The Interplay of Dietary Habits, Economic Factors, and Globalization: Assessing the Role of Institutional Quality
Abstract
:1. Introduction
2. Review of Literature
2.1. Conceptual Background
2.2. Empirical Background
2.2.1. Economic Factors-Dietary Habit Nexus
2.2.2. Unemployment–Dietary Habits Nexus
2.2.3. Social Factors-Dietary Habits Nexus
2.2.4. Urbanization-Dietary Habits Nexus
Authors | Context | Determinant | Period | Method | Key Findings |
---|---|---|---|---|---|
Jones et al. [55] | India | Globalization | 2019 | CS | Globalization shifts adolescent’s food choices towards non-local, processed items. |
Chang et al. [56] | China | Urbanization | 1997–2011 | CS | Urbanization improves dietary habits, but environmental impacts increase dietary costs. |
Penne and Goedemé [57] | Europe | Income growth | 2023 | FA | Low income is a key barrier to accessing a healthy diet in Europe. |
Bin Zahara et al. [58] | United States | Food security | 2020 | FC and P | Food security and attitude significantly influence dietary habits, moving towards more sweety and salty snack patterns. |
French et al. [59] | Chicago | Household income | 2019 | CS | Higher-income households have better diet quality, purchasing more vegetables and dairy than lower-income households. |
Vilar-Compte et al. [60] | SR | Poverty | 68 papers | SR | Urban poverty and food insecurity are two critical factors affecting the quality of dietary habits. |
Namirembe et al. [61] | Nepal | Nutrition governance | 2021 | GEE | Stronger nutrition governance leads to better child growth through healthy dietary habits. |
Stone et al. [62] | United Kingdom | Inflation rate | 2023 | CS | The cost of living crisis results in poor dietary habits and higher food insecurity. |
Heady and Ruel [63] | Panel data | Food CPI | 2021–2022 | CS | Food inflation increases the risk of child wasting and stunting in developing countries. |
2.3. Empirical Insights
3. Data and Variables
3.1. Data
3.2. Variables
3.2.1. Dependent Variables
3.2.2. Independent Variables
3.3. Sources of Compilation
4. Methods
4.1. Empirical Model
4.2. Estimation Procedure
5. Results
5.1. Basic Statistics
5.2. CD, SH, Panel Unit Root, and Cointegration
5.3. PCSE and FGLS Estimates
Variables | PCSE Model Estimates | |||||||
---|---|---|---|---|---|---|---|---|
InQ on PK–EG Nexus | InQ on PK–UR Nexus | InQ on PK–SR Nexus | InQ on PK–GX Nexus | InQ on PK–GS Nexus | InQ on PK–FI Nexus | InQ on PK–URB Nexus | InQ on PK–CO2e Nexus | |
EG | 0.454 *** | 0.448 *** | 0.445 *** | 0.452 *** | 0.445 *** | 0.436 *** | 0.438 *** | 0.447 *** |
(20.49) | (6.43) | (5.56) | (7.05) | (5.50) | (5.74) | (4.76) | (4.46) | |
UR | −0.147 *** | −0.147 *** | −0.158 *** | −0.177 *** | −0.123 *** | −0.174 *** | −0.1637 *** | −0.146 *** |
(−5.93) | (−5.14) | (−6.62) | (−7.80) | (−6.38) | (−4.23) | (−7.44) | (−3.15) | |
SR | 1.409 *** | 1.649 *** | 1.772 *** | 1.750 *** | 1.7311 *** | 1.7164 *** | 1.8326 *** | 1.719 ** |
(3.07) | (4.69) | (3.00) | (2.76) | (4.01) | (7.61) | (4.04) | (2.28) | |
GX | 1.082 *** | 1.451 *** | 1.287 *** | 1.311 *** | 1.470 *** | 1.010 *** | 1.350 *** | 1.343 *** |
(13.09) | (12.45) | (12.02) | (11.20) | (12.31) | (16.80) | (12.32) | (13.69) | |
GS | −0.596 ** | −0.626 *** | −0.572 *** | −0.549 ** | −0.684 *** | −0.498 *** | −0.633 *** | −0.510 *** |
(−2.47) | (−2.95) | (−2.78) | (−2.53) | (−3.25) | (−2.85) | (−2.71) | (−2.58) | |
InQ | 4.089 *** | 4.034 *** | 4.198 *** | 4.077 *** | 4.061 *** | 4.017 *** | 4.110 *** | 4.094 *** |
(8.36) | (10.79) | (4.31) | (7.54) | (5.51) | (9.92) | (7.29) | (4.40) | |
FI | −1.589 *** | −1.582 *** | −1.560 *** | −1.752 *** | −1.620 *** | −1.206 ** | −1.546 *** | −1.628 *** |
(−5.81) | (−6.55) | (−5.25) | (−7.97) | (−9.62) | (−4.30) | (−8.59) | (−5.05) | |
URB | 0.181 *** | 0.182 *** | 0.208 *** | 0.206 *** | 0.177 *** | 0.185 *** | 0.181 * | 0.149 *** |
(6.48) | (9.78) | (6.18) | (6.11) | (9.70) | (9.29) | (1.67) | (7.15) | |
GI | 0.667 ** | 0.594 * | 0.677 ** | 0.786 ** | 0.887 *** | 0.879 *** | 0.804 ** | 0.856 *** |
(2.41) | (1.73) | (1.31) | (2.32) | (3.14) | (9.53) | (2.53) | (8.17) | |
InQ × EG | 0.949 *** | |||||||
(5.13) | ||||||||
InQ × UR | −0.0025 *** | |||||||
(−9.10) | ||||||||
InQ × SR | 2.422 *** | |||||||
(4.80) | ||||||||
InQ × GX | 2.857 *** | |||||||
(6.97) | ||||||||
InQ × GS | −0.0332 *** | |||||||
(−4.51) | ||||||||
InQ × FI | −0.00871 *** | |||||||
(−6.83) | ||||||||
InQ × URB | 1.080 *** | |||||||
(8.37) | ||||||||
InQ × GI | 1.0605 *** | |||||||
(4.95) | ||||||||
Constant | 8.147 *** | 2.359 *** | 6.654 *** | 8.549 *** | 8.636 *** | 9.900 *** | 6.482 *** | 5.458 *** |
(79.43) | (42.21) | (24.31) | (28.80) | (51.10) | (33.18) | (46.77) | (65.80) | |
Post-estimations | ||||||||
Observations | 924 | 924 | 924 | 924 | 924 | 924 | 924 | 924 |
R-squared | 0.489 | 0.321 | 0.301 | 0.322 | 0.304 | 0.548 | 0.306 | 0.476 |
Number of units | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
5.4. Panel Causality Analysis
6. Discussion
7. Conclusions and Policy Implications
- Promoting institutional quality
- The study highlights the significant role of weak institutions in exacerbating social and economic issues, including poor dietary habits in SSA. Policymakers must initiate comprehensive reforms to combat elevated corruption, enhance governance efficiency, and improve political stability, all of which are shown to have a moderating effect on improving dietary habits. Specific measures include implementing inclusive digital governance platforms, introducing performance appraisal for public servants, and allocating resources for anti-corruption strategies. This can be achieved through advancing democratic administration, promoting inclusive political stability, and boosting training and education funding to build skilled human resources to facilitate effective reforms. These measures collectively boost sustainable growth, reduce corruption, and increase good governance, consequently overcoming dietary habit deficiencies in the region.
- Advancing economic resilience
- The study’s findings indicate that inflationary shocks and high unemployment rates negatively impact dietary habits across SSA. To address these issues, policymakers need to focus on creating macroeconomic stability by implementing strategies that mitigate the effects of inflation on food prices and unemployment on food access. Targeted subsidies for essential food items, the establishment of strategic food reserves, and the expansion of social safety nets are critical to protecting vulnerable populations from food insecurity during economic shocks. Additionally, policies aimed at promoting sustainable farming methods and economic diversification will help reduce the region’s reliance on volatile international markets, create jobs, and ensure a stable food supply chain. A well-rounded economic resilience strategy, coupled with strong institutional frameworks, will reduce the negative effects of inflation and unemployment on dietary habits.
- Enhancing dietary literacy
- The study reveals that higher school enrollment rates positively influence dietary habits, with institutional quality playing a crucial role in amplifying this effect. To capitalize on this, policymakers must prioritize improving access to quality education, particularly in rural areas. This involves investing in teacher training, modernizing school infrastructure, and ensuring that children, especially from vulnerable communities, are educated on proper nutrition. Incorporating comprehensive nutrition literacy into school curriculums will empower younger generations to adopt healthier dietary habits. Additionally, expanding school meal programs—offering free or subsidized meals—can directly address malnutrition and help instill long-term healthy dietary habits. These interventions will not only improve individual health but also contribute to broader improvements in population dietary habits across SSA. In addition to school-based interventions, public health campaigns and community-based initiatives that promote awareness of balanced diets and healthy eating practices are vital. Drawing on global best practices, these efforts should emphasize the importance of nutrition literacy and create an environment conducive to healthier living across SSA.
- Globalization enhancement
- Although the existing globalization index score is below 50 in the SSA, its impact on population dietary habits remains significantly positive. This suggests that further enhancement of globalization could lead to improved dietary habits in the region by facilitating greater access to essential foods and diversifying food options. Policymakers need to prioritize economic, political, and social strategies to achieve this. For instance, reducing tariffs and minimizing trade barriers can increase the flow of goods and services across borders. Additionally, human capital exchange agreements, which promote educational programs, cultural exchange, and global cooperation, can collectively enhance dietary habits across the region.
Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Variables | FGLS Model Estimates | |||||||
---|---|---|---|---|---|---|---|---|
InQ on PP–EG Nexus | InQ on PP–UR Nexus | InQ on PP–SR Nexus | InQ on PP–GX Nexus | InQ on PP–GS Nexus | InQ on PP–FI Nexus | InQ on PP–URB Nexus | InQ on PP–FI Nexus | |
EG | 0.1878 *** | 0.1709 *** | 0.1825 *** | 0.1893 *** | 0.1799 *** | 0.1862 ** | 0.1891 ** | 0.1835 *** |
(9.12) | (5.02) | (4.16) | (3.88) | (5.10) | (2.13) | (2.49) | (8.37) | |
UR | −0.406 *** | −0.442 *** | −0.445 *** | −0.477 *** | −0.448 *** | −0.467 *** | −0.483 *** | −0.364 *** |
(−9.36) | (−7.38) | (−8.59) | (−9.29) | (−7.95) | (−6.61) | (−9.12) | (−7.20) | |
SR | 0.142 *** | 0.145 *** | 0.160 *** | 0.141 *** | 0.134 *** | 0.142 *** | 0.133 *** | 0.146 *** |
(4.25) | (3.45) | (4.92) | (3.90) | (3.91) | (3.55) | (3.89) | (4.27) | |
GX | 0.176 *** | 0.195 *** | 0.194 *** | 0.103 *** | 0.154 *** | 0.191 *** | 0.171 *** | 0.199 *** |
(10.58) | (8.27) | (8.57) | (7.76) | (8.53) | (10.44) | (8.59) | (10.85) | |
GS | −0.528 *** | −0.526 *** | −0.524 *** | −0.523 ** | −0.536 *** | −0.522 ** | −0.528 *** | −0.522 ** |
(−4.86) | (−5.39) | (−4.81) | (−2.33) | (−5.70) | (−2.11) | (−4.32) | (−2.45) | |
InQ | 4.927 *** | 4.383 *** | 4.436 *** | 4.105 *** | 4.444 *** | 4.228 *** | 4.200 *** | 4.510 *** |
(3.12) | (3.37) | (3.97) | (3.25) | (3.16) | (6.83) | (8.64) | (4.70) | |
FI | −0.430 *** | −0.316 *** | −0.354 *** | −0.336 *** | −0.331 *** | −0.350 ** | −0.367 *** | −0.394 *** |
(−8.55) | (−6.87) | (−8.67) | (−7.49) | (−8.27) | (−2.29) | (−3.36) | (−8.49) | |
URB | 0.044 *** | 0.082 *** | 0.058 *** | 0.054 ** | 0.060 *** | 0.024 *** | 0.055 *** | 0.046 *** |
(2.65) | (3.68) | (2.79) | (2.36) | (2.79) | (3.31) | (7.96) | (2.79) | |
GI | 0.821 *** | 0.480 *** | 0.637 ** | 0.332 *** | 0.550 ** | 0.484 *** | 0.393 *** | 0.431 *** |
(3.96) | (3.69) | (2.39) | (2.77) | (2.07) | (10.24) | (5.96) | (10.79) | |
InQ × EG | 1.047 *** | |||||||
(5.66) | ||||||||
InQ × UR | −0.087 *** | |||||||
(−11.49) | ||||||||
InQ × SR | 1.752 *** | |||||||
(7.15) | ||||||||
InQ × GX | 2.396 *** | |||||||
(8.11) | ||||||||
InQ × GS | −0.00058 *** | |||||||
(−7.27) | ||||||||
InQ × FI | −0.0007 *** | |||||||
(−15.41) | ||||||||
InQ × URB | 0.832 *** | |||||||
(10.28) | ||||||||
InQ × GI | 1.00014 *** | |||||||
(9.12) | ||||||||
Constant | 79.378 *** | 65.417 *** | 94.005 *** | 60.146 *** | 71.392 *** | 58.194 *** | 84.998 *** | 76.554 *** |
(22.59) | (19.23) | (12.98) | (17.63) | (20.21) | (20.17) | (18.11) | (20.64) | |
Post-estimations | ||||||||
Observations | 924 | 924 | 924 | 924 | 924 | 924 | 924 | 924 |
Number of ID | 0.326 | 0.230 | 0.216 | 0.235 | 0.232 | 0.327 | 0.236 | 0.305 |
Variables | FGLS Model Estimates | |||||||
---|---|---|---|---|---|---|---|---|
InQ on PF–EG Nexus | InQ on PF–UR Nexus | InQ on PF–SR Nexus | InQ on PF–GX Nexus | InQ on PF–GS Nexus | InQ on PF–FI Nexus | InQ on PF–URB Nexus | InQ on PF–GI Nexus | |
EG | 0.2927 *** | 0.2841 ** | 0.2799 ** | 0.2833 *** | 0.2785 ** | 0.2789 *** | 0.2872 *** | 0.2915 *** |
(20.60) | (2.03) | (2.27) | (2.92) | (2.25) | (4.81) | (3.14) | (9.37) | |
UR | −0.267 *** | −0.259 *** | −0.262 *** | −0.301 *** | −0.272 *** | −0.300 *** | −0.319 *** | −0.286 *** |
(−4.89) | (−8.43) | (−7.39) | (−8.38) | (−6.88) | (−7.62) | (−9.08) | (−2.75) | |
SR | 0.058 *** | 0.049 *** | 0.055 *** | 0.072 *** | 0.071 *** | 0.023 *** | 0.067 *** | 0.098 *** |
(3.06) | (4.15) | (6.13) | (2.58) | (3.99) | (4.18) | (5.17) | (3.64) | |
GX | 1.003 *** | 1.033 ** | 1.808 ** | 1.122 *** | 1.431 *** | 1.195 *** | 1.293 ** | 1.706 *** |
(5.32) | (2.10) | (2.48) | (5.37) | (1.34) | (0.65) | (2.27) | (5.21) | |
GS | −0.505 *** | −0.511 *** | −0.512 *** | −0.514 *** | −0.544 *** | −0.516 *** | −0.507 *** | −0.516 *** |
(−3.31) | (−3.55) | (−3.59) | (−2.68) | (−5.03) | (−2.73) | (−3.39) | (−2.80) | |
InQ | 2.185 *** | 2.553 *** | 2.905 *** | 2.666 *** | 2.627 *** | 2.986 *** | 2.899 *** | 2.499 *** |
(4.04) | (4.78) | (5.87) | (5.83) | (3.45) | (6.56) | (4.01) | (6.81) | |
FI | −0.222 *** | −0.212 *** | −0.287 *** | −0.227 *** | −0.223 *** | −0.239 *** | −0.270 *** | −0.240 *** |
(−4.02) | (−2.89) | (−5.31) | (−3.77) | (−3.24) | (−7.03) | (−4.91) | (−8.38) | |
URB | 0.306 *** | 0.311 *** | 0.330 *** | 0.331 *** | 0.326 *** | 0.379 *** | 0.363 * | 0.407 *** |
(5.02) | (6.634) | (4.677) | (6.638) | (4.224) | (5.364) | (6.692) | (8.648) | |
GI | 0.735 *** | 0.727 *** | 0.635 ** | 0.745 *** | 0.802 *** | 0.704 *** | 0.713 | 0.824 *** |
(3.21) | (3.75) | (2.11) | (3.65) | (2.72) | (5.46) | (3.19) | (7.64) | |
InQ × EG | 1.215 *** | |||||||
(6.89) | ||||||||
InQ × UR | −0.097 *** | |||||||
(-8.09) | ||||||||
InQ × SR | 2.064 *** | |||||||
(6.13) | ||||||||
InQ × GX | 1.187 *** | |||||||
(7.88) | ||||||||
InQ × GS | −0.0009 *** | |||||||
(−6.10) | ||||||||
InQ × FI | −0.084 *** | |||||||
(−6.17) | ||||||||
InQ × URB | 1.093 *** | |||||||
(13.00) | ||||||||
InQ × GI | 1.006 *** | |||||||
(5.99) | ||||||||
Constant | 61.889 *** | 42.774 *** | 110.482 *** | 35.911 *** | 47.318 *** | 27.903 *** | 65.068 *** | 57.205 *** |
(20.02) | (13.44) | (10.38) | (11.67) | (18.11) | (7.98) | (18.12) | (20.17) | |
Post-estimations | ||||||||
Observations | 924 | 924 | 924 | 924 | 924 | 924 | 924 | 924 |
Number of ID | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
Variables | FGLS Model Estimates | |||||||
---|---|---|---|---|---|---|---|---|
InQ on PK–EG Nexus | InQ on PK–UR Nexus | InQ on PK–SR Nexus | InQ on PK–GX Nexus | InQ on PK–GS Nexus | InQ on PK–FI Nexus | InQ on PK–URB Nexus | InQ on PK–CO2e Nexus | |
EG | 0.454 *** | 0.448 *** | 0.445 *** | 0.452 *** | 0.445 *** | 0.436 *** | 0.438 *** | 0.447 *** |
(20.49) | (6.43) | (5.56) | (7.05) | (5.50) | (5.74) | (4.76) | (4.46) | |
UR | −0.147 *** | −0.147 *** | −0.158 *** | −0.177 *** | −0.123 *** | −0.174 *** | −0.1637 *** | −0.146 *** |
(−5.93) | (−5.14) | (−6.62) | (−7.80) | (−6.38) | (−4.23) | (−7.44) | (−3.15) | |
SR | 1.409 *** | 1.649 *** | 1.772 *** | 1.750 *** | 1.7311 *** | 1.7164 *** | 1.8326 *** | 1.719 ** |
(3.07) | (4.69) | (3.00) | (2.76) | (4.01) | (7.61) | (4.04) | (2.28) | |
GX | 1.082 *** | 1.451 *** | 1.287 *** | 1.311 *** | 1.470 *** | 1.010 *** | 1.350 *** | 1.343 *** |
(13.09) | (12.45) | (12.02) | (11.20) | (12.31) | (16.80) | (12.32) | (13.69) | |
GS | −0.596 ** | −0.626 *** | −0.572 *** | −0.549 ** | −0.684 *** | −0.498 *** | −0.633 *** | −0.510 *** |
(−2.47) | (−2.95) | (−2.78) | (−2.53) | (−3.25) | (−2.85) | (−2.71) | (−2.58) | |
InQ | 4.089 *** | 4.034 *** | 4.198 *** | 4.077 *** | 4.061 *** | 4.017 *** | 4.110 *** | 4.094 *** |
(8.36) | (10.79) | (4.31) | (7.54) | (5.51) | (9.92) | (7.29) | (4.40) | |
FI | −1.589 *** | −1.582 *** | −1.560 *** | −1.752 *** | −1.620 *** | −1.206 ** | −1.546 *** | −1.628 *** |
(−5.81) | (−6.55) | (−5.25) | (−7.97) | (−9.62) | (−4.30) | (−8.59) | (−5.05) | |
URB | 0.181 *** | 0.182 *** | 0.208 *** | 0.206 *** | 0.177 *** | 0.185 *** | 0.181 * | 0.149 *** |
(6.48) | (9.78) | (6.18) | (6.11) | (9.70) | (9.29) | (1.67) | (7.15) | |
GI | 0.667 ** | 0.594 * | 0.677 ** | 0.786 ** | 0.887 *** | 0.879 *** | 0.804 ** | 0.856 *** |
(2.41) | (1.73) | (1.31) | (2.32) | (3.14) | (9.53) | (2.53) | (8.17) | |
InQ × EG | 0.949 *** | |||||||
(5.13) | ||||||||
InQ × UR | −0.0025 *** | |||||||
(−9.10) | ||||||||
InQ × SR | 2.422 *** | |||||||
(4.80) | ||||||||
InQ × GX | 2.857 *** | |||||||
(6.97) | ||||||||
InQ × GS | −0.0332 *** | |||||||
(−4.51) | ||||||||
InQ × FI | −0.00871 *** | |||||||
(−6.83) | ||||||||
InQ × URB | 1.080 *** | |||||||
(8.37) | ||||||||
InQ × GI | 1.0605 *** | |||||||
(4.95) | ||||||||
Constant | 8.147 *** | 2.359 *** | 6.654 *** | 8.549 *** | 8.636 *** | 9.900 *** | 6.482 *** | 5.458 *** |
(79.43) | (42.21) | (24.31) | (28.80) | (51.10) | (33.18) | (46.77) | (65.80) | |
Post-estimations | ||||||||
Observations | 924 | 924 | 924 | 924 | 924 | 924 | 924 | 924 |
Number of ID | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
References
- World Bank. Over 3.1 Billion People Could Not Afford a Healthy Diet in 2021—An Increase of 134 Million Since the Start of COVID-19. 2023; p. 1. Available online: https://blogs.worldbank.org/en/opendata/over-31-billion-people-could-not-afford-healthy-diet-2021-increase-134-million-start-covid (accessed on 16 August 2024).
