Chronic Use of Artificial Sweeteners: Pros and Cons
Abstract
:1. Introduction
2. Methodology
3. Effect of Sweeteners on Health
3.1. Beneficial Effects of Artificial Sweeteners
3.1.1. The Use of Artificial Sweeteners in the Prevention of Tooth Decay
3.1.2. The Effect of Sweeteners on Weight Reduction and Obesity Management
3.1.3. The Role of NNSs on the Prevention of Metabolic and Cardiovascular Diseases
3.1.4. The Role of Sweeteners in Prevention of Reactive Hypoglycemia in T2DM
3.1.5. The Role of AS in Flavor Enhancement
4. Unfavorable Effects of Sweeteners
4.1. NNS Effect on Insulin Sensitivity in Healthy Individuals and in Patients with T1DM and T2DM
4.2. NNSs Use and Gut Microbiota
4.3. NNS Use and Cancer
4.4. Other Unfavorable Effects of NNSs
5. Pathophysiology of Unfavorable Effects of Sweeteners
5.1. Artificial Sweeteners and Nonalcoholic Fatty Liver Disease
5.2. Artificial Sweeteners and Insulin Resistance
5.3. Artificial Sweeteners, Gut Microbiota, and Obesity
5.4. Artificial Sweeteners and Cancer
6. Recommendations
- The daily carbohydrate consumption should be less than 10% of the total caloric intake, following a balanced and healthy diet.
- Infants less than 2 years of age should avoid the consumption of sweeteners.
- Children who suffer from phenylketonuria must avoid the consumption of aspartame and neotame.
- Children with type 1 or type 2 diabetes or obesity may benefit from the use of non-nutritive sweeteners, but always as a part of a moderate and balanced diet and healthy lifestyle.
- The use of NNSs in children has been associated with reduced dental caries development.
- It is important for pediatricians and healthcare professionals to be adequately trained in the use of sweeteners, to be competent to advise parents and children on the appropriate sweetener selection based on its proprieties.
- More high-quality research is needed for the use of NNSs in childhood, focusing on the appropriate age of exposure and taste preferences, neurodevelopment, and impact on the microbiome and its association to obesity, metabolic syndrome, and diabetes.
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilk, K.; Gupta, M. Sugar Substitutes: Mechanism, Availability, Current Use and Safety Concerns—An Update. Open Access Maced. J. Med. Sci. 2018, 6, 1888–1894. [Google Scholar] [CrossRef]
- Fleming-Milici, F.; Phaneuf, L.; Harris, J.L. Marketing of Sugar-Sweetened Children’s Drinks and Parents’ Misperceptions About Benefits for Young Children. Matern. Child Nutr. 2022, 18, e13338. [Google Scholar] [CrossRef] [PubMed]
- Liauchonak, I.; Qorri, B.; Dawoud, F.; Riat, Y.; Szewczuk, M.R. Non-nutritive Sweeteners and Their Implications on the Development of Metabolic Syndrome. Nutrients 2019, 11, 644. [Google Scholar] [CrossRef] [PubMed]
- Shah, S.I.A.; Nawaz, H.; Nadeem, N. Historical and Current Perspectives on the Human Consumption of Non-Nutritive Sweeteners (NNS). J. Akhtar Saeed Med. Dent. Coll. 2023, 5, 243–249. [Google Scholar] [CrossRef]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Wilk, K.; Korytek, W.; Pelczyńska, M.; Moszak, M.; Bogdański, P. The Effect of Artificial Sweeteners Use on Sweet Taste Perception and Weight Loss Efficacy: A Review. Nutrients 2022, 14, 1261. [Google Scholar] [CrossRef]
- Patil, S.; Jalal, R.A.; Albar, D.H.; Bansal, S.J.; Patil, S.; Nagaral, S.; Finch, J.; Bernard, C.A.; Baeshen, H.A.; Awan, K.H. Intake of Artificial Sweeteners by Children: Boon or Bane? J. Contemp. Dent. Pract. 2023, 24, 137–145. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Raposo, A.; Aranceta-Bartrina, J.; Varela-Moreiras, G.; Logue, C.; Laviada, H.; Socolovsky, S.; Pérez-Rodrigo, C.; Aldrete-Velasco, J.A.; Meneses Sierra, E.; et al. Ibero–American Consensus on Low- and No-Calorie Sweeteners: Safety, Nutritional Aspects and Benefits in Food and Beverages. Nutrients 2018, 10, 818. [Google Scholar] [CrossRef]
- Zahid, A.; Davey, C.; Reicks, M. Beverage Intake Among Children: Associations with Parent and Home-Related Factors. Int. J. Environ. Res. Public Health 2017, 14, 929. [Google Scholar] [CrossRef]
- Sylvetsky, A.; Rother, K.I.; Brown, R. Artificial Sweetener Use Among Children: Epidemiology, Recommendations, Metabolic Outcomes, and Future Directions. Pediatr. Clin. N. Am. 2011, 58, 1467–1480. [Google Scholar] [CrossRef]
- Center for Food Safety and Applied Nutrition. Food Additives & Petitions; U.S. Food and Drug Administration. Available online: https://www.fda.gov/food/food-ingredients-packaging/food-additives-petitions (accessed on 4 October 2022).
- Ciuffreda, E.; Veronica, A.; Cifelli, A.; Foti, R.; Forte, R.I.; Graziani, F.; Longo, A.G.; Longo, A.; Maglia, V.; Ricciardi, E.F.; et al. European Food Safety Authority (EFSA). Sweeteners. Available online: https://www.efsa.europa.eu/en/topics/topic/sweeteners (accessed on 1 September 2024).
