Adherence to Nutritional Practice Guideline in Premature Infants: A Nationwide Survey in Taiwan
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Parenteral Nutrition
3.1.1. Fluids
3.1.2. Carbohydrates
3.1.3. Proteins
3.1.4. Lipids
3.1.5. Mineral Intake
3.1.6. Monitoring
3.2. Enteral Nutrition
3.2.1. Choice of Initial Feeding
3.2.2. In-Hospital Enteral Nutrition
3.2.3. Survey of Metabolic Bone Disease of Prematurity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PN | Parenteral nutrition |
EN | Enteral nutrition |
ESPGHAN | European Society for Pediatric Gastroenterology Hepatology and Nutrition |
TNN | Taiwan Neonatal Network |
WHO | World Health Organization |
VLBW | Very low birth weight |
ELBW | extremely low birth weight |
NICU | Neonatal intensive care unit |
References
- dit Trolli, S.E.; Kermorvant-Duchemin, E.; Huon, C.; Bremond-Gignac, D.; Lapillonne, A. Early lipid supply and neurological development at one year in very low birth weight (VLBW) preterm infants. Early Hum. Dev. 2012, 88, S25–S29. [Google Scholar] [CrossRef] [PubMed]
- Stephens, B.E.; Walden, R.V.; Gargus, R.A.; Tucker, R.; McKinley, L.; Mance, M.; Nye, J.; Vohr, B.R. First-week protein and energy intakes are associated with 18-month developmental outcomes in extremely low birth weight infants. Pediatrics 2009, 123, 1337–1343. [Google Scholar] [CrossRef] [PubMed]
- Eleni-dit-Trolli, S.; Kermorvant-Duchemin, E.; Huon, C.; Mokthari, M.; Husseini, K.; Brunet, M.L.; Dupont, C.; Lapillonne, A. Early individualised parenteral nutrition for preterm infants. Arch. Dis. Child. Fetal Neonatal Ed. 2009, 94, F152–F153. [Google Scholar] [CrossRef] [PubMed]
- Ehrenkranz, R.A.; Dusick, A.M.; Vohr, B.R.; Wright, L.L.; Wrage, L.A.; Poole, W.K. Growth in the neonatal intensive care unit influences neurodevelopmental and growth outcomes of extremely low birth weight infants. Pediatrics 2006, 117, 1253–1261. [Google Scholar] [CrossRef]
- van Goudoever, J.B.; Carnielli, V.; Darmaun, D.; Sainz de Pipaon, M.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Decsi, T.; Domellöf, M.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Amino acids. Clin. Nutr. 2018, 37, 2315–2323. [Google Scholar] [CrossRef]
- Mihatsch, W.; Fewtrell, M.; Goulet, O.; Molgaard, C.; Picaud, J.C.; Senterre, T.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Calcium, phosphorus and magnesium. Clin. Nutr. 2018, 37, 2360–2365. [Google Scholar] [CrossRef]
- Bronsky, J.; Campoy, C.; Braegger, C.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; Decsi, T.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Vitamins. Clin. Nutr. 2018, 37, 2366–2378. [Google Scholar] [CrossRef]
- Hartman, C.; Shamir, R.; Simchowitz, V.; Lohner, S.; Cai, W.; Decsi, T.; Braegger, C.; Bronsky, J.; Campoy, C.; Carnielli, V.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Complications. Clin. Nutr. 2018, 37, 2418–2429. [Google Scholar] [CrossRef]