- UN-FAO. The State of Food Security and Nutrition in the World 2024. 2024. Available online: https://www.fao.org/publications/home/fao-flagship-publications/the-state-of-food-security-and-nutrition-in-the-world/en (accessed on 16 August 2024).
- IMF. World Economic Outlook: Countering the Cost-of-Living Crisis. International Monetary Fund. 2022; p. 186. Available online: https://www.imf.org/en/Publications/WEO/Issues/2023/04/11/world-economic-outlook-april-2023 (accessed on 16 August 2024).
- Cohen, M.J.; Smale, M. Chocs mondiaux des prix des produits alimentaires et personnes pauvres: Un aperçu. Dev. Pract. 2011, 21, 460–471. [Google Scholar] [CrossRef]
- UN-FAO. World Food Situation. 2024. Available online: https://www.fao.org/worldfoodsituation/foodpricesindex/en/ (accessed on 18 August 2024).
- Kabir, A.; Miah, S.; Islam, A. Factors influencing eating behavior and dietary intake among resident students in a public university in Bangladesh: A qualitative study. PLoS ONE 2018, 13, e0198801. [Google Scholar] [CrossRef] [PubMed]
- Beyene, S.D. The impact of food insecurity on health outcomes: Empirical evidence from sub-Saharan African countries. BMC Public Health 2023, 23, 338. [Google Scholar] [CrossRef] [PubMed]
- FAO. Repurposing Food and Agricultural Policies to Make Healthy Diets More Affordable; FAO: Rome, Italy, 2022. [Google Scholar]
- Lopes, S.O.; Abrantes, L.C.S.; Azevedo, F.M.; Morais, N.d.S.d.; Morais, D.d.C.; Gonçalves, V.S.S.; Fontes, E.A.F.; Franceschini, S.D.C.C.; Priore, S.E. Food Insecurity and Micronutrient Deficiency in Adults: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 1074. [Google Scholar] [CrossRef]
- White, J.M.; Beal, T.; Arsenault, J.E.; Okronipa, H.; Hinnouho, G.-M.; Chimanya, K.; Matji, J.; Garg, A. Micronutrient gaps during the complementary feeding period in 6 countries in Eastern and Southern Africa: A Comprehensive Nutrient Gap Assessment. Nutr. Rev. 2021, 79, 16–25. [Google Scholar] [CrossRef]
- Ogbuabor, J.E.; Onuigbo, F.N.; Orji AN TH ON, Y.; Anthony-Orji, O.I. Institutional Quality and Economic Performance in Nigeria: A New Evidence. Int. J. Econ. Stat. 2020, 8, 38–49. [Google Scholar] [CrossRef]
- Weil, K.; Coulibaly, I.; Fuelbert, H.; Herrmann, A.; Millogo, R.M.; Danquah, I. Dietary patterns and their socioeconomic factors of adherence among adults in urban Burkina Faso: A cross-sectional study. J. Health Popul. Nutr. 2023, 42, 107. [Google Scholar] [CrossRef]
- Popkin, B.M. Urbanization, lifestyle changes and the nutrition transition. World Dev. 1999, 27, 1905–1916. [Google Scholar] [CrossRef]
- Zerbo, A.; Delgado, R.C.; González, P.A. Vulnerability and everyday health risks of urban informal settlements in Sub-Saharan Africa. Glob. Health J. 2020, 4, 46–50. [Google Scholar] [CrossRef]
- AZeba, N.; Delisle, H.F.; Renier, G. Dietary patterns and physical inactivity, two contributing factors to the double burden of malnutrition among adults in Burkina Faso, West Africa. J. Nutr. Sci. 2014, 3, e50. [Google Scholar] [CrossRef]
- Sodjinou, R.; Agueh, V.; Fayomi, B.; Delisle, H. Dietary patterns of urban adults in Benin: Relationship with overall diet quality and socio-demographic characteristics. Eur. J. Clin. Nutr. 2009, 63, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Abizari, A.R.; Ali, Z. Dietary patterns and associated factors of schooling Ghanaian adolescents. J. Health Popul. Nutr. 2019, 38, 5. [Google Scholar] [CrossRef] [PubMed]
- Cutler, G.J.; Flood, A.; Hannan, P.; Neumark-Sztainer, D. Multiple Sociodemographic and Socioenvironmental Characteristics Are Correlated with Major Patterns of Dietary Intake in Adolescents. J. Am. Diet. Assoc. 2011, 111, 230–240. [Google Scholar] [CrossRef]
- Galbete, C.; Nicolaou, M.; Meeks, K.A.; Aikins, A.D.-G.; Addo, J.; Amoah, S.K.; Smeeth, L.; Owusu-Dabo, E.; Klipstein-Grobusch, K.; Bahendeka, S.; et al. Food consumption, nutrient intake, and dietary patterns in ghanaian migrants in europe and their compatriots in Ghana. Food Nutr. Res. 2017, 61, 1341809. [Google Scholar] [CrossRef] [PubMed]
- Noort, M.W.J.; Renzetti, S.; Linderhof, V.; du Rand, G.E.; Marx-Pienaar, N.J.M.M.; de Kock, H.L.; Magano, N.; Taylor, J.R.N. Towards Sustainable Shifts to Healthy Diets and Food Security in Sub-Saharan Africa with Climate-Resilient Crops in Bread-Type Products: A Food System Analysis. Foods 2022, 11, 135. [Google Scholar] [CrossRef]
- Medina, C.R.; Urbano, M.B.; De Jesús Espinosa, A.; López, Á.T. Eating habits associated with nutrition-related knowledge among university students enrolled in academic programs related to nutrition and culinary arts in puerto rico. Nutrients 2020, 12, 1408. [Google Scholar] [CrossRef]
- Sogari, G.; Velez-Argumedo, C.; Gómez, M.I.; Mora, C. College students and eating habits: A study using an ecological model for healthy behavior. Nutrients 2018, 10, 1823. [Google Scholar] [CrossRef]
- Li, B.; Tang, X.; Le, G. Dietary Habits and Metabolic Health. Nutrients 2023, 15, 3975. [Google Scholar] [CrossRef]
- Mendonca, V. Modern Food Habits and Its Impact on Human Health. Int. J. Innov. Res. Eng. Manag. 2023, 10, 182–185. [Google Scholar] [CrossRef]
- Zucoloto, F.S. Evolution of the human feeding behavior. Psychol. Neurosci. 2011, 4, 131–141. [Google Scholar] [CrossRef]
- Godos, J.; Scazzina, F.; Castello, C.P.; Giampieri, F.; Quiles, J.L.; Urbano, M.B.; Battino, M.; Galvano, F.; Iacoviello, L.; de Gaetano, G.; et al. Underrated aspects of a true Mediterranean diet: Understanding traditional features for worldwide application of a ‘Planeterranean’ diet. J. Transl. Med. 2024, 22, 294. [Google Scholar] [CrossRef] [PubMed]
- Sproesser, G.; Ruby, M.B.; Arbit, N.; Akotia, C.S.; Alvarenga, M.d.S.; Bhangaokar, R.; Furumitsu, I.; Hu, X.; Imada, S.; Kaptan, G.; et al. Similar or different? Comparing food cultures with regard to traditional and modern eating across ten countries. Food Res. Int. 2022, 157, 111106. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M. Global nutrition dynamics: The world is shifting rapidly toward a diet linked with noncommunicable diseases. Am. J. Clin. Nutr. 2006, 84, 289–298. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science-implications for current research, dietary guidelines, and food policy. BMJ 2018, 361, k2392. [Google Scholar] [CrossRef]
- Popkin, B.M. The nutrition transition and obesity in the developing world. J. Nutr. 2001, 131, 871S–873S. [Google Scholar] [CrossRef]
- Headey, D.D. Developmental Drivers of Nutritional Change: A Cross-Country Analysis. World Dev. 2013, 42, 76–88. [Google Scholar] [CrossRef]
- Gerbens-Leenes, P.W.; Nonhebel, S.; Krol, M.S. Food consumption patterns and economic growth. Increasing affluence and the use of natural resources. Appetite 2010, 55, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Vanheuvelen, T.; Vanheuvelen, J.S. The (Economic) development of healthy eating habits: Gender, nutrition, and health outcomes in 31 countries. Sociol. Dev. 2019, 5, 91–113. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Bonanni, A.; Costanzo, S.; Persichillo, M.; Cerletti, C.; Donati, M.B.; De Gaetano, G.; Iacoviello, L.; INHES Study Investigators. Socioeconomic status and impact of the economic crisis on dietary habits in Italy: Results from the INHES study. J. Public Health 2018, 40, 703–712. [Google Scholar] [CrossRef]
- Raji, R.O. Nutrition Intake, Health Status, Education and Economic Growth: A Causality Investigation. Econom. Res. Financ. 2020, 5, 79–102. [Google Scholar] [CrossRef]
- Moradi, A. Nutritional status and economic development in sub-Saharan Africa, 1950–1980. Econ. Hum. Biol. 2010, 8, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Milicic, S.; DeCicca, P. The Impact of Economic Conditions on Healthy Dietary Intake: Evidence From Fluctuations in Canadian Unemployment Rates. J. Nutr. Educ. Behav. 2017, 49, 632.e1–638. [Google Scholar] [CrossRef]
- Smed, S.; Tetens, I.; Lund, T.B.; Holm, L.; Nielsen, A.L. The consequences of unemployment on diet composition and purchase behaviour: A longitudinal study from Denmark. Public Health Nutr. 2018, 21, 580–592. [Google Scholar] [CrossRef]
- Been, J.; Bakker, V.; van Vliet, O. Unemployment and households’ food consumption: A cross-country panel data analysis across OECD countries. Kyklos 2024, 77, 776–811. [Google Scholar] [CrossRef]
- Bentolila, S.; Ichino, A. Unemployment and consumption near and far away from the Mediterranean. J. Popul. Econ. 2008, 21, 255–280. [Google Scholar] [CrossRef]
- Kohanmoo, A.; Hashemzadeh, M.; Teymouri, M.; Zare, M.; Akhlaghi, M. Food insecurity is associated with low diet quality and unhealthy cooking and eating habits in Iranian women. J. Health Popul. Nutr. 2024, 43, 42. [Google Scholar] [CrossRef]
- MMorales, E.; Berkowitz, S.A. The Relationship Between Food Insecurity, Dietary Patterns, and Obesity. Curr. Nutr. Rep. 2016, 5, 54–60. [Google Scholar] [CrossRef] [PubMed]
- JMello, A.; Gans, K.M.; Risica, P.M.; Kirtania, U.; Strolla, L.O.; Fournier, L. How is food insecurity associated with dietary behaviors? An analysis with low-income, ethnically diverse participants in a nutrition intervention study. J. Am. Diet. Assoc. 2010, 110, 1906–1911. [Google Scholar] [CrossRef]
- Nam, S.-J.; Jaehye, S. Influence of health food literacy on willingness to pay for healthier foods: Focus on food insecurity. Int. J. Equity Health 2024, 23, 80. [Google Scholar] [CrossRef]
- Amani, R.; Soflaei, M. Nutrition education alone improves dietary practices but not hematologic indices of adolescent girls in Iran. Food Nutr. Bull. 2006, 27, 260–264. [Google Scholar] [CrossRef]
- Menor-Rodriguez, M.J.; Cortés-Martín, J.; Rodríguez-Blanque, R.; Tovar-Gálvez, M.I.; Aguilar-Cordero, M.J.; Sánchez-García, J.C. Influence of an Educational Intervention on Eating Habits in School-Aged Children. Children 2022, 9, 574. [Google Scholar] [CrossRef] [PubMed]