- Martyn, D.M.; Nugent, A.P.; McNulty, B.A.; O’Reilly, E.; Tlustos, C.; Walton, J.; Flynn, A.; Gibney, M.J. Dietary Intake of Four Artificial Sweeteners by Irish Pre-school Children. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2016, 33, 592–602. [Google Scholar] [CrossRef] [PubMed]
- Cagnasso, L.L.C.; Valencia, M. Edulcorantes no Nutritivos en Bebidas sin Alcohol: Estimación de la Ingesta en Niños y Adolescents. Arch. Argent. Pediatr. 2007, 105, 517–521. [Google Scholar]
- European Food Safety Authority. Refined Exposure Assessment for Ponceau 4R (E 124). EFSA J. 2015, 13, 4073. [Google Scholar]
- Chowaniec, J.; Hicks, R.M. Response of the Rat to Saccharin with Particular Reference to the Urinary Bladder. Br. J. Cancer 1979, 39, 355–375. [Google Scholar] [CrossRef] [PubMed]
- Angelin, M.; Kumar, J.; Vajravelu, L.K.; Satheesan, A.; Chaithanya, V.; Murugesan, R. Artificial Sweeteners and Their Implications in Diabetes: A Review. Front. Nutr. 2024, 11, 1411560. [Google Scholar] [CrossRef]
- Daher, M.I.; Matta, J.M.; Nour, A.M.A. Non-nutritive Sweeteners and Type 2 Diabetes: Should We Ring the Bell? Diabetes Res. Clin. Pract. 2019, 155, 107786. [Google Scholar] [CrossRef]
- Li, B.; Shi, L.; Feng, M.; Fan, W.; Lu, W.; Wang, Y.; He, Z.; Liu, T. An Investigation of the Toxicity and Mechanisms of Food Additives Based on Network Toxicology and GEO Databases: A Case Study of Aspartame. Food Anal. Methods 2024, 17, 1057–1072. [Google Scholar] [CrossRef]
- Mathur, K.; Agrawal, R.K.; Nagpure, S.; Deshpande, D. Effect of Artificial Sweeteners on Insulin Resistance Among Type-2 Diabetes Mellitus Patients. J. Fam. Med. Prim. Care 2020, 9, 69–71. [Google Scholar] [CrossRef]
- Kakleas, K.; Christodouli, F.; Karavanaki, K. Nonalcoholic Fatty Liver Disease, Insulin Resistance, and Sweeteners: A Literature Review. Expert Rev. Endocrinol. Metab. 2020, 15, 83–93. [Google Scholar] [CrossRef]
- Staszczyk, M.; Jurczak, A.; Magacz, M.; Kościelniak, D.; Gregorczyk-Maga, I.; Jamka-Kasprzyk, M.; Kępisty, M.; Kołodziej, I.; Kukurba-Setkowicz, M.; Krzyściak, W. Effect of Polyols and Selected Dental Materials on the Ability to Create a Cariogenic Biofilm–On Children Caries-Associated Streptococcus mutans Isolates. Int. J. Environ. Res. Public Health 2020, 17, 3720. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, J.; Li, Z.; Xi, R.; Li, Y.; Peng, X.; Xu, X.; Zheng, X.; Zhou, X. The Effects of Nonnutritive Sweeteners on the Cariogenic Potential of Oral Microbiome. BioMed Res. Int. 2021, 2021, 9967035. [Google Scholar] [CrossRef]
- Roberts, M.W.; Wright, J.T. Nonnutritive, Low Caloric Substitutes for Food Sugars: Clinical Implications for Addressing the Incidence of Dental Caries and Overweight/Obesity. Int. J. Dent. 2012, 2012, 625701. [Google Scholar] [CrossRef]
- Augustinho do Nascimento, C.; Kim, R.R.; Ferrari, C.R.; de Souza, B.M.; Braga, A.S.; Magalhães, A.C. Effect of Sweetener Containing Stevia on the Development of Dental Caries in Enamel and Dentin Under a Microcosm Biofilm Model. J. Dent. 2021, 115, 103835. [Google Scholar] [CrossRef]
- Luo, B.W.; Liang, N.L.; Townsend, J.A.; Lo, E.C.M.; Chu, C.H.; Duangthip, D. Sugar Substitutes on Caries Prevention in Permanent Teeth Among Children and Adolescents: A Systematic Review and Meta-analysis. J. Dent. 2024, 146, 105069. [Google Scholar] [CrossRef]
- Katan, M.B.; de Ruyter, J.C.; Kuijper, L.D.J.; Chow, C.C.; Hall, K.D.; Olthof, M.R. Impact of Masked Replacement of Sugar-Sweetened with Sugar-Free Beverages on Body Weight Increases with Initial BMI: Secondary Analysis of Data from an 18 Month Double-Blind Trial in Children. PLoS ONE 2016, 11, e0159771. [Google Scholar] [CrossRef]
- Toews, I.; Lohner, S.; Küllenberg de Gaudry, D.; Sommer, H.; Meerpohl, J.J. Association Between Intake of Non-sugar Sweeteners and Health Outcomes: Systematic Review and Meta-analyses of Randomised and Non-randomised Controlled Trials and Observational Studies. BMJ 2019, 364, k4718. [Google Scholar] [CrossRef]
- Ebbeling, C.B.; Feldman, H.A.; Steltz, S.K.; Quinn, N.L.; Robinson, L.M.; Ludwig, D.S. Effects of Sugar-Sweetened, Artificially Sweetened, and Unsweetened Beverages on Cardiometabolic Risk Factors, Body Composition, and Sweet Taste Preference: A Randomized Controlled Trial. J. Am. Heart Assoc. 2020, 9, e015668. [Google Scholar] [CrossRef]
- Shum, B.; Georgia, S. The Effects of Non-nutritive Sweetener Consumption in the Pediatric Populations: What We Know, What We Don’t, and What We Need to Learn. Front. Endocrinol. 2021, 12, 625415. [Google Scholar] [CrossRef]
- Freswick, P.N. Artificial Sweetened Beverages and Pediatric Obesity: The Controversy Continues. Children 2014, 1, 31–39. [Google Scholar] [CrossRef]
- Malik, V.S.; Pan, A.; Willett, W.C.; Hu, F.B. Sugar-Sweetened Beverages and Weight Gain in Children and Adults: A Systematic Review and Meta-analysis. Am. J. Clin. Nutr. 2013, 98, 1084–1102. [Google Scholar] [CrossRef]
- Fowler, S.P.; Williams, K.; Resendez, R.G.; Hunt, K.J.; Hazuda, H.P.; Stern, M.P. Fueling the Obesity Epidemic? Artificially Sweetened Beverage Use and Long-Term Weight Gain. Obesity 2008, 16, 1894–1900. [Google Scholar] [CrossRef]
- World Health Organization. WHO Advises Not to Use Nonsugar Sweeteners for Weight Control in Newly Released Guideline. Available online: https://www.who.int/news/item/15-05-2023-who-advises-not-to-use-non-sugar-sweeteners-for-weight-control-in-newly-released-guideline (accessed on 15 May 2023).