- Jochum, F.; Moltu, S.J.; Senterre, T.; Nomayo, A.; Goulet, O.; Iacobelli, S.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Fluid and electrolytes. Clin. Nutr. 2018, 37, 2344–2353. [Google Scholar] [CrossRef]
- Joosten, K.; Embleton, N.; Yan, W.; Senterre, T.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Energy. Clin. Nutr. 2018, 37, 2309–2314. [Google Scholar] [CrossRef]
- Lapillonne, A.; Fidler Mis, N.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef] [PubMed]
- Mesotten, D.; Joosten, K.; van Kempen, A.; Verbruggen, S.; Braegger, C.; Bronsky, J.; Cai, W.; Campoy, C.; Carnielli, V.; Darmaun, D.; et al. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Carbohydrates. Clin. Nutr. 2018, 37, 2337–2343. [Google Scholar] [CrossRef] [PubMed]
- De Cloet, J.; Simal, I.; Benoot, K.; Goossens, L. Assessment of the Adherence to ESPGHAN 2018 Guidelines in the Neonatal Intensive Care Unit of the Ghent University Hospital: A Retrospective Study. Nutrients 2023, 15, 2324. [Google Scholar] [CrossRef] [PubMed]
- Embleton, N.D.; Moltu, S.J.; Lapillonne, A.; van den Akker, C.H.P.; Carnielli, V.; Fusch, C.; Gerasimidis, K.; van Goudoever, J.B.; Haiden, N.; Iacobelli, S.; et al. Enteral Nutrition in Preterm Infants (2022): A Position Paper From the ESPGHAN Committee on Nutrition and Invited Experts. J. Pediatr. Gastroenterol. Nutr. 2023, 76, 248–268. [Google Scholar] [CrossRef] [PubMed]
- Lapillonne, A.; Kermorvant-Duchemin, E. A systematic review of practice surveys on parenteral nutrition for preterm infants. J. Nutr. 2013, 143, 2061S–2065S. [Google Scholar] [CrossRef]
- Lapillonne, A.; Fellous, L.; Mokthari, M.; Kermorvant-Duchemin, E. Parenteral Nutrition Objectives for Very Low Birth Weight Infants: Results of a National Survey. J. Pediatr. Gastroenterol. Nutr. 2009, 48, 618–626. [Google Scholar] [CrossRef]
- Taiwan Society of Neonatology. Recommendation on Nutritional Care of Taiwan Preterm Infants, 4th ed.; Taiwan Society of Neonatology: Taichung City, Taiwan, 2022. [Google Scholar]
- Committee on Fetus and Newborn; Barfield, W.D.; Papile, L.A.; Baley, J.E.; Benitz, W.; Cummings, J.; Carlo, W.A.; Kumar, P.; Polin, R.A.; Tan, R.C.; et al. Levels of neonatal care. Pediatrics 2012, 130, 587–597. [Google Scholar]
- Darmstadt, G.L.; Al Jaifi, N.H.; Arif, S.; Bahl, R.; Blennow, M.; Cavallera, V.; Chou, D.; Chou, R.; Comrie-Thomson, L.; Edmond, K. New World Health Organization recommendations for care of preterm or low birth weight infants: Health policy. EClinicalMedicine 2023, 63, 102155. [Google Scholar] [CrossRef]
- Health Promotion Administration; Ministry of Health and Welfare, R.O.C. 2021 Statistics of Birth Reporting System. 2022. Available online: https://www.hpa.gov.tw/File/Attach/16584/File_20499.pdf (accessed on 17 September 2024).
