | 0.19 | −259–53 |
Zinc (mg) | 10 | 3 | 10 | 3 | 0.48 | −2–1 |
Folate (µg) | 594 | 318 | 575 | 245 | 0.77 | −150–112 |
Wholegrains (serves) | 2.08 | 1.7 | 1.0 | 0.9 | <0.01 * | −1.7–−0.5 |
Fruit (serves) | 1.1 | 1.2 | 1.0 | 0.8 | 0.73 | −0.5–0.4 |
Vegetables (serves) | 4.4 | 2.7 | 4.7 | 3.8 | 0.72 | −1.4–2 |
Caffeine (mg) | 267 | 248 | 215 | 253 | 0.4 | −175–70 |
Red meat (serves) | 0.5 | 0.4 | 0.6 | 0.7 | 0.48 | −0.2–0.4 |
Poultry (serves) | 0.5 | 0.4 | 0.5 | 0.5 | 0.95 | −0.2–0.2 |
Egg (serves) | 0.3 | 0.2 | 0.5 | 1.4 | 0.43 | −0.3–0.8 |
Processed meat (serves) | 0.2 | 0.2 | 0.2 | 0.3 | 0.65 | −0.1–0.2 |
Seafood (serves) | 0.3 | 0.2 | 0.3 | 0.3 | 0.73 | −0.1–0.2 |
Added sugars (tsp) | 8 | 7.9 | 7 | 5.1 | 0.69 | −4–2 |
Discretionary food (serves) | 4.8 | 3.3 | 4.8 | 2.5 | 0.95 | −1.3–1.4 |
HEIFA-2013 (score) | 53 | 11 | 49 | 10 | 0.21 | −8–2 |
Parameter | Clinical Disease Flare-Up (n = 13) | Clinical Remission (n = 43) | p | CI |
---|---|---|---|---|
Dietary intake (average per day) | ||||
Discretionary foods (serves) | 4.5 | 4.9 | 0.62 | −1.2–2.01 |
Added sugar (g) | 6.8 | 7.6 | 0.64 | −2.5–4.1 |
Total fat (g) | 83.7 | 88.8 | 0.54 | −11.5–21.6 |
Saturated fat (g) | 31.0 | 32.6 | 0.66 | −5.9–9.3 |
Trans fat (g) | 1.2 | 1.4 | 0.67 | −0.1–0.5 |
Processed meat (serves) | 1.7 | 2.0 | 0.88 | −0.2–0.2 |
Fruit (serves) | 1.4 | 0.9 | 0.50 | −1.0–0 |
Vegetables (serves) | 4.5 | 4.8 | 0.89 | −2.3–2.8 |
Fiber (g) | 23.2 | 23.5 | 0.95 | −6.1–6.6 |
HEIFA-2013 (score) | 53.4 | 46.6 | 0.50 | −15.2–1.4 |
Serum metabolic profile | ||||
Insulin (IU/L) | 6.7 | 6.1 | 0.64 | −3.1–1.9 |
HbA1c (%) | 4.9 | 4.9 | 0.49 | −0.2–0.3 |
Cholesterol (mmol/L) | 4.7 | 5.1 | 0.11 | 0–1.3 |
Triglycerides (mmol/L) | 1.1 | 1.2 | 0.73 | −0.6–0.8 |
HDL-cholesterol (mmol/L) | 1.5 | 1.5 | 0.71 | −0.2–0.3 |
LDL-cholesterol (mmol/L) | 2.6 | 3.1 | 0.54 | 0–1.14 |
Anthropometric parameters | ||||
BMI (kg/m2) | 23.9 | 25.6 | 0.22 | −1.0–4.4 |
Waist Circumference (cm) | 80.7 | 85.5 | 0.35 | −5.4–14.8 |
Waist-to-Hip Ratio | 0.8 | 0.9 | 0.29 | 0–0 |
Stool microbial diversity indices | ||||
Species Richness | 23.4 | 20.7 | 0.30 | −7.9–2.5 |
Species evenness | 0.6 | 0.6 | 0.80 | −0.1–0 |
Shannon’s diversity index | 3.1 | 3.1 | 0.57 | −0.5–0.3 |