- Simon, B.R.; Parlee, S.D.; Learman, B.S.; Mori, H.; Scheller, E.L.; Cawthorn, W.P.; Ning, X.; Gallagher, K.; Tyrberg, B.; Assadi-Porter, F.M.; et al. Artificial Sweeteners Stimulate Adipogenesis and Suppress Lipolysis Independently of Sweet Taste Receptors. J. Biol. Chem. 2013, 288, 32475–32489. [Google Scholar] [CrossRef]
- Lohner, S.; Toews, I.; Meerpohl, J.J. Health Outcomes of Non-nutritive Sweeteners: Analysis of the Research Landscape. Nutr. J. 2017, 16, 55. [Google Scholar] [CrossRef]
- Nguyen, M.; Jarvis, S.E.; Tinajero, M.G.; Yu, J.; Chiavaroli, L.; Mejia, S.B.; Khan, T.A.; Tobias, D.K.; Willett, W.C.; Hu, F.B.; et al. Sugar-Sweetened Beverage Consumption and Weight Gain in Children and Adults: A Systematic Review and Meta-analysis of Prospective Cohort Studies and Randomized Controlled Trials. Am. J. Clin. Nutr. 2023, 117, 160–174. [Google Scholar] [CrossRef]
- Reid, A.E.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Abou-Setta, A.M.; Fiander, M.; MacKay, D.S.; McGavock, J.; et al. Early Exposure to Nonnutritive Sweeteners and Long-Term Metabolic Health: A Systematic Review. Pediatrics 2016, 137, e20153603. [Google Scholar] [CrossRef]
- Pandurangan, M.; Park, J.; Kim, E. Aspartame Downregulates 3T3-L1 Differentiation. In Vitro Cell. Dev. Biol. Anim. 2014, 50, 851–857. [Google Scholar] [CrossRef]
- Grosso, G.; Bella, F.; Godos, J.; Sciacca, S.; Del Rio, D.; Ray, S.; Galvano, F.; Giovannucci, E.L. Possible Role of Diet in Cancer: Systematic Review and Multiple Meta-analyses of Dietary Patterns, Lifestyle Factors, and Cancer Risk. Nutr. Rev. 2017, 75, 405–419. [Google Scholar] [CrossRef]
- Pan, A.; Lin, X.; Hemler, E.; Hu, F.B. Diet and Cardiovascular Disease: Advances and Challenges in Population-Based Studies. Cell Metab. 2018, 27, 489–496. [Google Scholar] [CrossRef]
- Ley, S.H.; Hamdy, O.; Mohan, V.; Hu, F.B. Prevention and Management of Type 2 Diabetes: Dietary Components and Nutritional Strategies. Lancet 2014, 383, 1999–2007. [Google Scholar] [CrossRef]
- Mokdad, A.H.; Ballestros, K.; Echko, M.; Glenn, S.; Olsen, H.E.; Mullany, E.; Lee, A.; Khan, A.R.; Ahmadi, A.; Ferrari, A.J.; et al. The State of US Health, 1990–2016: Burden of Diseases, Injuries, and Risk Factors among US States. JAMA 2018, 319, 1444–1472. [Google Scholar] [CrossRef]
- Afshin, A.; Sur, P.J.; Fay, K.A.; Cornaby, L.; Ferrara, G.; Salama, J.S.; Mullany, E.C.; Abate, K.H.; Abbafati, C.; Abebe, Z.; et al. Health Effects of Dietary Risks in 195 Countries, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Richelsen, B. Sugar-Sweetened Beverages and Cardio-Metabolic Disease Risks. Curr. Opin. Clin. Nutr. Metab. Care 2013, 16, 478–484. [Google Scholar] [CrossRef]
- Azaïs-Braesco, V.; Sluik, D.; Maillot, M.; Kok, F.; Moreno, L.A. A Review of Total & Added Sugar Intakes and Dietary Sources in Europe. Nutr. J. 2017, 16, 6. [Google Scholar] [CrossRef]
- Azad, M.B.; Abou-Setta, A.M.; Chauhan, B.F.; Rabbani, R.; Lys, J.; Copstein, L.; Mann, A.; Jeyaraman, M.M.; Reid, A.E.; Fiander, M.; et al. Nonnutritive Sweeteners and Cardiometabolic Health: A Systematic Review and Meta-analysis of Randomized Controlled Trials and Prospective Cohort Studies. CMAJ Can. Med. Assoc. J. 2017, 189, E929–E939. [Google Scholar] [CrossRef]
- Rogers, P.J.; Hogenkamp, P.S.; de Graaf, C.; Higgs, S.; Lluch, A.; Ness, A.R.; Penfold, C.; Perry, R.; Putz, P.; Yeomans, M.R.; et al. Does Low-Energy Sweetener Consumption Affect Energy Intake and Body Weight? A Systematic Review, Including Meta-analyses, of the Evidence from Human and Animal Studies. Int. J. Obes. 2016, 40, 381–394. [Google Scholar] [CrossRef]
- Pang, M.D.; Goossens, G.H.; Blaak, E.E. The Impact of Artificial Sweeteners on Body Weight Control and Glucose Homeostasis. Front. Nutr. 2020, 7, 598340. [Google Scholar] [CrossRef]
- Dhillon, J.; Lee, J.Y.; Mattes, R.D. The Cephalic Phase Insulin Response to Nutritive and Low-Calorie Sweeteners in Solid and Beverage Form. Physiol. Behav. 2017, 181, 100–109. [Google Scholar] [CrossRef]
- Langhans, W.; Watts, A.G.; Spector, A.C. The Elusive Cephalic Phase Insulin Response: Triggers, Mechanisms, and Functions. Physiol. Rev. 2023, 103, 1423–1485. [Google Scholar] [CrossRef]
- Chan, C.B.; Hashemi, Z.; Subhan, F.B. The Impact of Low and No-Caloric Sweeteners on Glucose Absorption, Incretin Secretion, and Glucose Tolerance. Appl. Physiol. Nutr. Metab. 2017, 42, 793–801. [Google Scholar] [CrossRef]
- Posta, E.; Fekete, I.; Gyarmati, E.; Stündl, L.; Zold, E.; Barta, Z. The Effects of Artificial Sweeteners on Intestinal Nutrient-Sensing Receptors: Dr. Jekyll or Mr. Hyde? Life 2023, 14, 10. [Google Scholar] [CrossRef]