- Van Den Akker, C.H.; Te Braake, F.W.; Wattimena, D.J.; Voortman, G.; Schierbeek, H.; Vermes, A.; Van Goudoever, J.B. Effects of early amino acid administration on leucine and glucose kinetics in premature infants. Pediatr. Res. 2006, 59, 732–735. [Google Scholar] [CrossRef]
- Blanco, C.L.; Gong, A.K.; Schoolfield, J.; Green, B.K.; Daniels, W.; Liechty, E.A.; Ramamurthy, R. Impact of early and high amino acid supplementation on ELBW infants at 2 years. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 601–607. [Google Scholar] [CrossRef]
- Valentine, C.; Fernandez, S.; Rogers, L.; Gulati, P.; Hayes, J.; Lore, P.; Puthoff, T.; Dumm, M.; Jones, A.; Collins, K. Early amino-acid administration improves preterm infant weight. J. Perinatol. 2009, 29, 428–432. [Google Scholar] [CrossRef] [PubMed]
- Koletzko, B.; Goulet, O.; Hunt, J.; Krohn, K.; Shamir, R.; Group, P.N.G.W. 1. Guidelines on paediatric parenteral nutrition of the European Society of Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the European Society for Clinical Nutrition and Metabolism (ESPEN), supported by the European Society of Paediatric Research (ESPR). J. Pediatr. Gastroenterol. Nutr. 2005, 41, S1–S4. [Google Scholar] [PubMed]
- Burattini, I.; Bellagamba, M.P.; Spagnoli, C.; D’Ascenzo, R.; Mazzoni, N.; Peretti, A.; Cogo, P.E.; Carnielli, V.P.; Network, M.N. Targeting 2.5 versus 4 g/kg/day of amino acids for extremely low birth weight infants: A randomized clinical trial. J. Pediatr. 2013, 163, 1278–1282.e1. [Google Scholar] [CrossRef] [PubMed]
- Bloomfield, F.H.; Jiang, Y.; Harding, J.E.; Crowther, C.A.; Cormack, B.E.; Pro, V.T.G. Early Amino Acids in Extremely Preterm Infants and Neurodisability at 2 Years. N. Engl. J. Med. 2022, 387, 1661–1672. [Google Scholar] [CrossRef] [PubMed]
- Alsweiler, J.M.; Kuschel, C.A.; Bloomfield, F.H. Survey of the management of neonatal hyperglycaemia in Australasia. J. Paediatr. Child Health 2007, 43, 632–635. [Google Scholar] [CrossRef]
- Ramel, S.; Long, J.; Gray, H.; Durrwachter-Erno, K.; Demerath, E.; Rao, R. Neonatal hyperglycemia and diminished long-term growth in very low birth weight preterm infants. J. Perinatol. 2013, 33, 882–886. [Google Scholar] [CrossRef]
- Auerbach, A.; Eventov-Friedman, S.; Arad, I.; Peleg, O.; Bdolah-Abram, T.; Bar-Oz, B.; Zangen, D.H. Long duration of hyperglycemia in the first 96 hours of life is associated with severe intraventricular hemorrhage in preterm infants. J. Pediatr. 2013, 163, 388–393. [Google Scholar] [CrossRef]
- van der Lugt, N.M.; Smits-Wintjens, V.E.; van Zwieten, P.H.; Walther, F.J. Short and long term outcome of neonatal hyperglycemia in very preterm infants: A retrospective follow-up study. BMC Pediatr. 2010, 10, 52. [Google Scholar] [CrossRef]
- Beardsall, K.; Vanhaesebrouck, S.; Ogilvy-Stuart, A.L.; Vanhole, C.; Palmer, C.R.; Ong, K.; Midgley, P.; Thompson, M.; Thio, M.; Cornette, L. Prevalence and determinants of hyperglycemia in very low birth weight infants: Cohort analyses of the NIRTURE study. J. Pediatr. 2010, 157, 715–719.e3. [Google Scholar] [CrossRef]