- Raut, S.; Kc, D.; Singh, D.R.; Dhungana, R.R.; Pradhan, P.M.S.; Sunuwar, D.R. Effect of nutrition education intervention on nutrition knowledge, attitude, and diet quality among school-going adolescents: A quasi-experimental study. BMC Nutr. 2024, 10, 35. [Google Scholar] [CrossRef] [PubMed]
- CPierre, S.; Sokalsky, A.; Sacheck, J.M. Participant Perspectives on the Impact of a School-Based, Experiential Food Education Program Across Childhood, Adolescence, and Young Adulthood. J. Nutr. Educ. Behav. 2024, 56, 4–15. [Google Scholar] [CrossRef]
- Li, J.; Powdthavee, N. Does more education lead to better health habits? Evidence from the school reforms in Australia. Soc. Sci. Med. 2015, 127, 83–91. [Google Scholar] [CrossRef] [PubMed]
- Wei, N.; Sun, D. Children’s education and parents’ dietary nutrient intake: An empirical study based on rural China. Humanit. Soc. Sci. Commun. 2023, 10, 336. [Google Scholar] [CrossRef]
- Colozza, D.; Wang, Y.C.; Avendano, M. Does urbanisation lead to unhealthy diets? Longitudinal evidence from Indonesia. Health Place 2023, 83, 103091. [Google Scholar] [CrossRef]
- Ren, Y.; Campos, B.C.; Peng, Y.; Glauben, T. Nutrition transition with accelerating urbanization? Empirical evidence from rural China. Nutrients 2021, 13, 921. [Google Scholar] [CrossRef]
- Lazarou, C.; Kalavana, T. Urbanization influences dietary habits of Cypriot children: The CYKIDS study. Int. J. Public Health 2009, 54, 69–77. [Google Scholar] [CrossRef]
- Bellundagi, V.; Umesh, K.B.; Ashwini, B.C.; Hamsa, K.R. Prevalence of malnutrition among women and adolescent girls: Impact of urbanization in rural–urban interface of Bangalore. Br. Food J. 2022, 124, 4200–4218. [Google Scholar] [CrossRef]
- Jones, R.E.; Patil, S.; Datar, A.; Shaikh, N.I.; Cunningham, S.A. Food Choices in the Context of Globalizing Food Options among Adolescents in Rural Southern India. Ecol. Food Nutr. 2022, 61, 422–441. [Google Scholar] [CrossRef]
- Chang, Z.; Cai, H.; Talsma, E.F.; Fan, S.; Ni, Y.; Wen, X.; Veer, P.V.; Biesbroek, S. Assessing the diet quality, environmental impact, and monetary costs of the dietary transition in China (1997–2011): Impact of urbanization. Front. Sustain. Food Syst. 2023, 7, 1111361. [Google Scholar] [CrossRef]
- Penne, T.; Goedemé, T. Can low-income households afford a healthy diet? Insufficient income as a driver of food insecurity in Europe. Food Policy 2021, 99, 101978. [Google Scholar] [CrossRef]
- Zarah, A.B.; Enriquez-Marulanda, J.; Andrade, J.M. Relationship between dietary habits, food attitudes and food security status among adults living within the united states three months post-mandated quarantine: A cross-sectional study. Nutrients 2020, 12, 3468. [Google Scholar] [CrossRef]
- French, S.A.; Tangney, C.C.; Crane, M.M.; Wang, Y.; Appelhans, B.M. Nutrition quality of food purchases varies by household income: The SHoPPER study. BMC Public Health 2019, 19, 231. [Google Scholar] [CrossRef]
- Vilar-Compte, M.; Burrola-Méndez, S.; Lozano-Marrufo, A.; Ferré-Eguiluz, I.; Flores, D.; Gaitán-Rossi, P.; Teruel, G.; Pérez-Escamilla, R. Urban poverty and nutrition challenges associated with accessibility to a healthy diet: A global systematic literature review. Int. J. Equity Health 2021, 20, 40. [Google Scholar] [CrossRef]
- Namirembe, G.; Shrestha, R.; Mezzano, J.; Ausman, L.M.; Davis, D.; Baral, K.; Ghosh, S.; Shively, G.; Webb, P. Effective nutrition governance is correlated with better nutrition outcomes in Nepal. BMC Pediatr. 2021, 21, 434. [Google Scholar] [CrossRef]
- Stone, R.A.; Brown, A.; Douglas, F.; Green, M.A.; Hunter, E.; Lonnie, M.; Johnstone, A.M.; Hardman, C.A.; Team, F.-F. The impact of the cost of living crisis and food insecurity on food purchasing behaviours and food preparation practices in people living with obesity. Appetite 2024, 196, 107255. [Google Scholar] [CrossRef] [PubMed]
- Headey, D.; Ruel, M. Food inflation and child undernutrition in low and middle income countries. Nat. Commun. 2023, 14, 5761. [Google Scholar] [CrossRef]
- Hunjra, A.I.; Tayachi, T.; Chani, M.I.; Verhoeven, P.; Mehmood, A. The moderating effect of institutional quality on the financial development and environmental quality nexus. Sustainability 2020, 12, 3805. [Google Scholar] [CrossRef]
- Ahmed, F.; Kousar, S.; Pervaiz, A.; Shabbir, A. Do institutional quality and financial development affect sustainable economic growth? Evidence from South Asian countries. Borsa Istanb. Rev. 2022, 22, 189–196. [Google Scholar] [CrossRef]
- Biadgilign, S.; Ayenew, H.Y.; Shumetie, A.; Chitekwe, S.; Tolla, A.; Haile, D.; Gebreyesus, S.H.; Deribew, A.; Gebre, B. Good governance, public health expenditures, urbanization and child undernutrition Nexus in Ethiopia: An ecological analysis. BMC Health Serv. Res. 2019, 19, 40. [Google Scholar] [CrossRef] [PubMed]
- MacLaughlin, H.L.; Friedman, A.N.; Ikizler, T.A. Nutrition in Kidney Disease: Core Curriculum 2022. Am. J. Kidney Dis. 2022, 79, 437–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Liu, Y.; Li, Y.; Luo, B.; Lin, Z.; Chen, K.; Liu, Y. Dietary patterns and cardiometabolic health: Clinical evidence and mechanism. MedComm 2023, 4, e212. [Google Scholar] [CrossRef]
- Burggraf, C.; Kuhn, L.; Zhao, Q.R.; Teuber, R.; Glauben, T. Economic growth and nutrition transition: An empirical analysis comparing demand elasticities for foods in China and Russia. J. Integr. Agric. 2015, 14, 1008–1022. [Google Scholar] [CrossRef]
- Muhammad, A.; D’Souza, A.; Meade, B.; Micha, R.; Mozaffarian, D. How income and food prices influence global dietary intakes by age and sex: Evidence from 164 countries. BMJ Glob. Health 2017, 2, e000184. [Google Scholar] [CrossRef]
- Marques, A.C.; Fuinhas, J.A.; Pais, D.F. Economic growth, sustainable development and food consumption: Evidence across different income groups of countries. J. Clean. Prod. 2018, 196, 245–258. [Google Scholar] [CrossRef]
- Sassi, F.; Devaux, M.; Cecchini, M.; Rusticelli, E. The obesity epidemic: Analysis of past and projected future trends in selected OECD countries. In OECD Health Working Papers; OECD Publishing: Paris, France, 2009; Volume 45, no. 45. [Google Scholar] [CrossRef]
- Santos, M.P.; Brewer, J.D.; Lopez, M.A.; Paz-Soldan, V.A.; Chaparro, M.P. Determinants of food insecurity among households with children in Villa el Salvador, Lima, Peru: The role of gender and employment, a cross-sectional study. BMC Public Health 2022, 22, 717. [Google Scholar] [CrossRef]
- Nwani, S.E. Air pollution trajectories and life expectancy in Nigeria. Int. J. Soc. Econ. 2022, 49, 1049–1070. [Google Scholar] [CrossRef]
- Raghupathi, V.; Raghupathi, W. The influence of education on health: An empirical assessment of OECD countries for the period 1995–2015. Arch. Public Health 2020, 78, 20. [Google Scholar] [CrossRef]
- Iqbal, S.; Ali, I. Maternal food insecurity in low-income countries: Revisiting its causes and consequences for maternal and neonatal health. J. Agric. Food Res. 2021, 3, 100091. [Google Scholar] [CrossRef]
- Otekunrin, O.A.; Otekunrin, O.A. Exploring dietary diversity, nutritional status of adolescents among farm households in Nigeria: Do higher commercialization levels translate to better nutrition? Nutr. Food Sci. 2023, 53, 500–520. [Google Scholar] [CrossRef]
- Daw, M.A. The Impact of Armed Conflict on the Epidemiological Situation of COVID-19 in Libya, Syria and Yemen. Front. Public Health 2021, 9, 667364. [Google Scholar] [CrossRef] [PubMed]
- Aderinto, N.; Olatunji, D. The consequences of Sudan’s armed conflict on public health: A closer look at the devastating impact. Int. J. Surg. Glob. Health 2023, 6, e0179. [Google Scholar] [CrossRef]
- Bollerslev, T. Reprint of: Generalized Autoregressive Conditional Heteroskedasticity. J. Econom. 1986, 31, 307–327. [Google Scholar] [CrossRef]
- Anheier, H.K.; Fröhlich, C.; List, R.A. Sub-Saharan Africa: Towards better governance and sustainability? Glob. Policy 2023, 14, 124–135. [Google Scholar] [CrossRef]
- Ekeocha, D.O.; Ogbuabor, J.E.; Ekeocha, P.C.; Orji, A. Analysis of Sectoral Outcomes and Institutional Quality Nexus in Sub-Saharan Africa. SAGE Open 2023, 13, 21582440231202577. [Google Scholar] [CrossRef]
- Shannon, C.E. A Mathematical Theory of Communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Jin, H.; Qian, X.; Chin, T.; Zhang, H. A global assessment of sustainable development based on modification of the human development index via the entropy method. Sustainability 2020, 12, 3251. [Google Scholar] [CrossRef]
- Ying, X.; Ying, P. Analysis of Green Development of Aquaculture in China Based on Entropy Method. Sustainability 2023, 15, 5585. [Google Scholar] [CrossRef]
- Li, Y.; Chen, W. Entropy method of constructing a combined model for improving loan default prediction: A case study in China. J. Oper. Res. Soc. 2021, 72, 1099–1109. [Google Scholar] [CrossRef]
- Chen, P. Effects of normalization on the entropy-based TOPSIS method. Expert Syst. Appl. 2019, 136, 33–41. [Google Scholar] [CrossRef]
- Omar, M.A.; Inaba, K. Does financial inclusion reduce poverty and income inequality in developing countries? A panel data analysis. J. Econ. Struct. 2020, 9, 37. [Google Scholar] [CrossRef]
- Sethi, D.; Acharya, D. Financial inclusion and economic growth linkage: Some cross country evidence. J. Financ. Econ. Policy 2018, 10, 369–385. [Google Scholar] [CrossRef]
- Kaufmann, D.; Kraay, A. Worldwide Governance Indicators (WGI) Project; World Bank: Washington, DC, USA, 2018. [Google Scholar]
- Gygli, J.; Haelg, S.; Potrafke, F.; Sturm, N. “Globalization Index,” KOF Swiss Economic Institute. 2023. Available online: https://kof.ethz.ch/en/forecasts-and-indicators/indicators/kof-globalisation-index.html (accessed on 18 August 2024).