- Malta, A.; Saavedra, L.P.J.; Raposo, S.R.; Lopes, G.K.G.; Fernandes, M.D.; Barbosa, L.F.; Almeida, D.L.; Mathias, P.C.F. Impact of Dietary Sugars on β-Cell Function. Diabetology 2023, 4, 178–183. [Google Scholar] [CrossRef]
- Steinert, R.E.; Frey, F.; Töpfer, A.; Drewe, J.; Beglinger, C. Effects of Carbohydrate Sugars and Artificial Sweeteners on Appetite and the Secretion of Gastrointestinal Satiety Peptides. Br. J. Nutr. 2011, 105, 1320–1328. [Google Scholar] [CrossRef]
- Rathaus, M.; Azem, L.; Livne, R.; Ron, S.; Ron, I.; Hadar, R.; Efroni, G.; Amir, A.; Braun, T.; Haberman, Y.; et al. Long-Term Metabolic Effects of Non-Nutritive Sweeteners. Moran Rathaus; Loziana. Mol. Metab. 2024, 88, 101985. [Google Scholar] [CrossRef]
- Nobs, S.P.; Elinav, E. Nonnutritive Sweeteners and Glucose Intolerance: Where Do We Go from Here? J. Clin. Investig. 2023, 133, e171057. [Google Scholar] [CrossRef]
- Silva, A.P.S.; Brasiel, P.G.; Luquetti, S.C.P.D. Non-nutritive Sweeteners and Their Contradictory Effect on the Control of Energetic and Glycemic Homeostasis. J. Endocrinol. Metab. 2018, 8, 119–125. [Google Scholar] [CrossRef]
- Laffitte, A.; Neiers, F.; Briand, L. Functional Roles of the Sweet Taste Receptor in Oral and Extraoral Tissues. Curr. Opin. Clin. Nutr. Metab. Care 2014, 17, 379–385. [Google Scholar] [CrossRef]
- Munger, S.D. A Bitter Tale of Sweet Synergy. Cell Chem. Biol. 2017, 24, 1191–1192. [Google Scholar] [CrossRef]
- Davidson, T.L.; Martin, A.A.; Clark, K.; Swithers, S.E. Intake of High-Intensity Sweeteners Alters the Ability of Sweet Taste to Signal Caloric Consequences: Implications for the Learned Control of Energy and Body Weight Regulation. Q. J. Exp. Psychol. 2011, 64, 1430–1441. [Google Scholar] [CrossRef]
- Anton, S.D.; Martin, C.K.; Han, H.; Coulon, S.; Cefalu, W.T.; Geiselman, P.; Williamson, D.A. Effects of Stevia, Aspartame, and Sucrose on Food Intake, Satiety, and Postprandial Glucose and Insulin Levels. Appetite 2010, 55, 37–43. [Google Scholar] [CrossRef]
- Fagherazzi, G.; Vilier, A.; Saes Sartorelli, D.; Lajous, M.; Balkau, B.; Clavel-Chapelon, F. Consumption of Artificially and Sugar-Sweetened Beverages and Incident Type 2 Diabetes in the Etude Epidemiologique Aupres Des Femmes de la Mutuelle Generale de l’Education Nationale-European Prospective Investigation into Cancer and Nutrition Cohort. Am. J. Clin. Nutr. 2013, 97, 517–523. [Google Scholar] [CrossRef]
- Iizuka, K. Is the Use of Artificial Sweeteners Beneficial for Patients with Diabetes Mellitus? The Advantages and Disadvantages of Artificial Sweeteners. Nutrients 2022, 14, 4446. [Google Scholar] [CrossRef]
- Czarnecka, K.; Pilarz, A.; Rogut, A.; Maj, P.; Szymańska, J.; Olejnik, Ł.; Szymański, P. Aspartame—True or False? Narrative Review of Safety Analysis of General Use in Products. Nutrients 2021, 13, 1957. [Google Scholar] [CrossRef] [PubMed]
- Nettleton, J.A.; Lutsey, P.L.; Wang, Y.; Lima, J.A.; Michos, E.D.; Jacobs, D.R. Diet Soda Intake and Risk of Incident Metabolic Syndrome and Type 2 Diabetes in the Multi-ethnic Study of Atherosclerosis (MESA). Diabetes Care 2009, 32, 688–694. [Google Scholar] [CrossRef]
- Debras, C.; Deschasaux-Tanguy, M.; Chazelas, E.; Sellem, L.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Agaësse, C.; De Sa, A.; Lutchia, R.; et al. Artificial Sweeteners and Risk of Type 2 Diabetes in the Prospective NutriNet-Santé Cohort. Diabetes Care 2023, 46, 1681–1690. [Google Scholar] [CrossRef]
- Wolraich, M.L.; Lindgren, S.D.; Stumbo, P.J.; Stegink, L.D.; Appelbaum, M.I.; Kiritsy, M.C. Effects of Diets High in Sucrose or Aspartame on the Behavior and Cognitive Performance of Children. N. Engl. J. Med. 1994, 330, 301–307. [Google Scholar] [CrossRef]
- Lochner, S.; Kuellenberg de Gaudry, D.; Toews, I.; Ferenci, T.; Meerpohl, J.J. Nonnutritive Sweeteners for Diabetes Mellitus. Cochrane Database Syst. Rev. 2020, 5, CD012885. [Google Scholar]
- Nadolsky, K.Z. COUNTERPOINT: Artificial Sweeteners for Obesity-Better than Sugary Alternatives; Potentially a Solution. Endocr. Pract. 2021, 27, 1056–1061. [Google Scholar] [CrossRef]
- Ajami, M.; Seyfi, M.; Abdollah Pouri Hosseini, F.; Naseri, P.; Velayati, A.; Mahmoudnia, F.; Zahedirad, M.; Hajifaraji, M. Effects of Stevia on Glycemic and Lipid Profile of Type 2 Diabetic Patients: A Randomized Controlled Trial. Avicenna J. Phytomed. 2020, 10, 118–127. [Google Scholar]
- Han, J.-Y.; Park, M.; Lee, H.-J. Stevia (Stevia Rebaudiana) Extract Ameliorates Insulin Resistance by Regulating Mitochondrial Function and Oxidative Stress in the Skeletal Muscle of Db/Db Mice. BMC Complement. Med. Ther. 2023, 23, 264. [Google Scholar] [CrossRef]