- Agus, M.S.; Steil, G.M.; Wypij, D.; Costello, J.M.; Laussen, P.C.; Langer, M.; Alexander, J.L.; Scoppettuolo, L.A.; Pigula, F.A.; Charpie, J.R. Tight glycemic control versus standard care after pediatric cardiac surgery. N. Engl. J. Med. 2012, 367, 1208–1219. [Google Scholar] [CrossRef]
- Macrae, D.; Grieve, R.; Allen, E.; Sadique, Z.; Morris, K.; Pappachan, J.; Parslow, R.; Tasker, R.C.; Elbourne, D. A randomized trial of hyperglycemic control in pediatric intensive care. N. Engl. J. Med. 2014, 370, 107–118. [Google Scholar] [CrossRef]
- Beardsall, K.; Vanhaesebrouck, S.; Ogilvy-Stuart, A.L.; Vanhole, C.; Palmer, C.R.; van Weissenbruch, M.; Midgley, P.; Thompson, M.; Thio, M.; Cornette, L. Early insulin therapy in very-low-birth-weight infants. N. Engl. J. Med. 2008, 359, 1873–1884. [Google Scholar] [CrossRef] [PubMed]
- Gleason, C.A.; Juul, S.E. Avery’s Diseases of the Newborn e-Book; Elsevier Health Sciences: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Larchet, M.; Garabédian, M.; Bourdeau, A.; Gorski, A.-M.; Goulet, O.; Ricour, C. Calcium metabolism in children during long-term total parenteral nutrition: The influence of calcium, phosphorus, and vitamin D intakes. J. Pediatr. Gastroenterol. Nutr. 1991, 13, 367–375. [Google Scholar] [PubMed]
- Mutanen, A.; Mäkitie, O.; Pakarinen, M.P. Risk of metabolic bone disease is increased both during and after weaning off parenteral nutrition in pediatric intestinal failure. Horm. Res. Paediatr. 2013, 79, 227–235. [Google Scholar] [CrossRef] [PubMed]
- Appleman, S.S.; Kalkwarf, H.J.; Dwivedi, A.; Heubi, J.E. Bone deficits in parenteral nutrition-dependent infants and children with intestinal failure are attenuated when accounting for slower growth. J. Pediatr. Gastroenterol. Nutr. 2013, 57, 124. [Google Scholar] [CrossRef] [PubMed]
- Watrobska-Swietlikowska, D. Compatibility of maximum inorganic and organic calcium and phosphate content in neonatal parenteral solutions. Sci. Rep. 2019, 9, 10525. [Google Scholar] [CrossRef]
- Wang, H.-J.; Hsieh, Y.-T.; Liu, L.-Y.; Huang, C.-F.; Lin, S.-C.; Tsao, P.-N.; Chou, H.-C.; Yen, T.-A.; Chen, C.-Y. Use of sodium glycerophosphate in neonatal parenteral nutrition solutions to increase calcium and phosphate compatibility for preterm infants. Pediatr. Neonatol. 2020, 61, 331–337. [Google Scholar] [CrossRef]
- Hsu, P.C.; Tsao, P.N.; Chou, H.C.; Huang, H.C.; Yen, T.A.; Chen, C.Y. Sodium glycerophosphate use in parenteral nutrition improves mineral metabolism in extremely low birth weight infants. J. Pediatr. 2023, 253, 63–71. [Google Scholar] [CrossRef]
- Leaf, A. Early enteral feeding in high-risk preterm infants. Infant 2007, 3, 27–30. [Google Scholar]
- Maroulis, J.; Kalfarentzos, F. Complications of parenteral nutrition at the end of the century. Clin. Nutr. 2000, 19, 295–304. [Google Scholar] [CrossRef]