BMI | WC | WHR | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IBD | HC | IBD | HC | IBD | HC | |||||||||||||
r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | |
Discretionary Foods | 0.33 | 50 | 0.21 | 0.21 | 19 | 0.83 | 0.3 | 43 | 0.09 | 0.21 | 18 | 0.37 | 0.32 | 43 | 0.1 | 0.37 | 18 | 0.87 |
Added Sugar | 0.32 | 50 | 0.23 | −0.15 | 19 | 0.9 | 0.31 | 43 | 0.09 | −0.28 | 18 | 0.24 | 0.31 | 43 | 0.43 | −0.28 | 18 | 0.87 |
Saturated Fat | 0.37 | 50 | 0.04 * | 0.02 | 19 | 0.92 | 0.39 | 43 | 0.04 * | 0.34 | 18 | 0.15 | 0.24 | 43 | 0.22 | 0.06 | 18 | 0.96 |
Trans Fat | 0.19 | 50 | 0.23 | 0.26 | 19 | 0.78 | 0.2 | 43 | 0.26 | 0.25 | 18 | 0.29 | 0.27 | 43 | 0.18 | −0.01 | 18 | 0.96 |
Processed Meat | 0.3 | 50 | 0.1 | 0.59 | 19 | 0.05 * | 0.25 | 43 | 0.15 | 0.58 | 18 | <0.01 * | 0.16 | 43 | 0.39 | 0.25 | 18 | 0.87 |
Fruit | −0.24 | 50 | 0.15 | −0.29 | 19 | 0.78 | −0.18 | 43 | 0.26 | −0.31 | 18 | 0.19 | −0.22 | 43 | 0.23 | −0.1 | 18 | 0.96 |
Vegetable | −0.25 | 50 | 0.14 | −0.09 | 19 | 0.9 | −0.27 | 43 | 0.73 | −0.31 | 18 | 0.19 | −0.28 | 43 | 0.61 | −0.17 | 18 | 0.96 |
Fibre | −0.45 | 50 | 0.01 * | −0.06 | 19 | 0.9 | −0.44 | 43 | 0.02 * | 0.13 | 18 | 0.59 | −0.45 | 43 | 0.02 * | 0.03 | 18 | 0.96 |
HEIFA-13 | −0.27 | 50 | 0.13 | −0.11 | 19 | 0.9 | −0.25 | 43 | 0.15 | −0.23 | 18 | 0.32 | −0.32 | 43 | 0.1 | −0.12 | 18 | 0.96 |
Fasting Glucose | HbA1c | Insulin | ||||||||||||||||
IBD | HC | IBD | HC | IBD | HC | |||||||||||||
r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | |
Discretionary Foods | 0.13 | 49 | 0.55 | 0.27 | 19 | 0.54 | 0 | 50 | 0.97 | −0.03 | 18 | 0.97 | 0.27 | 47 | 0.13 | 0.12 | 19 | 0.93 |
Added Sugar | 0.03 | 49 | 0.93 | 0.05 | 19 | 0.84 | 0.01 | 50 | 0.97 | −0.31 | 18 | 0.97 | 0.32 | 47 | 0.09 | −0.03 | 19 | 0.93 |
Saturated Fat | 0.01 | 49 | 0.94 | 0.24 | 19 | 0.54 | 0.05 | 50 | 0.9 | 0.12 | 18 | 0.97 | 0.28 | 47 | 0.13 | 0.02 | 19 | 0.93 |
Trans Fat | 0.14 | 49 | 0.55 | 0.17 | 19 | 0.71 | 0.26 | 50 | 0.14 | −0.03 | 18 | 0.97 | 0.25 | 47 | 0.14 | 0.1 | 19 | 0.93 |
Processed Meat | 0.15 | 49 | 0.55 | −0.05 | 19 | 0.84 | 0.26 | 50 | 0.14 | −0.26 | 18 | 0.97 | 0.22 | 47 | 0.17 | 0.53 | 19 | 0.72 |
Fruit | −0.28 | 49 | 0.14 | −0.3 | 19 | 0.54 | −0.31 | 50 | 0.11 | 0.04 | 18 | 0.97 | 0.03 | 47 | 0.83 | −0.32 | 19 | 0.72 |