- Shaik Mohamed Sayed, U.F.; Moshawih, S.; Goh, H.P.; Kifli, N.; Gupta, G.; Singh, S.K.; Chellappan, D.K.; Dua, K.; Hermansyah, A.; Ser, H.L.; et al. Natural Products as Novel Anti-Obesity Agents: Insights into Mechanisms of Action and Potential for Therapeutic Management. Front. Pharmacol. 2023, 14, 1182937. [Google Scholar] [CrossRef]
- Ruiz-Ojeda, F.J.; Plaza-Díaz, J.; Sáez-Lara, M.J.; Gil, A. Effects of Sweeteners on the Gut Microbiota: A Review of Experimental Studies and Clinical Trials. Adv. Nutr. 2019, 10 (Suppl. S1), S31–S48. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Korem, T.; Zeevi, D.; Zilberman-Schapira, G.; Thaiss, C.A.; Maza, O.; Israeli, D.; Zmora, N.; Gilad, S.; Weinberger, A.; et al. Artificial Sweeteners Induce Glucose Intolerance by Altering the Gut Microbiota. Nature 2014, 514, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, P.; Wang, Y.; Cui, W.; Li, D. The Relationship Between the Use of Artificial Sweeteners and Cancer: A Meta-analysis of Case–Control Studies. Food Sci. Nutr. 2021, 9, 4589–4597. [Google Scholar] [CrossRef]
- Schernhammer, E.S.; Bertrand, K.A.; Birmann, B.M.; Sampson, L.; Willett, W.C.; Feskanich, D. Consumption of Artificial Sweetener– and Sugar-Containing Soda and Risk of Lymphoma and Leukemia in Men and Women. Am. J. Clin. Nutr. 2012, 96, 1419–1428. [Google Scholar] [CrossRef]
- Al-Ishaq, R.K.; Kubatka, P.; Büsselberg, D. Sweeteners and the Gut Microbiome: Effects on Gastrointestinal Cancers. Nutrients 2023, 15, 3675. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization; Rios-Leyvraz, M.; Montez, J. Health Effects of the Use of Nonsugar Sweeteners: A Systematic Review and Meta-Analysis; World Health Organization: Geneva, Switzerland, 2022.
- Debras, C.; Chazelas, E.; Srour, B.; Druesne-Pecollo, N.; Esseddik, Y.; Szabo de Edelenyi, F.; Agaësse, C.; De Sa, A.; Lutchia, R.; Gigandet, S.; et al. Artificial Sweeteners and Cancer Risk: Results from the NutriNet-Santé Population-Based Cohort Study. PLoS Med. 2022, 19, e1003950. [Google Scholar] [CrossRef]
- Abhilash, M.; Paul, M.V.S.; Varghese, M.V.; Nair, R.H. Effect of Long Term Intake of Aspartame on Antioxidant Defense Status in Liver. Food Chem. Toxicol. 2011, 49, 1203–1207. [Google Scholar] [CrossRef]
- Azeez, O.H.; Alkass, S.Y.; Persike, D.S. Long-Term Saccharin Consumption and Increased Risk of Obesity, Diabetes, Hepatic Dysfunction, and Renal Impairment in Rats. Medicina 2019, 55, 681. [Google Scholar] [CrossRef]
- Alkafafy, M.E.-S.; Ibrahim, Z.S.; Ahmed, M.M.; El-Shazly, S.A. Impact of Aspartame and Saccharin on the Rat Liver: Biochemical, Molecular, and Histological Approach. Int. J. Immunopathol. Pharmacol. 2015, 28, 247–255. [Google Scholar] [CrossRef]
- Emamat, H.; Ghalandari, H.; Tangestani, H.; Abdollahi, A.; Hekmatdoost, A. Artificial Sweeteners Are Related to Non-alcoholic Fatty Liver Disease: Microbiota Dysbiosis as a Novel Potential Mechanism. EXCLI J. 2020, 19, 620–626. [Google Scholar] [CrossRef]
- Spencer, M.; Gupta, A.; Dam, L.V.; Shannon, C.; Menees, S.; Chey, W.D. Artificial Sweeteners: A Systematic Review and Primer for Gastroenterologists. J. Neurogastroenterol. Motil. 2016, 22, 168–180. [Google Scholar] [CrossRef] [PubMed]
- Ghusn, W.; Naik, R.; Yibirin, M. The Impact of Artificial Sweeteners on Human Health and Cancer Association: A Comprehensive Clinical Review. Cureus 2023, 15, e51299. [Google Scholar] [CrossRef] [PubMed]
- Kampmann, U.; Knorr, S.; Fuglsang, J.; Ovesen, P. Determinants of Maternal Insulin Resistance During Pregnancy: An Updated Overview. J. Diabetes Res. 2019, 2019, 5320156. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.; Sivak, A.; Davenport, M.H. Effects of Prenatal Artificial Sweeteners Consumption on Birth Outcomes: A Systematic Review and Meta-analysis. Public Health Nutr. 2021, 24, 5024–5033. [Google Scholar] [CrossRef] [PubMed]
- Conway, M.C.; Cawley, S.; Geraghty, A.A.; Walsh, N.M.; O’Brien, E.C.; McAuliffe, F.M. The Consumption of Low-Calorie Sweetener Containing Foods During Pregnancy: Results from the ROLO Study. Eur. J. Clin. Nutr. 2022, 76, 227–234. [Google Scholar] [CrossRef]
- Hedrick, V.E.; Nieto, C.; Grilo, M.F.; Sylvetsky, A.C. Non-sugar Sweeteners: Helpful or Harmful? The Challenge of Developing Intake Recommendations with the Available Research. BMJ 2023, 383, e075293. [Google Scholar] [CrossRef]
- Ipsen, D.H.; Lykkesfeldt, J.; Tveden-Nyborg, P. Molecular Mechanisms of Hepatic Lipid Accumulation in Non-alcoholic Fatty Liver Disease. Cell. Mol. Life Sci. 2018, 75, 3313–3327. [Google Scholar] [CrossRef]
- Bian, X.; Chi, L.; Gao, B.; Tu, P.; Ru, H.; Lu, K. Gut Microbiome Response to Sucralose and Its Potential Role in Inducing Liver Inflammation in Mice. Front. Physiol. 2017, 8, 487. [Google Scholar] [CrossRef]