- Dorling, J.; Abbott, J.; Berrington, J.; Bosiak, B.; Bowler, U.; Boyle, E.; Embleton, N.; Hewer, O.; Johnson, S.; Juszczak, E. Controlled trial of two incremental milk-feeding rates in preterm infants. N. Engl. J. Med. 2019, 381, 1434–1443. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.-C.; Fogel, A.; Lauria, M.E.; Ferguson, K.; Smith, E.R. Fast Feed Advancement for Preterm and Low Birth Weight Infants: A Systematic Review and Meta-analysis. Pediatrics 2022, 150, e2022057092G. [Google Scholar] [CrossRef]
- Alsaied, A.; Islam, N.; Thalib, L. Global incidence of necrotizing enterocolitis: A systematic review and meta-analysis. BMC Pediatr. 2020, 20, 344. [Google Scholar] [CrossRef] [PubMed]
- Wittwer, A.; Hascoet, J.M. Impact of introducing a standardized nutrition protocol on very premature infants’ growth and morbidity. PLoS ONE 2020, 15, e0232659. [Google Scholar] [CrossRef] [PubMed]
- Faienza, M.F.; D’Amato, E.; Natale, M.P.; Grano, M.; Chiarito, M.; Brunetti, G.; D’Amato, G. Metabolic Bone Disease of Prematurity: Diagnosis and Management. Front. Pediatr. 2019, 7, 143. [Google Scholar] [CrossRef] [PubMed]
- Chan, G.; Armstrong, C.; Moyer-Mileur, L.; Hoff, C. Growth and bone mineralization in children born prematurely. J. Perinatol. 2008, 28, 619–623. [Google Scholar] [CrossRef]
- Mitchell, S.M.; Rogers, S.P.; Hicks, P.D.; Hawthorne, K.M.; Parker, B.R.; Abrams, S.A. High frequencies of elevated alkaline phosphatase activity and rickets exist in extremely low birth weight infants despite current nutritional support. BMC Pediatr. 2009, 9, 47. [Google Scholar] [CrossRef]
- Catache, M.; Leone, C. Role of plasma and urinary calcium and phosphorus measurements in early detection of phosphorus deficiency in very low birthweight infants. Acta Paediatr. 2003, 92, 76–80. [Google Scholar] [CrossRef]
- Backström, M.; Kouri, T.; Kuusela, A.L.; Sievänen, H.; Koivisto, A.M.; Ikonen, R.; Mäki, M. Bone isoenzyme of serum alkaline phosphatase and serum inorganic phosphate in metabolic bone disease of prematurity. Acta Paediatr. 2000, 89, 867–873. [Google Scholar] [CrossRef]
- Hung, Y.L.; Chen, P.C.; Jeng, S.F.; Hsieh, C.J.; Peng, S.S.F.; Yen, R.F.; Chou, H.C.; Chen, C.Y.; Tsao, P.N.; Hsieh, W.S. Serial measurements of serum alkaline phosphatase for early prediction of osteopaenia in preterm infants. J. Paediatr. Child Health 2011, 47, 134–139. [Google Scholar] [CrossRef]
- Chinoy, A.; Mughal, M.Z.; Padidela, R. Metabolic bone disease of prematurity: Causes, recognition, prevention, treatment and long-term consequences. Arch. Dis. Child.-Fetal Neonatal Ed. 2019, 104, F560–F566. [Google Scholar] [CrossRef] [PubMed]
- Kuzma-O’Reilly, B.; Duenas, M.L.; Greecher, C.; Kimberlin, L.; Mujsce, D.; Miller, D.; Walker, D.J. Evaluation, development, and implementation of potentially better practices in neonatal intensive care nutrition. Pediatrics 2003, 111, e461–e470. [Google Scholar] [CrossRef] [PubMed]