- Casari, S.; Di Paola, M.; Banci, E.; Diallo, S.; Scarallo, L.; Renzo, S.; Gori, A.; Renzi, S.; Paci, M.; de Mast, Q.; et al. Changing Dietary Habits: The Impact of Urbanization and Rising Socio-Economic Status in Families from Burkina Faso in Sub-Saharan Africa. Nutrients 2022, 14, 1782. [Google Scholar] [CrossRef]
- Grajek, M.; Krupa-Kotara, K.; Białek-Dratwa, A.; Sobczyk, K.; Grot, M.; Kowalski, O.; Staśkiewicz, W. Nutrition and mental health: A review of current knowledge about the impact of diet on mental health. Front. Nutr. 2022, 9, 943998. [Google Scholar] [CrossRef]
- Bishwajit, G. Trade Liberalization, Urbanization and Nutrition Transition in Asian Countries. J. Nutr. Health Food Sci. 2014, 2, 5. [Google Scholar] [CrossRef]
- UN-FAO. Suite of Food Security Indicators. 2023. Available online: https://www.fao.org/faostat/en/#data/FS (accessed on 18 August 2024).
- World Bank. World Development Indicators|Data. World Development Indicators. 2023. Available online: https://databank.worldbank.org/source/world-development-indicators (accessed on 23 March 2020).
- WGI. World Governance Indicators. 2023. Available online: https://info.worldbank.org/governance/wgi/Home/Documents (accessed on 20 August 2024).
- Dada, J.T.; Ajide, F.M. The moderating role of institutional quality in shadow economy–pollution nexus in Nigeria. Manag. Environ. Qual. Int. J. 2021, 32, 506–523. [Google Scholar] [CrossRef]
- Azimi, M.M.; Rahman, M.M. Impact of institutional quality on ecological footprint: New insights from G20 countries. J. Clean. Prod. 2023, 423, 138670. [Google Scholar] [CrossRef]
- Abaidoo, R.; Agyapong, E.K. Environmental sustainability risk, institutional effectiveness and urbanization. Energy Environ. 2023, 34, 3055–3079. [Google Scholar] [CrossRef]
- Zulfikar, R. Estimation model and selection method of panel data regression: An overview of common effect, fixed effect, and random effect model. JEMA J. Ilm. Bid. Akunt. 2018, 9, 1–10. Available online: https://scholar.google.com/scholar?oi=bibs&cluster=193289084434328157&btnI=1&hl=en (accessed on 20 August 2024).
- Gaibulloev, K.; Sandler, T.; Sul, D. Dynamic panel analysis under cross-sectional dependence. Polit. Anal. 2014, 22, 258–273. [Google Scholar] [CrossRef]
- Everts, E. Econometric Analysis of Cross Section and Panel Data, second edition. Humor—Int. J. Humor Res. 2003, 16, 752. [Google Scholar]
- Arellano, M.; Bover, O. Another look at the instrumental variable estimation of error-components models. J. Econom. 1995, 68, 29–51. [Google Scholar] [CrossRef]
- Azimi, M.N.; Rahman, M.M. Food insecurity, environment, institutional quality, and health outcomes: Evidence from South Asia. Glob. Health 2024, 20, 21. [Google Scholar] [CrossRef] [PubMed]
- Chudik, A.; Pesaran, M.H. Common correlated effects estimation of heterogeneous dynamic panel data models with weakly exogenous regressors. J. Econom. 2015, 188, 393–420. [Google Scholar] [CrossRef]
- Ahmed, W.M.A. Stock market reactions to domestic sentiment: Panel CS-ARDL evidence. Res. Int. Bus. Financ. 2020, 54, 101240. [Google Scholar] [CrossRef]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–559. [Google Scholar] [CrossRef]
- Barassi, M.R. Microeconometrics; Methods and Applications. Econ. J. 2006, 116, F161–F162. [Google Scholar] [CrossRef]
- Beck, N.; Katz, J.N. What To Do (and Not to Do) with Time-Series Cross-Section Data. Am. Polit. Sci. Rev. 1995, 89, 634–647. [Google Scholar] [CrossRef]
- Ikpesu, F.; Vincent, O.; Dakare, O. Growth effect of trade and investment in Sub-Saharan Africa countries: Empirical insight from panel corrected standard error (PCSE) technique. Cogent Econ. Financ. 2019, 7, 1607127. [Google Scholar] [CrossRef]
- Le, T.H.; Nguyen, C.P. Is energy security a driver for economic growth? Evidence from a global sample. Energy Policy 2019, 129, 436–451. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, K.; Khanam, R. Socio-economic factors affecting high infant and child mortality rates in selected African countries: Does globalisation play any role? Glob. Health 2022, 18, 69. [Google Scholar] [CrossRef]
- Dumitrescu, E.I.; Hurlin, C. Testing for Granger non-causality in heterogeneous panels. Econ. Model. 2012, 29, 1450–1460. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross-sectional dependence in panels. Empir. Econ. 2021, 60, 13–50. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Westerlund, J.; Edgerton, D.L. A panel bootstrap cointegration test. Econ. Lett. 2007, 97, 185–190. [Google Scholar] [CrossRef]
- Wu, G. Dietary protein intake and human health. Food Funct. 2016, 7, 1251–1265. [Google Scholar] [CrossRef]
- Amine, E.K.; Baba, N.H.; Belhadj, M.; Deurenberg-Yap, M.; Djazayery, A.; Forrestre, T.; Galuska, D.A.; Herman, S.; James, W.P.T.; M’Buyamba Kabangu, J.R.; et al. Diet, nutrition and the prevention of chronic diseases. World Health Organ.—Tech. Rep. Ser. 2003, 916, 1–149. [Google Scholar] [CrossRef]
- Nishida, C.; Uauy, R.; Kumanyika, S.; Shetty, P. The Joint WHO/FAO Expert Consultation on diet, nutrition and the prevention of chronic diseases: Process, product and policy implications. Public Health Nutr. 2004, 7, 245–250. [Google Scholar] [CrossRef]
- Azimi, M.N.; Rahman, M.M.; Nghiem, S. Linking governance with environmental quality: A global perspective. Sci. Rep. 2023, 13, 15086. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Sassi, M. A Spatial, Non-parametric Analysis of the Determinants of Food Insecurity in Sub-Saharan Africa. Afr. Dev. Rev. 2015, 27, 92–105. [Google Scholar] [CrossRef]
- Katusiime, L. Investigating spillover effects between foreign exchange rate volatility and commodity price volatility in Uganda. Economies 2019, 7, 1. [Google Scholar] [CrossRef]
- Kao, C. Spurious regression and residual-based tests for cointegration in panel data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Hussen, M.S. Institutional quality and economic growth in Sub-Saharan Africa: A panel data approach. J. Econ. Dev. 2023, 25, 332–348. [Google Scholar] [CrossRef]
- Akinlo, T. Does institutional quality modulate the effect of capital flight on economic growth in sub-Saharan Africa? J. Money Laund. Control 2024, 27, 60–75. [Google Scholar] [CrossRef]
- Beyene, A.B. Governance quality and economic growth in Sub-Saharan Africa: The dynamic panel model. J. Econ. Adm. Sci. 2022. ahead-of-print. [Google Scholar] [CrossRef]
- Owolade, A.J.-J.; Abdullateef, R.O.; Adesola, R.O.; Olaloye, E.D. Malnutrition: An underlying health condition faced in sub Saharan Africa: Challenges and recommendations. Ann. Med. Surg. 2022, 82, 104769. [Google Scholar] [CrossRef]
- Lo, Y.T.; Chang, Y.H.; Lee, M.S.; Wahlqvist, M.L. Health and nutrition economics: Diet costs are associated with diet quality. Asia Pac. J. Clin. Nutr. 2009, 18, 598–604. [Google Scholar]
- Mukhopadhyay, K.; Thomassin, P.J. Economic impact of adopting a healthy diet in Canada. J. Public Health 2012, 20, 639–652. [Google Scholar] [CrossRef]
- Mahran, H.A. The impact of governance on economic growth: Spatial econometric approach. Rev. Econ. Polit. Sci. 2023, 8, 37–53. [Google Scholar] [CrossRef]