Vegetable | −0.11 | 49 | 0.55 | 0.06 | 19 | 0.84 | −0.19 | 50 | 0.32 | −0.01 | 18 | 0.97 | −0.26 | 47 | 0.13 | 0.1 | 19 | 0.93 |
Fibre | −0.39 | 49 | 0.05 * | −0.24 | 19 | 0.54 | −0.34 | 50 | 0.11 | 0.26 | 18 | 0.97 | −0.36 | 47 | 0.09 | −0.06 | 19 | 0.93 |
HEIFA-13 | −0.32 | 49 | 0.09 | −0.25 | 19 | 0.54 | −0.15 | 50 | 0.44 | −0.17 | 18 | 0.97 | −0.16 | 47 | 0.29 | −0.21 | 19 | 0.93 |
BMI | WC | WHR | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IBD | HC | IBD | HC | IBD | HC | |||||||||||||
r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | |
Fasting glucose | 0.17 | 52 | 0.32 | 0.47 | 19 | 0.12 | 0.25 | 46 | 0.13 | 0.43 | 18 | 0.12 | 0.28 | 46 | 0.09 | 0.15 | 18 | 0.69 |
HbA1c | 0.21 | 53 | 0.21 | −0.22 | 18 | 0.42 | 0.25 | 46 | 0.13 | 0.34 | 17 | 0.21 | 0.27 | 46 | 0.09 | 0.38 | 17 | 0.69 |
Insulin | 0.48 | 50 | <0.01 * | 0.44 | 18 | 0.12 | 0.55 | 45 | <0.01 * | 0.42 | 18 | 0.123 | 0.55 | 45 | <0.01 * | −0.1 | 18 | 0.69 |
LDL | 0.11 | 52 | 0.5 | 0.45 | 18 | 0.12 | 0.14 | 45 | 0.34 | 0.58 | 18 | 0.03 * | 0.24 | 45 | 0.13 | 0.15 | 18 | 0.69 |
HDL | −0.44 | 52 | <0.01 * | −0.03 | 18 | 0.91 | −0.3 | 46 | 0.09 | 0.2 | 18 | 0.4 | −0.04 | 46 | 0.77 | 0.02 | 18 | 0.69 |
Cholesterol | 0 | 52 | 0.98 | 0.39 | 19 | 0.14 | 0.14 | 46 | 0.34 | 0.58 | 18 | 0.03 * | 0.32 | 46 | 0.07 | 0.24 | 18 | 0.69 |
Triglycerides | 0.26 | 53 | 0.12 | 0.21 | 19 | 0.42 | 0.36 | 46 | 0.04 * | 0.23 | 18 | 0.37 | 0.57 | 46 | <0.01 * | −0.13 | 18 | 0.69 |
CRP | FC | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IBD | HC | IBD | HC | |||||||||
r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | |
Serum metabolic profile | ||||||||||||
Fasting Glucose | 0.15 | 52 | 0.29 | 0.57 | 20 | 0.07 | 0.3 | 39 | 0.3 | −0.15 | 6 | 0.8 |
Insulin | 0.35 | 50 | 0.03 * | −0.13 | 20 | 0.7 | 0.15 | 39 | 0.4 | −0.4 | 6 | 0.57 |
HbA1c | 0.17 | 53 | 0.25 | 0.11 | 19 | 0.7 | 0.2 | 40 | 0.3 | 0.2 | 6 | 0.8 |
Cholesterol | 0.17 | 53 | 0.25 | 0.25 | 20 | 0.5 | −0.24 | 40 | 0.3 | −0.69 | 6 | 0.57 |
Triglycerides | 0.3 | 53 | 0.04 * | 0.32 | 20 | 0.5 | 0.22 | 40 | 0.3 | −0.77 | 6 | 0.57 |
HDL | −0.42 | 53 | 0.01 * | 0.08 | 20 | 0.72 | −0.27 | 40 | 0.3 | 0.05 | 6 | 0.91 |
LDL | 0.23 | 52 | 0.11 | 0.25 | 20 | 0.5 | −0.26 | 39 | 0.3 | −0.59 | 6 | 0.57 |
Anthropometric measures | ||||||||||||