Level III Units | Level II Units | Total | |
---|---|---|---|
Number of units included in the study | |||
Units responded to questionnaire | 17 | 18 | 35 |
Bed number of neonatal intensive care unit | 15 (8–50) | 6 (0–16) | 435 |
Bed number of observation room | 25 (12–54) | 12 (5–22) | 746 |
Number of neonatologists | 5 (1–15) | 2 (1–8) | 133 |
Number of neonates per year | |||
Annual numbers of neonates in Taiwan | 163,484 | ||
Admissions number of neonates | 1300 (550–3168) | 675 (367–1400) | 38,694 (23.66%) |
Annual numbers of prematurity in Taiwan | 16,990 | ||
Admissions number of prematurity | 230 (55–800) | 72.5 (20–200) | 6697 (39.4%) |
Annual numbers of VLBW in Taiwan | 1644 | ||
Admissions number of VLBW | 45 (4–222) | 7.5 (1–50) | 1248 (75.9%) |
Total | Level III Units | Level II Units | p | ||||
---|---|---|---|---|---|---|---|
Initial fluid intake | |||||||
70–90 mL/kg/day | 32 | (91%) | 15 | (88%) | 17 | (94%) | 0.735 |
>90 mL/kg/day | 1 | (3%) | 1 | (6%) | 0 | (0%) | |
Other | 2 | (6%) | 1 | (6%) | 1 | (6%) | |
Target fluid intake | |||||||
<140 mL/kg/day | 12 | (34%) | 6 | (35%) | 6 | (33%) | 1.00 |
>140 mL/kg/day | 23 | (66%) | 11 | (35%) | 12 | (67%) | |
Initial fluid choice | |||||||
10% glucose | 25 | (71%) | 11 | (65%) | 14 | (78%) | 0.47 |
Parenteral nutrition | 10 | (29%) | 6 | (35%) | 4 | (22%) | |
Initial glucose intake | |||||||
<4 mg/kg/min | 1 | (3%) | 1 | (6%) | 0 | (0%) | 0.485 |
4–8 mg/kg/min | 34 | (97%) | 16 | (94%) | 18 | (100%) | |
Target glucose intake | |||||||
<8 mg/kg/min | 14 | (40%) | 5 | (29%) | 9 | (50%) | 0.458 |
8–10 mg/kg/min | 15 | (43%) | 8 | (47%) | 7 | (39%) | |
>10 mg/kg/min | 4 | (11%) | 2 | (12%) | 2 | (11%) | |
Clinically | 2 | (6%) | 2 | (12%) | 0 | (0%) | |
Age to initiated protein intake | |||||||
<24 h | 22 | (63%) | 13 | (76%) | 9 | (50%) | 0.376 |
0–48 h | 10 | (28%) | 3 | (18%) | 7 | (39%) | |
24–48 h | 3 | (9%) | 1 | (6%) | 2 | (11%) | |
Target protein intake for birth weight ranging from 1001 to 1500 g | |||||||
<2.5 g/kg/day | 1 | (3%) | 1 | (6%) | 0 | (0%) | 0.733 |
2.5–3.5 g/kg/day | 20 | (57%) | 10 | (59%) | 10 | (56%) | |
>3.5 g/kg/day | 14 | (40%) | 6 | (35%) | 8 | (44%) | |
Target protein intake for birth weight of <1000 g | |||||||
<2.5 g/kg/day | 0 | (0%) | 0 | (0%) | 0 | (0%) | 1.00 |
2.5–3.5 g/kg/day | 7 | (20%) | 3 | (18%) | 4 | (24%) | |
>3.5 g/kg/day | 27 | (80%) | 14 | (82%) | 13 | (76%) | |
Age of initial lipid intake | |||||||
<24 h | 4 | (11%) | 2 | (12%) | 2 | (11%) | 0.927 |
24–48 h | 22 | (63%) | 12 | (70%) | 10 | (56%) | |
48–72 h | 5 | (14%) | 2 | (12%) | 3 | (17%) | |
Clinically | 2 | (6%) | 1 | (6%) | 1 | (6%) | |
Not given | 2 | (6%) | 0 | (0%) | 2 | (11%) | |
Target lipid intake for birth weight ranging from 1001–1500 g | |||||||
2.0–2.4 g/kg/day | 4 | (12%) | 3 | (18%) | 1 | (6%) | 0.804 |