- Azimi, M.N.; Rahman, M.M.; Nghiem, S. A global perspective on the governance-health nexus. BMC Health Serv. Res. 2023, 23, 1235. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, A.D.; Cubillos, T.J.P.; Bopushev, S.T.; Bozsik, N.; Fehér, I.; Lakner, Z. Effects of Corruption Control on the Number of Undernourished People in Developing Countries. Foods 2022, 11, 924. [Google Scholar] [CrossRef] [PubMed]
- Fotio, H.K.; Gouenet, R.M.; Tedga, P.N. Beyond the direct effect of economic growth on child mortality in Sub-Saharan Africa: Does environmental degradation matter? Sustain. Dev. 2023, 32, 588–607. [Google Scholar] [CrossRef]
- Jahanger, A.; Usman, M.; Murshed, M.; Mahmood, H.; Balsalobre-Lorente, D. The linkages between natural resources, human capital, globalization, economic growth, financial development, and ecological footprint: The moderating role of technological innovations. Resour. Policy 2022, 76, 102569. [Google Scholar] [CrossRef]
- Colman, G.; Dave, D. Unemployment and Health Behaviors over the Business Cycle: A Longitudinal View. South. Econ. J. 2018, 85, 93–120. [Google Scholar] [CrossRef]
- Hughes, A.; Kumari, M. Unemployment, underweight, and obesity: Findings from Understanding Society (UKHLS). Prev. Med. 2017, 97, 19–25. [Google Scholar] [CrossRef]
- Norström, F.; Virtanen, P.; Hammarström, A.; Gustafsson, P.E.; Janlert, U. How does unemployment affect self-Assessed health? A systematic review focusing on subgroup effects. BMC Public Health 2014, 14, 1310. [Google Scholar] [CrossRef]
- Bashour, H.N. Survey of dietary habits of in-school adolescents in Damascus, Syrian Arab Republic. East. Mediterr. Health J. 2004, 10, 853–862. [Google Scholar] [CrossRef]
- Huang, T.T.-K.; Sorensen, D.; Davis, S.; Frerichs, L.; Brittin, J.; Celentano, J.; Callahan, K.; Trowbridge, M.J. Healthy eating design guidelines for school architecture. Prev. Chronic Dis. 2013, 10, E27. [Google Scholar] [CrossRef] [PubMed]
- Hadipour, A.; Delavari, S.; Bayati, M. What is the role of institutional quality in health outcomes? A panel data analysis on 158 countries from 2001–2020. Heliyon 2023, 9, e20251. [Google Scholar] [CrossRef] [PubMed]
- Guan, L.; Ali, Z.; Uktamov, K.F. Exploring the impact of social capital, institutional quality and political stability on environmental sustainability: New insights from NARDL-PMG. Heliyon 2024, 10, e24650. [Google Scholar] [CrossRef]
- Aziz, A.; Pervaiz, M.; Khalid, A.; Khan, A.Z.; Rafique, G. Dietary practices of school children in Sindh, Pakistan. Nutr. Health 2018, 24, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Kh’ng, K.; Chang, C.C.; Hsu, S.H. Implications of food and nutrition security on household food expenditure: The case of Malaysia. Agric. Food Secur. 2022, 11, 30. [Google Scholar] [CrossRef]
- Faruk, B.U.; Haque, M.I.; Tausif, M.R.; Khan, M.R. The association between health expenditure, institutions, and economic growth in MENA countries. Health Promot. Perspect. 2022, 12, 92–100. [Google Scholar] [CrossRef]
- Tapsoba, Y.; Silim, A.; Frimpong, K.A.; Barroy, H. Does Public Financial Management Save Life? Evidence from a Quantitative Review of PFM and Health Outcomes in Sub-Saharan African Countries. Health Syst. Reform 2024, 10, 2298190. [Google Scholar] [CrossRef]
- Onofrei, M.; Vatamanu, A.F.; Vintilă, G.; Cigu, E. Government health expenditure and public health outcomes: A comparative study among eu developing countries. Int. J. Environ. Res. Public Health 2021, 18, 10725. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.K.; Lane, S.R. Government Health Expenditure and Public Health Outcomes: A Comparative Study among 17 Countries and Implications for US Health Care Reform. Am. Int. J. Contemp. Res. 2013, 3, 8–13. [Google Scholar]
- Andersen, C.T.; Cain, J.S.; Chaudhery, D.N.; Ghimire, M.; Higashi, H.; Tandon, A. Assessing public financing for nutrition in Bhutan, Nepal and Sri Lanka. Matern. Child Nutr. 2022, 18, e13320. [Google Scholar] [CrossRef]
- Fani, D.C.R.; Tabetando, R.; Henrietta, U.U.; Francois, S. The Impact of Government Spending and Food Imports on Nutritional Status in Nigeria: A Dynamic OLS Application and Simulation. Int. J. Food Agric. Econ. 2022, 10, 55–75. Available online: https://ageconsearch.umn.edu/record/319343 (accessed on 22 August 2024).
- Sanyal, R.; Banerjee, S. Effects of State Level Government Spending in Health Sector: Some Econometric Evidences. Rev. Manag. 2018, 8, 17–25. Available online: https://search.proquest.com/docview/2178088011?pq-origsite=gscholar (accessed on 22 August 2024).
- Gopakumar, K.U.; Pandit, V. Production, Procurement and Inflation: A Market Model for Foodgrains. Margin 2014, 8, 431–456. [Google Scholar] [CrossRef]
- Olaoye, O.O.; Omokanmi, O.J.; Tabash, M.I.; Olofinlade, S.O.; Ojelade, M.O. Soaring inflation in sub-Saharan Africa: A fiscal root? Qual. Quant. 2024, 58, 987–1009. [Google Scholar] [CrossRef] [PubMed]
- Abaidoo, R.; Agyapong, E.K. Financial development and institutional quality among emerging economies. J. Econ. Dev. 2022, 24, 198–216. [Google Scholar] [CrossRef]
- Munyenyembe, B.; Chen, Y.Y.; Chou, W.C. The Moderating Role of Regulatory Institutional Environment in the Relationship Between Emotional Job Demands and Employee Absenteeism Likelihood of Healthcare Workers. Evidence From the Low-Income Country Context. Front. Psychol. 2020, 11, 1052. [Google Scholar] [CrossRef]
- Amporfu, E.; Nonvignon, J.; Ampadu, S. Effect of Institutional Factors on the Quality of Ghana’s Healthcare Delivery. J. Afr. Dev. 2013, 15, 99–123. [Google Scholar] [CrossRef]
- Sreenu, N. Effect of Exchange Rate volatility and inflation on stock market returns Dynamics—Evidence from India. Int. J. Syst. Assur. Eng. Manag. 2023, 14, 836–843. [Google Scholar] [CrossRef]
- Tibrewal, K.; Chaudhuri, S. Institutional quality and public healthcare. Theor. Appl. Econ. 2022, 29, 63–82. [Google Scholar]
- İlgün, G.; Konca, M.; Sönmez, S. The Relationship Between the Health Transformation Program and Health Expenditures: Evidence From an Autoregressive Distributed Lag Testing Approach. Value Health Reg. Issues 2023, 38, 101–108. [Google Scholar] [CrossRef]
- Weiser, S.D.; Palar, K.; Hatcher, A.M.; Young, S.; Frongillo, E.A.; Laraia, B. Food insecurity and health: A Conceptual framework. In Food Insecurity Public Health; CRC Press: Boca Raton, FL, USA, 2015; pp. 23–50. [Google Scholar]
- Banerjee, S.; Radak, T.; Khubchandani, J.; Dunn, P. Food Insecurity and Mortality in American Adults: Results From the NHANES-Linked Mortality Study. Health Promot. Pract. 2021, 22, 204–214. [Google Scholar] [CrossRef] [PubMed]
- Ogunniyi, A.I.; Mavrotas, G.; Olagunju, K.O.; Fadare, O.; Adedoyin, R. Governance quality, remittances and their implications for food and nutrition security in Sub-Saharan Africa. World Dev. 2020, 127, 104752. [Google Scholar] [CrossRef]
- Soko, N.N.; Kaitibie, S.; Ratna, N.N. Does institutional quality affect the impact of public agricultural spending on food security in Sub-Saharan Africa and Asia? Glob. Food Sec. 2023, 36, 100668. [Google Scholar] [CrossRef]
- Pereira, R.A.; Hodge, A. Food insecurity: A critical public health nutrition concern. Public Health Nutr. 2015, 18, 2893–2894. [Google Scholar] [CrossRef]