- Tseng, T.-S.; Lin, W.-T.; Ting, P.-S.; Huang, C.-K.; Chen, P.-H.; Gonzalez, G.V.; Lin, H.-Y. Sugar-Sweetened Beverages and Artificially Sweetened Beverages Consumption and the Risk of Nonalcoholic Fatty Liver (NAFLD) and Nonalcoholic Steatohepatitis (NASH). Nutrients 2023, 15, 3997. [Google Scholar] [CrossRef]
- Naomi, N.D.; Ngo, J.; Brouwer-Brolsma, E.M.; Buso, M.E.C.; Soedamah-Muthu, S.S.; Pérez-Rodrigo, C.; Harrold, J.A.; Halford, J.C.G.; Raben, A.; Geleijnse, J.M.; et al. Sugar-Sweetened Beverages, Low/No-Calorie Beverages, Fruit Juice and Non-alcoholic Fatty Liver Disease Defined by Fatty Liver Index: The SWEET Project. Nutr. Diabetes 2023, 13, 6. [Google Scholar] [CrossRef]
- Wijarnpreecha, K.; Thongprayoon, C.; Edmonds, P.J.; Cheungpasitporn, W. Associations of Sugar- and Artificially Sweetened Soda with Nonalcoholic Fatty Liver Disease: A Systematic Review and Meta-analysis. QJM 2016, 109, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Dhurandhar, D.; Bharihoke, V.; Kalra, S. A Histological Assessment of Effects of Sucralose on Liver of Albino Rats. Morphologie 2018, 102, 197–204. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tapia, M.; Miller, A.W.; Granados-Portillo, O.; Tovar, A.R.; Torres, N. The Development of Metabolic Endotoxemia Is Dependent on the Type of Sweetener and the Presence of Saturated Fat in the Diet. Gut Microbes 2020, 12, 1801301. [Google Scholar] [CrossRef]
- Ghemrawi, R.; Battaglia-Hsu, S.-F.; Arnold, C. Endoplasmic Reticulum Stress in Metabolic Disorders. Cells 2018, 7, 63. [Google Scholar] [CrossRef]
- Ashraf, N.U.; Sheikh, T.A. Endoplasmic Reticulum Stress and Oxidative Stress in the Pathogenesis of Non-alcoholic Fatty Liver Disease. Free Radic. Res. 2015, 49, 1405–1418. [Google Scholar] [CrossRef] [PubMed]
- Jo, H.; Choe, S.S.; Shin, K.C.; Jang, H.; Lee, J.H.; Seong, J.K.; Back, S.H.; Kim, J.B. Endoplasmic Reticulum Stress Induces Hepatic Steatosis via Increased Expression of the Hepatic Very Low-Density Lipoprotein Receptor. Hepatology 2013, 57, 1366–1377. [Google Scholar] [CrossRef]
- Lee, S.; Kim, S.; Hwang, S.; Cherrington, N.J.; Ryu, D.-Y. Dysregulated Expression of Proteins Associated with ER Stress, Autophagy and Apoptosis in Tissues from Nonalcoholic Fatty Liver Disease. Oncotarget 2017, 8, 63370–63381. [Google Scholar] [CrossRef]
- Del Pozo, S.; Gómez-Martínez, S.; Díaz, L.E.; Nova, E.; Urrialde, R.; Marcos, A. Potential Effects of Sucralose and Saccharin on Gut Microbiota: A Review. Nutrients 2022, 14, 1682. [Google Scholar] [CrossRef]
- Park, M.; Sharma, A.; Baek, H.; Han, J.-Y.; Yu, J.; Lee, H.-J. Stevia and Stevioside Attenuate Liver Steatosis Through PPARα-Mediated Lipophagy in Db/Db Mice Hepatocytes. Antioxidants 2022, 11, 2496. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Liu, L.; Hong, F.; Zhao, H.; Chen, L.; Zhang, J.; Jiang, Y.; Zhang, J.; Luo, P. Dose–Response Association Between Sugar- and Artificially Sweetened Beverage Consumption and the Risk of Metabolic Syndrome: A Meta-analysis of Population-Based Epidemiological Studies. Public Health Nutr. 2021, 24, 3892–3904. [Google Scholar] [CrossRef]
- Sanyolu, A.; Marinkovic, A.; Gosse, J.; Likaj, L.; Ayodele, O.; Okorie, C.; Verner, O. Artificial Sweeteners and Their Association with Diabetes: A Review. J. Pub. Health Catalog. 2018, 1, 86–88. [Google Scholar]
- Kashima, H.; Taniyama, K.; Sugimura, K.; Endo, M.Y.; Kobayashi, T.; Fukuba, Y. Suppression of Sweet Sensing with Glucose, but Not Aspartame, Delays Gastric Emptying and Glycemic Response. Nutr. Res. 2019, 68, 62–69. [Google Scholar] [CrossRef]
- Swithers, S.E.; Laboy, A.F.; Clark, K.; Cooper, S.; Davidson, T.L. Experience with the High-Intensity Sweetener Saccharin Impairs Glucose Homeostasis and GLP-1 Release in Rats. Behav. Brain Res. 2012, 233, 1–14. [Google Scholar] [CrossRef]
- Wang, Q.-P.; Browman, D.; Herzog, H.; Neely, G.G. Non-nutritive Sweeteners Possess a Bacteriostatic Effect and Alter Gut Microbiota in Mice. PLoS ONE 2018, 13, e0199080. [Google Scholar] [CrossRef]
- Conz, A.; Salmona, M.; Diomede, L. Effect of Non-nutritive Sweeteners on the Gut Microbiota. Nutrients 2023, 15, 1869. [Google Scholar] [CrossRef]
- Brown, R.J.; de Banate, M.A.; Rother, K.I. Artificial Sweeteners: A Systematic Review of Metabolic Effects in Youth. Int. J. Pediatr. Obes. 2010, 5, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.A.; Owyang, C. Sugars, Sweet Taste Receptors, and Brain Responses. Nutrients 2017, 9, 653. [Google Scholar] [CrossRef] [PubMed]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-Like Peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar] [CrossRef]