2.5–2.9 g/kg/day | 11 | (33%) | 6 | (35%) | 5 | (31%) | |
3.0–3.4 g/kg/day | 16 | (48%) | 7 | (41%) | 9 | (56%) | |
3.5–3.9 g/kg/day | 2 | (7%) | 1 | (6%) | 1 | (6%) | |
Target lipid intake for birth weight of <1000 g | |||||||
2.0–2.4 g/kg/day | 3 | (9%) | 2 | (12%) | 1 | (7%) | 1.00 |
2.5–2.9 g/kg/day | 9 | (28%) | 5 | (29%) | 4 | (27%) | |
3.0–3.4 g/kg/day | 17 | (53%) | 9 | (53%) | 8 | (53%) | |
3.5–3.9 g/kg/day | 3 | (9%) | 1 | (6%) | 2 | (13%) | |
Target Calcium intake | |||||||
20–39 mg/kg/day | 2 | (9%) | 0 | (0%) | 2 | (11%) | 0.399 |
40–59 mg/kg/day | 11 | (28%) | 4 | (24%) | 7 | (39%) | |
60–79 mg/kg/day | 15 | (53%) | 9 | (53%) | 6 | (33%) | |
>80 mg/kg/day | 3 | (9%) | 1 | (6%) | 2 | (11%) | |
Clinically | 4 | (11%) | 3 | (17%) | 1 | (6%) | |
Organic Calcium used | 27 | (77%) | 15 | (88%) | 12 | (67%) | 0.22 |
Target Phosphate intake | |||||||
<19 mg/kg/day | 2 | (6%) | 0 | (0%) | 2 | (11%) | <0.05 |
20–39 mg/kg/day | 10 | (29%) | 3 | (18%) | 7 | (39%) | |
40–59 mg/kg/day | 17 | (49%) | 11 | (64%) | 6 | (33%) | |
Clinically | 3 | (8%) | 3 | (18%) | 0 | (0%) | |
Not given | 3 | (8%) | 0 | (0%) | 3 | (17%) | |
Organic Phosphate used | 14 | (40%) | 10 | (59%) | 4 | (22%) | <0.05 |
Target Magnesium intake | |||||||
<5 mg/kg/day | 21 | (60%) | 11 | (65%) | 10 | (56%) | 0.084 |
<5 mg/kg/day | 8 | (23%) | 4 | (24%) | 4 | (22%) | |
Clinically | 6 | (17%) | 2 | (12%) | 4 | (22%) |
Once Daily | Twice a Week | Weekly | Biweekly | Monthly | Clinically | Total | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Blood sugar | 5 | (16%) | 8 | (25%) | 9 | (28%) | 0 | (0%) | 1 | (3%) | 9 | (28%) | 32 |
Electrolyte | 1 | (3%) | 12 | (38%) | 15 | (47%) | 2 | (6%) | 1 | (3%) | 1 | (3%) | 32 |
Triglyceride | 0 | (0%) | 0 | (0%) | 14 | (44%) | 9 | (28%) | 5 | (16%) | 4 | (12%) | 32 |
Liver function | 0 | (0%) | 1 | (3%) | 23 | (72%) | 5 | (16%) | 3 | (9%) | 0 | (0%) | 32 |
Coagulation | 0 | (0%) | 0 | (0%) | 2 | (6%) | 3 | (10%) | 3 | (10%) | 23 | (74%) | 31 |
Total | Level III Units | Level II Units | p | ||||
---|---|---|---|---|---|---|---|
Start of trophic feeding | |||||||
<48 h | 31 | (89%) | 16 | (94%) | 15 | (83%) | 0.602 |
48–96 h | 4 | (11%) | 1 | (6%) | 3 | (17%) | |
Colostrum as mouth care | |||||||
Yes | 22 | (63%) | 12 | (71%) | 10 | (56%) | 0.488 |
Choice of trophic feeding | |||||||
MOM only | 1 | (3%) | 1 | (6%) | 0 | (0%) | 0.16 |
MOM > DM | 21 | (60%) | 12 | (70%) | 9 | (50%) | |
MOM > PF | 13 | (37%) | 4 | (24%) | 9 | (50%) | |
Definition of full feeding | |||||||
<140 mL/kg/day | 8 | (23%) | 4 | (24%) | 4 | (22%) | 0.102 |
140–149 mL/kg/day | 4 | (11%) | 4 | (24%) | 0 | (0%) | |
150–159 mL/kg/day | 23 | (66%) | 9 | (52%) | 14 | (78%) | |
Rate of advance feeding | |||||||
1–9 mL/kg/day | 5 | (14%) | 3 | (18%) | 2 | (11%) | 0.77 |
10–19 mL/kg/day | 24 | (69%) | 12 | (70%) | 12 | (67%) | |
20–25 mL/kg/day | 6 | (17%) | 2 | (12%) | 4 | (22%) | |
Time to add HMF | |||||||