- Brown, A.G.M.; Esposito, L.E.; Fisher, R.A.; Nicastro, H.L.; Tabor, D.C.; Walker, J.R. Food insecurity and obesity: Research gaps, opportunities, and challenges. Transl. Behav. Med. 2019, 9, 980–987. [Google Scholar] [CrossRef]
- Pasha, V.C.; Gerchow, L.; Lyndon, A.; Clark-Cutaia, M.; Wright, F. Understanding Food Insecurity as a Determinant of Health in Pregnancy Within the United States: An Integrative Review. Health Equity 2024, 8, 206–225. [Google Scholar] [CrossRef]
- Codjoe, S.N.A.; Okutu, D.; Abu, M. Urban Household Characteristics and Dietary Diversity. Food Nutr. Bull. 2016, 37, 202–218. [Google Scholar] [CrossRef]
- Li, X.; Lopez, R.A. Food environment and weight outcomes: A stochastic frontier approach. Appl. Econ. 2016, 48, 4526–4537. [Google Scholar] [CrossRef]
- Hovhannisyan, V.; Devadoss, S. Effects of urbanization on food demand in China. Empir. Econ. 2020, 58, 699–721. [Google Scholar] [CrossRef]
- Miao, J.; Wu, X. Urbanization, socioeconomic status and health disparity in China. Health Place 2016, 42, 87–95. [Google Scholar] [CrossRef]
- Kennedy, G.; Nantel, G.; Shetty, P. Globalization of food systems in developing countries: A synthesis of country case studies. Glob. Food Syst. Dev. Ctries. Impact Food Secur. Nutr. 2004, 83, 1–25. [Google Scholar]
- Brunelle, T.; Dumas, P.; Souty, F. The Impact of Globalization on Food and Agriculture: The Case of the Diet Convergence. J. Environ. Dev. 2014, 23, 41–65. [Google Scholar] [CrossRef]
- Zhai, F.; Fu, D.; Du, S.; Ge, K.; Chen, C.; Popkin, B.M. What is China doing in policy-making to push back the negative aspects of the nutrition transition? Public Health Nutr. 2002, 5, 269–273. [Google Scholar] [CrossRef] [PubMed]
- Bogin, B.; Azcorra, H.; Wilson, H.J.; Vázquez-Vázquez, A.; Avila-Escalante, M.L.; Varela-Silva, I.; Dickinson, F.; Castillo-Burguete, M.T. Globalization and children’s diets: The case of Maya of Mexico and central America. Anthropol. Rev. 2014, 77, 11–32. [Google Scholar] [CrossRef]
- Kennedy, G.; Nantel, G.; Shetty, P. Globalization of food systems in developing countries: Impact on food security and nutrition. FAO Food Nutr. Pap. 2004, 83, 1–300. [Google Scholar]
Variable | Obs. | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
PP | 924 | 41.443 | 14.049 | 23.410 | 67.940 |
PF | 924 | 33.636 | 16.909 | 13.700 | 47.240 |
PK | 924 | 2079.19 | 328.797 | 1522.11 | 2387.000 |
EG | 924 | 1881.997 | 2264.555 | 255.100 | 14,222.550 |
UR | 924 | 8.180 | 6.908 | 0.320 | 37.850 |
SR | 924 | 99.722 | 11.374 | 45.400 | 144.730 |
GX | 924 | 3.757 | 1.110 | 0.620 | 7.400 |
GS | 924 | 1.623 | 27.368 | −28.840 | 597.280 |
InQ | 924 | 0.343 | 0.217 | 0.000 | 0.892 |
FI | 924 | 21.994 | 13.410 | 2.700 | 70.900 |
URB | 924 | 39.971 | 16.431 | 8.680 | 90.740 |
GI | 924 | 46.649 | 3.076 | 40.230 | 49.728 |
Variables | Correlation Analysis | VIF | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
PP | PF | PK | EG | UR | SR | GX | GS | InQ | FI | URB | GI | Stat. | 1/VIF | |
PP | 1.00 | |||||||||||||
PF | 0.62 | 1.00 | ||||||||||||
PK | 0.76 | 0.65 | 1.00 | |||||||||||
EG | 0.26 | 0.25 | 0.15 | 1.00 | 3.57 | 0.28 | ||||||||
UR | 0.27 | 0.23 | 0.17 | 0.44 | 1.00 | 1.64 | 0.61 | |||||||
SR | −0.04 | −0.03 | 0.11 | 0.03 | −0.06 | 1.00 | 1.05 | 0.95 | ||||||
GX | 0.24 | 0.14 | 0.27 | 0.36 | 0.46 | −0.07 | 1.00 | 1.35 | 0.74 | |||||
GS | −0.06 | 0.07 | −0.07 | −0.04 | 0.03 | −0.04 | 0.02 | 1.00 | 1.02 | 0.97 | ||||
InQ | 0.22 | 0.09 | 0.18 | 0.40 | 0.23 | 0.03 | 0.14 | −0.11 | 1.00 | 1.26 | 0.79 | |||
FI | −0.29 | −0.12 | −0.38 | −0.36 | 0.04 | −0.19 | −0.03 | 0.07 | −0.27 | 1.00 | 1.35 | 0.73 | ||
URB | 0.11 | 0.37 | 0.25 | 0.56 | 0.37 | −0.02 | 0.27 | −0.04 | 0.16 | −0.15 | 1.00 | 1.57 | 0.63 | |
GI | 0.24 | 0.27 | 0.18 | 0.82 | 0.49 | 0.05 | 0.38 | −0.02 | 0.34 | −0.34 | 0.54 | 1.00 | 3.43 | 0.29 |
Cross-Sectional Dependence Test | CD-Test | p-Value | Corr | Abs (corr) |
---|---|---|---|---|
PP | 46.23 *** | 0.000 | 0.328 | 0.558 |
PF | 29.19 *** | 0.000 | 0.207 | 0.439 |
PK | 35.67 *** | 0.000 | 0.253 | 0.587 |
EG | 56.46 *** | 0.000 | 0.401 | 0.624 |
UR | 16.30 *** | 0.000 | 0.116 | 0.473 |
SR | 8.88 *** | 0.000 | 0.063 | 0.462 |
GX | 14.39 *** | 0.000 | 0.102 | 0.344 |
GS | 17.32 *** | 0.000 | 0.123 | 0.235 |
InQ | 1.05 | 0.293 | 0.007 | 0.421 |
FI | 20.22 *** | 0.000 | 0.143 | 0.541 |
URB | 112.20 *** | 0.000 | 0.796 | 0.962 |
GI | 32.23 *** | 0.000 | 0.229 | 0.523 |
Slope heterogeneity test | Delta | p-value | Adj-delta | p-value |
Model 1–PP | 11.593 *** | 0.000 | 16.800 *** | 0.000 |
Model 2–PF | 9.686 *** | 0.000 | 14.036 *** | 0.000 |
Model 3–PK | 9.154 *** | 0.000 | 13.265 *** | 0.000 |
Variables | CADF Test | CIPS Test | ||
---|---|---|---|---|
Level | First-diff. | Level | First-diff. | |
t-stat. | t-stat. | Test-stat. | Test-stat. | |
PP | −2.196 | −3.317 *** | −2.101 | −4.026 *** |
PF | −1.921 | −3.404 *** | −2.519 | −4.704 *** |
PK | −2.084 | −2.991 *** | −2.683 | −4.689 *** |
EG | −2.116 | −2.665 *** | −2.168 | −3.603 *** |
UR | −2.156 | −2.769 *** | −1.901 | −3.042 *** |
SR | −2.467 | −2.765 *** | −2.010 | −3.182 *** |
GX | −3.598 *** | −3.859 *** | −3.086 *** | −5.019 *** |
GS | −3.111 *** | −3.877 *** | −3.965 *** | −5.432 *** |
InQ | −2.907 *** | −3.113 *** | −2.796 *** | −4.474 *** |
FI | −2.140 | −2.869 *** | −1.254 | −3.421 *** |
URB | −1.567 | −3.888 *** | −1.597 | −3.510 *** |
GI | −2.154 | −2.908 *** | −2.255 | −4.332 *** |
Models Estimated | Model 1–PP | Model 2–PF | Model 3–PK | |||
---|---|---|---|---|---|---|
Statistics | p-Value | Statistics | p-Value | Statistics | p-Value | |
Pedroni’s results | ||||||
Modified variance ratio | −5.805 *** | 0.000 | −5.361 *** | 0.000 | −5.247 *** | 0.000 |
Modified Phillips–Perron t | 4.676 *** | 0.000 | 4.762 *** | 0.000 | 5.639 *** | 0.000 |
Phillips–Perron t | −7.679 *** | 0.000 | −5.191 *** | 0.000 | −3.619 *** | 0.001 |
Augmented Dickey–Fuller t | −6.425 *** | 0.000 | −4.186 *** | 0.000 | −3.923 *** | 0.000 |
Westerlund’s results | ||||||
Variance ratio | −1.584 * | 0.056 | −1.803 ** | 0.038 | −1.665 ** | 0.047 |
Variables | PCSE Model Estimates | FGLS Model Estimates | ||||
---|---|---|---|---|---|---|
Model 1–PP | Model 1–PF | Model 1–PK | Model 1–PP | Model 1–PF | Model 1–PK | |
EG | 0.1884 *** (4.289) | 0.2985 *** (4.416) | 0.443 *** (5.283) | 0.1884 *** (4.011) | 0.2985 *** (4.117) | 0.443 *** (5.617) |
UR | −0.449 *** (−8.600) | −0.274 *** (−7.742) | −0.137 *** (−6.818) | −0.449 *** (−5.880) | −0.274 *** (−2.897) | −0.137 *** (−3.051) |
SR | 0.122 *** (3.758) | 0.053 * (1.952) | 1.485 *** (4.629) | 0.122 *** (3.294) | 0.053 *** (3.156) | 1.485 * (1.817) |
GX | 1.948 *** (8.944) | 0.131 *** (3.419) | 1.559 *** (12.882) | 1.948 *** (4.513) | 0.131 *** (3.246) | 1.559 *** (8.465) |
GS | −0.524 *** (−2.577) | −0.513 *** (−3.638) | −0.568 *** (−2.700) | −0.524 ** (−2.571) | 0.513 *** (2.675) | −0.568 * (−1.692) |
InQ | 4.521 *** (4.514) | 2.064 *** (4.056) | 4.661 *** (6.037) | 4.521 ** (2.117) | 2.064 *** (4.024) | 4.661 *** (2.839) |
FI | −0.329 *** (−18.547) | −0.120 *** (−3.327) | −1.593 *** (−18.972) | −0.329 *** (−9.206) | −0.120 *** (−2.720) | −1.593 *** (−13.432) |
URB | 0.059 *** (2.715) | 0.326 *** (12.352) | 0.178 *** (11.489) | 0.059 * (1.890) | 0.326 *** (8.381) | 5.178 *** (7.471) |
GI | 0.606 ** (2.232) | 0.720 ** (2.477) | 0.678 *** (3.235) | 0.606 *** (3.142) | 0.720 *** (3.097) | 0.678 *** (4.998) |