BMI | 0.4 | 53 | 0.02 * | 0.28 | 20 | 0.5 | 0.21 | 40 | 0.3 | −0.31 | 6 | 0.64 |
WC | 0.4 | 46 | 0.02 * | 0.3 | 19 | 0.5 | 0.15 | 36 | 0.4 | −0.39 | 6 | 0.57 |
WHR | 0.29 | 46 | 0.09 | 0.11 | 19 | 0.7 | 0.06 | 36 | 0.72 | −0.42 | 6 | 0.57 |
Inflammatory markers | ||||||||||||
FC | 0.27 | 40 | 0.12 | −0.4 | 6 | 0.5 |
Species Richness | Species Evenness | Shannon’s Diversity | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IBD | HC | IBD | HC | IBD | HC | |||||||||||||
r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | r | df | p-adj | |
Dietary intake | ||||||||||||||||||
Discretionary Foods | −0.33 | 47 | 0.10 | 0.2 | 19 | 0.91 | −0.17 | 47 | 0.30 | −0.14 | 19 | 0.96 | −0.27 | 47 | 0.65 | −0.05 | 19 | 0.99 |
Added Sugar | −0.4 | 47 | 0.10 | 0.04 | 19 | 0.91 | −0.31 | 47 | 0.11 | −0.7 | 19 | 0.96 | −0.39 | 47 | 0.03 * | −0.04 | 19 | 0.99 |
Processed Meat | −0.37 | 47 | 0.10 | −0.04 | 19 | 0.91 | −0.39 | 47 | 0.04 * | −0.09 | 19 | 0.96 | −0.43 | 47 | 0.02 * | −0.04 | 19 | 0.99 |
Saturated Fat | −0.15 | 47 | 0.40 | 0.54 | 19 | 0.21 | −0.26 | 47 | 0.15 | 0.1 | 19 | 0.96 | −0.22 | 47 | 0.18 | 0.19 | 19 | 0.99 |
Trans Fat | −0.13 | 47 | 0.44 | 0.39 | 19 | 0.84 | −0.08 | 47 | 0.62 | 0.08 | 19 | 0.96 | −0.09 | 47 | 0.64 | 0.15 | 19 | 0.99 |
Fruit | 0.19 | 47 | 0.30 | −0.15 | 19 | 0.91 | −0.03 | 47 | 0.84 | 0.2 | 19 | 0.96 | 0.04 | 47 | 0.79 | 0.09 | 19 | 0.99 |
Vegetables | 0.18 | 47 | 0.30 | −0.04 | 19 | 0.91 | 0.29 | 47 | 0.13 | 0.08 | 19 | 0.96 | 0.27 | 47 | 0.67 | 0.09 | 19 | 0.99 |
Fibre | 0.31 | 47 | 0.10 | −0.13 | 19 | 0.91 | 0.26 | 47 | 0.15 | 0.06 | 19 | 0.96 | 0.3 | 47 | 0.12 | 0.04 | 19 | 0.99 |
HEIFA-13 | 0.18 | 47 | 0.30 | −0.09 | 19 | 0.91 | 0.14 | 47 | 0.39 | 0.01 | 19 | 0.96 | 0.18 | 47 | 0.26 | 0.04 | 19 | 0.99 |
Serum metabolic profile | ||||||||||||||||||
Fasting plasma glucose | −0.24 | 47 | 0.21 | 0.14 | 19 | 0.91 | −0.22 | 47 | 0.21 | −0.02 | 19 | 0.96 | −0.27 | 47 | 0.16 | 0.07 | 19 | 0.99 |
Insulin | −0.33 | 46 | 0.30 | −0.13 | 19 | 0.91 | −0.45 | 46 | 0.02 * | 0.03 | 19 | 0.96 | −0.45 | 47 | 0.02 | 0.01 | 19 | 0.99 |
HbA1c | −0.3 | 47 | 0.10 | 0.24 | 18 | 0.91 | −0.18 | 47 | 0.30 | 0.21 | 18 | 0.96 | −0.24 | 47 | 0.18 | 0.21 | 19 | 0.99 |