- Tsai, M.-J.; Li, C.-H.; Wu, H.-T.; Kuo, H.-Y.; Wang, C.-T.; Pai, H.-L.; Chang, C.-J.; Ou, H.-Y. Long-Term Consumption of Sucralose Induces Hepatic Insulin Resistance Through an Extracellular Signal-Regulated Kinase 1/2-Dependent Pathway. Nutrients 2023, 15, 2814. [Google Scholar] [CrossRef]
- Wu, H.-T.; Lin, C.-H.; Pai, H.-L.; Chen, Y.-C.; Cheng, K.-P.; Kuo, H.-Y.; Li, C.-H.; Ou, H.-Y. Sucralose, a Non-nutritive Artificial Sweetener Exacerbates High Fat Diet-Induced Hepatic Steatosis Through Taste Receptor Type 1 Member 3. Front. Nutr. 2022, 9, 823723. [Google Scholar] [CrossRef]
- Sudheimer, K.D.; O’Hara, R.; Spiegel, D.; Powers, B.; Kraemer, H.C.; Neri, E.; Weiner, M.; Hardan, A.; Hallmayer, J.; Dhabhar, F.S. Cortisol, Cytokines, and Hippocampal Volume Interactions in the Elderly. Front. Aging Neurosci. 2014, 6, 153. [Google Scholar] [CrossRef] [PubMed]
- McArdle, M.A.; Finucane, O.M.; Connaughton, R.M.; McMorrow, A.M.; Roche, H.M. Mechanisms of Obesity-Induced Inflammation and Insulin Resistance: Insights into the Emerging Role of Nutritional Strategies. Front. Endocrinol. 2013, 4, 52. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.-Y.; Sun, R.; Chen, Y.-C.; Kang, L.; Wang, C.-T.; Chiu, C.-F.; Wu, H.-T. Aspartame Consumption During Pregnancy Impairs Placenta Growth in Mice Through Sweet Taste Receptor-Reactive Oxygen Species-Dependent Pathway. J. Nutr. Biochem. 2023, 113, 109228. [Google Scholar] [CrossRef] [PubMed]
- Ozaki, K.-I.; Awazu, M.; Tamiya, M.; Iwasaki, Y.; Harada, A.; Kugisaki, S.; Tanimura, S.; Kohno, M. Targeting the ERK Signaling Pathway as a Potential Treatment for Insulin Resistance and Type 2 Diabetes. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E643–E651. [Google Scholar] [CrossRef] [PubMed]
- Pepino, M.Y.; Bourne, C. Non-nutritive Sweeteners, Energy Balance, and Glucose Homeostasis. Curr. Opin. Clin. Nutr. Metab. Care 2011, 14, 391–395. [Google Scholar] [CrossRef]
- Pepino, M.Y. Metabolic Effects of Non-nutritive Sweeteners. Physiol. Behav. 2015, 152, 450–455. [Google Scholar] [CrossRef]
- Figlewicz, D.P.; Ioannou, G.; Bennett Jay, J.; Kittleson, S.; Savard, C.; Roth, C.L. Effect of Moderate Intake of Sweeteners on Metabolic Health in the Rat. Physiol. Behav. 2009, 98, 618–624. [Google Scholar] [CrossRef]
- Mizrahi, M.; Ben Ya’acov, A.; Adar, T.; Levy Sklair, M.L.; Gaska, S.; Ilan, Y. Oral administration of Hoodia parviflora alleviates insulin resistance and nonalcoholic steatohepatitis. J. Med. Food 2019, 22, 1189–1198. [Google Scholar] [CrossRef]
- Chowdhury, A.I.; Rahanur Alam, M.; Raihan, M.M.; Rahman, T.; Islam, S.; Halima, O. Effect of Stevia Leaves (Stevia rebaudiana Bertoni) on Diabetes: A Systematic Review and Meta-analysis of Preclinical Studies. Food Sci. Nutr. 2022, 10, 2868–2878. [Google Scholar] [CrossRef]
- Papaefthimiou, M.; Kontou, P.I.; Bagos, P.G.; Braliou, G.G. Antioxidant Activity of Leaf Extracts from Stevia Rebaudiana Bertoni Exerts Attenuating Effect on Diseased Experimental Rats: A Systematic Review and Meta-analysis. Nutrients 2023, 15, 3325. [Google Scholar] [CrossRef]
- Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef] [PubMed]
- Chi, L.; Bian, X.; Gao, B.; Tu, P.; Lai, Y.; Ru, H.; Lu, K. Effects of the Artificial Sweetener Neotame on the Gut Microbiome and Fecal Metabolites in Mice. Molecules 2018, 23, 367. [Google Scholar] [CrossRef] [PubMed]
- Riva, A.; Borgo, F.; Lassandro, C.; Verduci, E.; Morace, G.; Borghi, E.; Berry, D. Pediatric Obesity Is Associated with an Altered Gut Microbiota and Discordant Shifts in Firmicutes Populations. Environ. Microbiol. 2017, 19, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Van den Abbeele, P.; Van de Wiele, T.; Verstraete, W.; Possemiers, S. The Host Selects Mucosal and Luminal Associations of Coevolved Gut Microorganisms: A Novel Concept. FEMS Microbiol. Rev. 2011, 35, 681–704. [Google Scholar] [CrossRef]
- Pavanello, S.; Moretto, A.; La Vecchia, C.; Alicandro, G. Non-sugar Sweeteners and Cancer: Toxicological and Epidemiological Evidence. Regul. Toxicol. Pharmacol. 2023, 139, 105369. [Google Scholar] [CrossRef]
- Summary of Findings of the Evaluation of Aspartame at the International Agency for Research on Cancer (IARC) Monographs Programme’s 134th Meeting, and the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 96th Meeting. Available online: https://www.who.int/publications/m/item/summary-of-findings-of-the-evaluation-of-aspartame-at-the-international-agency-for-research-on-cancer-(iarc)-monographs-programme-s-134th-meeting--and-the-joint-fao-who-expert-committee-on-food-additives-(jecfa)-96th-meeting (accessed on 13 June 2023).