<60 mL/kg/day | 2 | (6%) | 0 | (0%) | 2 | (11%) | 0.396 |
60–80 mL/kg/day | 4 | (11%) | 1 | (6%) | 3 | (16%) | |
80–100 mL/kg/day | 15 | (43%) | 9 | (53%) | 6 | (34%) | |
100–120 mL/kg/day | 13 | (37%) | 6 | (35%) | 7 | (39%) | |
Other | 1 | (3%) | 1 | (6%) | 0 | (0%) | |
Time to stop PN | |||||||
<100 mL/kg/day | 2 | (5%) | 0 | (0%) | 2 | (11%) | 0.632 |
100–120 mL/kg/day | 17 | (49%) | 9 | (53%) | 8 | (44%) | |
120–140 mL/kg/day | 14 | (40%) | 7 | (41%) | 7 | (39%) | |
>140 mL/kg/day | 1 | (3%) | 0 | (0%) | 1 | (6%) | |
Other | 1 | (3%) | 1 | (6%) | 0 | (0%) | |
Expected weight gain | |||||||
<14 g/kg/day | 2 | (6%) | 1 | (6%) | 1 | (6%) | 0.470 |
15–24 g/kg/day | 31 | (88%) | 14 | (82%) | 17 | (94%) | |
>25 g/kg/day | 2 | (6%) | 2 | (12%) | 0 | (0%) | |
Regular vitamin D supply | |||||||
Yes | 31 | (89%) | 16 | (94%) | 15 | (83%) | 0.602 |
Establish feeding protocol | |||||||
Yes | 20 | (57%) | 12 | (70%) | 8 | (44%) | 0.175 |
Weekly | Biweekly | Monthly | Bimonthly | Not recorded | Clinically | Total | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Alkaline Phosphatase | ||||||||||||
0 | (0%) | 16 | (57%) | 11 | (39%) | 1 | (3.5%) | 0 | (0%) | 0 | (0%) | 28 |
Serum calcium/phosphate | ||||||||||||
3 | (11%) | 16 | (57%) | 8 | (29%) | 1 | (3.5%) | 0 | (0%) | 0 | (0%) | 28 |
25-OH Vitamin D | ||||||||||||
0 | (0%) | 1 | (4%) | 5 | (18.5%) | 1 | (4%) | 15 | (56%) | 5 | (18.5%) | 27 |
Intact parathyroid hormone | ||||||||||||
0 | (0%) | 1 | (3.5%) | 5 | (18%) | 0 | (0%) | 17 | (60%) | 5 | (18%) | 28 |
Urine calcium/phosphate | ||||||||||||
0 | (0%) | 1 | (3.5%) | 4 | (14%) | 0 | (0%) | 19 | (68%) | 4 | (14%) | 28 |
Radiography | ||||||||||||
0 | (0%) | 6 | (21%) | 10 | (36%) | 3 | (11%) | 5 | (18%) | 4 | (14%) | 28 |
Bone Mass Measurement | ||||||||||||
0 | (0%) | 1 | (3.5%) | 1 | (3.5%) | 0 | (0%) | 24 | (86%) | 2 | (7%) | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ting, C.-S.; Tsao, P.-N.; Chou, H.-C.; Yen, T.-A.; Huang, H.-C.; Chen, C.-Y. Adherence to Nutritional Practice Guideline in Premature Infants: A Nationwide Survey in Taiwan. Nutrients 2024, 16, 3181. https://doi.org/10.3390/nu16183181
Ting C-S, Tsao P-N, Chou H-C, Yen T-A, Huang H-C, Chen C-Y. Adherence to Nutritional Practice Guideline in Premature Infants: A Nationwide Survey in Taiwan. Nutrients. 2024; 16(18):3181. https://doi.org/10.3390/nu16183181
Chicago/Turabian StyleTing, Chi-Shiuan, Po-Nien Tsao, Hung-Chieh Chou, Ting-An Yen, Hsin-Chung Huang, and Chien-Yi Chen. 2024. "Adherence to Nutritional Practice Guideline in Premature Infants: A Nationwide Survey in Taiwan" Nutrients 16, no. 18: 3181. https://doi.org/10.3390/nu16183181
APA StyleTing, C. -S., Tsao, P. -N., Chou, H. -C., Yen, T. -A., Huang, H. -C., & Chen, C. -Y. (2024). Adherence to Nutritional Practice Guideline in Premature Infants: A Nationwide Survey in Taiwan. Nutrients, 16(18), 3181. https://doi.org/10.3390/nu16183181