Cholesterol | −0.21 | 47 | 0.26 | −0.05 | 19 | 0.91 | −0.15 | 47 | 0.36 | −0.01 | 19 | 0.96 | −0.2 | 47 | 0.24 | −0.01 | 19 | 0.99 |
Triglycerides | −0.24 | 47 | 0.21 | −0.3 | 19 | 0.91 | −0.32 | 47 | 0.11 | 0.05 | 19 | 0.96 | −0.32 | 47 | 0.11 | 0.10 | 19 | 0.99 |
HDL-cholesterol | 0.11 | 47 | 0.50 | 0.29 | 19 | 0.91 | 0.28 | 47 | 0.13 | 0.14 | 19 | 0.96 | 0.23 | 47 | 0.18 | 0.14 | 19 | 0.99 |
LDL-cholesterol | −0.23 | 47 | 0.23 | −0.12 | 19 | 0.91 | −0.22 | 47 | 0.21 | −0.07 | 19 | 0.96 | −0.24 | 47 | 0.18 | −0.08 | 19 | 0.99 |
Anthropometric measures | ||||||||||||||||||
BMI | −0.31 | 47 | 0.01 | −0.03 | 19 | 0.91 | −0.34 | 47 | 0.09 | 0.02 | 20 | 0.96 | −0.36 | 47 | 0.04 * | 0.07 | 19 | 0.99 |
Waist Circumference | −0.28 | 42 | 0.61 | 0.17 | 18 | 0.91 | −0.2 | 42 | 0.29 | 0.21 | 18 | 0.96 | −0.25 | 47 | 0.18 | 0.26 | 18 | 0.99 |
Waist-to-Hip Ratio | −0.34 | 42 | 0.01 | 0.17 | 18 | 0.91 | −0.14 | 42 | 0.40 | −0.02 | 18 | 0.96 | −0.25 | 47 | 0.18 | 0.05 | 18 | 0.99 |
Inflammatory markers | ||||||||||||||||||
CRP | −0.24 | 47 | 0.21 | 0.16 | 19 | 0.91 | −0.43 | 47 | 0.02 * | −0.14 | 19 | 0.96 | −0.41 | 47 | 0.03 * | −0.02 | 19 | 0.99 |
Fecal calprotectin | −0.12 | 37 | 0.50 | −0.07 | 5 | 0.91 | −0.29 | 37 | 0.15 | 0.75 | 5 | 0.96 | −0.22 | 37 | 0.24 | 0.77 | 5 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wark, G.; Kaakoush, N.O.; Samocha-Bonet, D.; Ghaly, S.; Danta, M. Dietary Determinants of Metabolic and Gut Microbial Health in Patients with Inflammatory Bowel Disease. Nutrients 2024, 16, 3233. https://doi.org/10.3390/nu16193233
Wark G, Kaakoush NO, Samocha-Bonet D, Ghaly S, Danta M. Dietary Determinants of Metabolic and Gut Microbial Health in Patients with Inflammatory Bowel Disease. Nutrients. 2024; 16(19):3233. https://doi.org/10.3390/nu16193233
Chicago/Turabian StyleWark, Gabrielle, Nadeem O. Kaakoush, Dorit Samocha-Bonet, Simon Ghaly, and Mark Danta. 2024. "Dietary Determinants of Metabolic and Gut Microbial Health in Patients with Inflammatory Bowel Disease" Nutrients 16, no. 19: 3233. https://doi.org/10.3390/nu16193233
APA StyleWark, G., Kaakoush, N. O., Samocha-Bonet, D., Ghaly, S., & Danta, M. (2024). Dietary Determinants of Metabolic and Gut Microbial Health in Patients with Inflammatory Bowel Disease. Nutrients, 16(19), 3233. https://doi.org/10.3390/nu16193233