- Hodge, A.M.; Bassett, J.K.; Milne, R.L.; English, D.R.; Giles, G.G. Consumption of Sugar-Sweetened and Artificially Sweetened Soft Drinks and Risk of Obesity-Related Cancers. Public Health Nutr. 2018, 21, 1618–1626. [Google Scholar] [CrossRef]
- Ringel, N.E.; Hovey, K.M.; Andrews, C.A.; Mossavar-Rahmani, Y.; Shadyab, A.H.; Snetselaar, L.G.; Howard, B.V.; Iglesia, C.B. Association of Artificially Sweetened Beverage Consumption and Urinary Tract Cancers in the Women’s Health Initiative Observational Study. Eur. Urol. Open Sci. 2023, 47, 80–86. [Google Scholar] [CrossRef]
- Heath, A.K.; Clasen, J.L.; Jayanth, N.P.; Jenab, M.; Tjønneland, A.; Petersen, K.E.N.; Overvad, K.; Srour, B.; Katzke, V.; Bergmann, M.M.; et al. Soft Drink and Juice Consumption and Renal Cell Carcinoma Incidence and Mortality in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol. Biomark. Prev. 2021, 30, 1270–1274. [Google Scholar] [CrossRef] [PubMed]
- Palomar-Cros, A.; Straif, K.; Romaguera, D.; Aragonés, N.; Castaño-Vinyals, G.; Martin, V.; Moreno, V.; Gómez-Acebo, I.; Guevara, M.; Aizpurua, A.; et al. Consumption of Aspartame and Other Artificial Sweeteners and Risk of Cancer in the Spanish Multicase-Control Study (MCC-Spain). Int. J. Cancer 2023, 153, 979–993. [Google Scholar] [CrossRef]
- Diaz, C.; Rezende, L.F.M.; Sabag, A.; Lee, D.H.; Ferrari, G.; Giovannucci, E.L.; Rey-Lopez, J.P. Artificially Sweetened Beverages and Health Outcomes: An Umbrella Review. Adv. Nutr. 2023, 14, 710–717. [Google Scholar] [CrossRef]
- Berry, C.; Brusick, D.; Cohen, S.M.; Hardisty, J.F.; Grotz, V.L.; Williams, G.M. Sucralose Non-carcinogenicity: A Review of the Scientific and Regulatory Rationale. Nutr. Cancer 2016, 68, 1247–1261. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. Artificial Sweeteners and Cancer. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/diet/artificial-sweeteners-fact-sheet (accessed on 13 June 2023).
- Khaybullin, R.N.; Zhang, M.; Fu, J.; Liang, X.; Li, T.; Katritzky, A.R.; Okunieff, P.; Qi, X. Design and Synthesis of Isosteviol Triazole Conjugates for Cancer Therapy. Molecules 2014, 19, 18676–18689. [Google Scholar] [CrossRef] [PubMed]
- Baker-Smith, C.M.; de Ferranti, S.D.; Cochran, W.J.; COMMITTEE ON NUTRITION, SECTION ON GASTROENTEROLOGY, HEPATOLOGY, AND NUTRITION; Abrams, S.A.; Fuchs, G.J., III; Kim, J.H.; Lindsey, C.W.; Magge, S.N.; Rome, E.S.; et al. The Use of Nonnutritive Sweeteners in Children. Pediatrics 2019, 144, e20192765. [Google Scholar] [CrossRef] [PubMed]
- Gil-Campos, M.; González, M.S.; Martín, J.D.; De la Asociación, C.D.; de Pediatría, E. Use of Sugars and Sweeteners in Children’s Diets. Recommendations of the Nutrition Committee of the Spanish Association of Paediatrics. An. Pediatría Engl. Ed. 2015, 83, 353.e1–353.e7. [Google Scholar] [CrossRef]
Sweetener | Acceptable Daily Intake (ADI) | Relevant Sweetness | |
---|---|---|---|
FDA (mg/kg) | EFSA (mg/kg) | ||
Accesulfame-k | 15 | 9 | 200× |
Aspartame | 50 | 40 | 160–220× |
Neotame | 0.3 | 2 | 7.000–13.000× |
Saccharin | 15 | 5 | 300× |
Sucralose | 5 | 15 | 600× |
Stevia | 43 | 43 | 300× |
Cyclamates | Not approved | 7 | 30–40× |
Hepatotoxicity | Tumors | NAFLD | Insulin Sensitivity | Weight Increase/Reduction | |
---|---|---|---|---|---|
Aspartame | Yes | No | Yes | reduced | ↓ |
Acesulfame-k | Yes | reduced | ↓ | ||
Sucralose | No | ↓ | |||
Saccharin | Yes | No | Yes | reduced | ↓ |
Neotame | ↓ | ||||
Stevia | No | No | No | increased | ↓ |
Hoodia | No | No | No | increased | ↓ |
Agavis syrup | No | No | No | increased | ↓ |
Rare sugars (D-psicose) | No | No | No | increased | ↓ |
Fructose | Yes | reduced | ↑ |
Advantages | Disadvantages | Potential Risks |
---|---|---|
In diabetes mellitus In weight control Prevention of dental carries Flavor enhancement In reactive hypoglycemia | No nutritional value Not managing to crave for sweets Inability to boost metabolic response after high caloric intake | Malignancy (very high dose) Hypertriglyceridemia (fructose) GI symptoms Insulin resistance and T2DM Deterioration of glycemic control in diabetes Weight gain Hepatotoxicity/hepatocellular injury Headache, mood disorders |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kossiva, L.; Kakleas, K.; Christodouli, F.; Soldatou, A.; Karanasios, S.; Karavanaki, K. Chronic Use of Artificial Sweeteners: Pros and Cons. Nutrients 2024, 16, 3162. https://doi.org/10.3390/nu16183162
Kossiva L, Kakleas K, Christodouli F, Soldatou A, Karanasios S, Karavanaki K. Chronic Use of Artificial Sweeteners: Pros and Cons. Nutrients. 2024; 16(18):3162. https://doi.org/10.3390/nu16183162
Chicago/Turabian StyleKossiva, Lydia, Kostas Kakleas, Foteini Christodouli, Alexandra Soldatou, Spyridon Karanasios, and Kyriaki Karavanaki. 2024. "Chronic Use of Artificial Sweeteners: Pros and Cons" Nutrients 16, no. 18: 3162. https://doi.org/10.3390/nu16183162
APA StyleKossiva, L., Kakleas, K., Christodouli, F., Soldatou, A., Karanasios, S., & Karavanaki, K. (2024). Chronic Use of Artificial Sweeteners: Pros and Cons. Nutrients, 16(18), 3162. https://doi.org/10.3390/nu16183162