Constant | 70.570 *** (20.079) | 46.125 *** (16.319) | 57.038 *** (49.111) | 70.570 *** (16.172) | 46.125 *** (8.542) | 57.038 *** (20.341) |
Post-estimations | ||||||
Observations | 924 | 924 | 924 | 924 | 924 | 924 |
R-squared | 0.617 | 0.555 | 0.498 | 0.621 | 0.644 | 0.512 |
Number of units | 44 | 44 | 44 | 44 | 44 | 44 |
Variables | PCSE Model Estimates | |||||||
---|---|---|---|---|---|---|---|---|
InQ on PP–EG Nexus | InQ on PP–UR Nexus | InQ on PP–SR Nexus | InQ on PP–GX Nexus | InQ on PP–GS Nexus | InQ on PP–FI Nexus | InQ on PP–URB Nexus | InQ on PP–FI Nexus | |
EG | 0.1878 *** | 0.1709 *** | 0.1825 *** | 0.1893 *** | 0.1799 *** | 0.1862 ** | 0.1891 ** | 0.1835 *** |
(6.33) | (3.40) | (2.88) | (3.34) | (3.57) | (2.44) | (2.52) | (9.25) | |
UR | −0.406 *** | −0.442 *** | −0.445 *** | −0.477 *** | −0.448 *** | −0.467 *** | −0.483 *** | −0.364 *** |
(−9.36) | (−7.38) | (−8.59) | (−9.29) | (−7.95) | (−6.61) | (−9.12) | (−7.20) | |
SR | 0.142 *** | 0.145 *** | 0.160 *** | 0.141 *** | 0.134 *** | 0.142 *** | 0.133 *** | 0.146 *** |
(4.25) | (3.45) | (4.92) | (3.90) | (3.91) | (3.55) | (3.89) | (4.27) | |
GX | 0.176 *** | 0.195 *** | 0.194 *** | 0.103 *** | 0.154 *** | 0.191 *** | 0.171 *** | 0.199 *** |
(10.58) | (8.27) | (8.57) | (7.76) | (8.53) | (10.44) | (8.59) | (10.85) | |
GS | −0.528 *** | −0.526 *** | −0.524 *** | −0.523 ** | −0.536 *** | −0.522 ** | −0.528 *** | −0.522 ** |
(−2.91) | (−2.72) | (−2.62) | (−2.49) | (−5.29) | (−2.37) | (−2.93) | (−2.47) | |
InQ | 4.927 *** | 4.383 *** | 4.436 *** | 4.105 *** | 4.444 *** | 4.228 *** | 4.200 *** | 4.510 *** |
(3.12) | (3.37) | (3.97) | (3.25) | (3.16) | (6.83) | (8.64) | (4.70) | |
FI | −0.430 *** | −0.316 *** | −0.354 *** | −0.336 *** | −0.331 *** | −0.350 ** | −0.367 *** | −0.394 *** |
(−8.55) | (−6.87) | (−8.67) | (−7.49) | (−8.27) | (−2.29) | (−3.36) | (−8.49) | |
URB | 0.044 *** | 0.082 *** | 0.058 *** | 0.054 ** | 0.060 *** | 0.024 *** | 0.055 *** | 0.046 *** |
(2.65) | (3.68) | (2.79) | (2.36) | (2.79) | (3.31) | (7.96) | (2.79) | |
GI | 0.821 *** | 0.480 *** | 0.637 ** | 0.332 *** | 0.550 ** | 0.484 *** | 0.393 *** | 0.431 *** |
(3.96) | (3.69) | (2.39) | (2.77) | (2.07) | (10.24) | (5.96) | (10.79) | |
InQ × EG | 1.047 *** | |||||||
(4.37) | ||||||||
InQ × UR | −0.087 *** | |||||||
(−9.57) | ||||||||
InQ × SR | 1.752 *** | |||||||
(4.31) | ||||||||
InQ × GX | 2.396 *** | |||||||
(8.57) | ||||||||
InQ × GS | −0.00058 *** | |||||||
(−5.79) | ||||||||
InQ × FI | −0.0007 *** | |||||||
(−15.38) | ||||||||
InQ × URB | 0.832 *** | |||||||
(9.354) | ||||||||
InQ × GI | 1.00014 *** | |||||||
(7.95) | ||||||||
Constant | 79.378 *** | 65.417 *** | 94.005 *** | 60.146 *** | 71.392 *** | 58.194 *** | 84.998 *** | 76.554 *** |
(22.59) | (19.23) | (12.98) | (17.63) | (20.21) | (20.17) | (18.11) | (20.64) | |
Post-estimations | ||||||||
Observations | 924 | 924 | 924 | 924 | 924 | 924 | 924 | 924 |
R-squared | 0.326 | 0.230 | 0.216 | 0.235 | 0.232 | 0.327 | 0.236 | 0.305 |
Number of ID | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
Variables | PCSE Model Estimates | |||||||
---|---|---|---|---|---|---|---|---|
InQ on PF–EG Nexus | InQ on PF–UR Nexus | InQ on PF–SR Nexus | InQ on PF–GX Nexus | InQ on PF–GS Nexus | InQ on PF–FI Nexus | InQ on PF–URB Nexus | InQ on PF–GI Nexus | |
EG | 0.2927 *** | 0.2841 ** | 0.2799 ** | 0.2833 *** | 0.2785 ** | 0.2789 *** | 0.2872 *** | 0.2915 *** |
(20.60) | (2.03) | (2.27) | (2.92) | (2.25) | (4.81) | (3.14) | (9.37) | |
UR | −0.267 *** | −0.259 *** | −0.262 *** | −0.301 *** | −0.272 *** | −0.300 *** | −0.319 *** | −0.286 *** |
(−4.89) | (−8.43) | (−7.39) | (−8.38) | (−6.88) | (−7.62) | (−9.08) | (−2.75) | |
SR | 0.058 *** | 0.049 * | 0.055 *** | 0.072 *** | 0.071 ** | 0.023 | 0.067 ** | 0.098 *** |
(3.06) | (1.86) | (6.13) | (2.58) | (2.47) | (0.820) | (2.04) | (3.64) | |
GX | 1.003 *** | 1.033 ** | 1.808 ** | 1.122 *** | 1.431 *** | 1.195 *** | 1.293 ** | 1.706 *** |
(5.32) | (2.10) | (2.48) | (5.37) | (1.34) | (0.65) | (2.27) | (5.21) | |
GS | −0.505 *** | −0.511 *** | −0.512 *** | −0.514 *** | −0.544 *** | −0.516 *** | −0.507 *** | −0.516 *** |
(−3.31) | (−3.55) | (−3.59) | (−2.68) | (−5.03) | (−2.73) | (−3.39) | (−2.80) | |
InQ | 2.185 *** | 2.553 *** | 2.905 *** | 2.666 *** | 2.627 *** | 2.986 *** | 2.899 *** | 2.499 *** |
(4.04) | (4.78) | (5.87) | (5.83) | (3.45) | (6.56) | (4.01) | (6.81) | |
FI | −0.222 *** | −0.212 *** | −0.287 *** | −0.227 *** | −0.223 *** | −0.239 *** | −0.270 *** | −0.240 *** |
(−4.02) | (−2.89) | (−5.31) | (−3.77) | (−3.24) | (−7.03) | (−4.91) | (−8.38) | |
URB | 0.306 *** | 0.311 *** | 0.330 *** | 0.331 *** | 0.326 *** | 0.379 *** | 0.363 * | 0.407 *** |
(5.02) | (6.634) | (4.677) | (6.638) | (4.224) | (5.364) | (6.692) | (8.648) | |
GI | 0.735 *** | 0.727 *** | 0.635 ** | 0.745 *** | 0.802 *** | 0.704 *** | 0.713 | 0.824 *** |
(3.21) | (3.75) | (2.11) | (3.65) | (2.72) | (5.46) | (3.19) | (7.64) | |
InQ × EG | 1.215 *** | |||||||
(6.89) | ||||||||
InQ × UR | −0.097 *** | |||||||
(−4.89) | ||||||||
InQ × SR | 2.064 *** | |||||||
(5.80) | ||||||||
InQ × GX | 1.187 *** | |||||||
(5.92) | ||||||||
InQ × GS | −0.0009 *** | |||||||
(−5.45) | ||||||||
InQ × FI | −0.084 *** | |||||||
(−5.38) | ||||||||
InQ × URB | 1.093 *** | |||||||
(11.27) | ||||||||
InQ × GI | 1.006 *** | |||||||
(3.14) | ||||||||
Constant | 61.889 *** | 42.774 *** | 110.482 *** | 35.911 *** | 47.318 *** | 27.903 *** | 65.068 *** | 57.205 *** |
(19.46) | (15.96) | (9.92) | (10.82) | (16.27) | (8.13) | (16.46) | (19.90) | |
Observations | 924 | 924 | 924 | 924 | 924 | 924 | 924 | 924 |
R-squared | 0.428 | 0.167 | 0.215 | 0.179 | 0.199 | 0.342 | 0.197 | 0.397 |
Number of ID | 44 | 44 | 44 | 44 | 44 | 44 | 44 | 44 |
Direction of Causality | Model 1–PP | Model 2–PF | Model 3–PK | ||||||
---|---|---|---|---|---|---|---|---|---|
W-bar | Z-bar | p-Value | W-bar | Z-bar | p-Value | W-bar | Z-bar | p-Value | |
EG → PDH | 4.511 | 16.471 *** | 0.000 | 2.330 | 6.239 *** | 0.000 | 3.730 | 12.807 *** | 0.000 |
UR → PDH | 2.377 | 6.461 *** | 0.000 | 2.166 | 5.470 *** | 0.000 | 2.116 | 5.234 *** | 0.000 |
SR → PDH | 2.786 | 8.379 *** | 0.000 | 2.783 | 8.365 *** | 0.000 | 3.782 | 13.048 *** | 0.000 |
GX → PDH | 2.876 | 8.799 *** | 0.000 | 2.465 | 6.875 *** | 0.000 | 2.432 | 6.720 *** | 0.000 |
GS → PDH | 1.501 | 2.353 ** | 0.018 | 2.874 | 5.586 *** | 0.000 | 2.324 | 6.585 *** | 0.000 |
InQ → PDH | 3.628 | 12.327 *** | 0.000 | 2.267 | 5.945 *** | 0.000 | 3.068 | 9.699 *** | 0.000 |
FI → PDH | 7.667 | 31.275 | 0.000 | 6.990 | 28.097 *** | 0.000 | 17.819 | 78.888 *** | 0.000 |
URB → PDH | 6.289 | 24.811 *** | 0.000 | 3.942 | 13.802 *** | 0.000 | 6.028 | 23.587 *** | 0.000 |
FI → PDH | 2.647 | 7.727 *** | 0.000 | 2.547 | 7.258 *** | 0.000 | 2.985 | 9.311 *** | 0.000 |
Feedback response | |||||||||
EG ← PDH | 3.410 | 11.308 *** | 0.000 | 2.851 | 8.684 *** | 0.000 | 3.188 | 10.266 *** | 0.000 |
UR ← PDH | 2.242 | 5.829 *** | 0.000 | 2.688 | 7.919 *** | 0.000 | 1.814 | 3.822 *** | 0.000 |
SR ← PDH | 2.682 | 7.891 *** | 0.000 | 2.224 | 5.744 *** | 0.000 | 2.183 | 5.549 *** | 0.000 |
GX ← PDH | 2.934 | 9.073 *** | 0.000 | 1.391 | 1.837 * | 0.066 | 1.860 | 4.033 *** | 0.000 |
GS ← PDH | 1.227 | 1.067 | 0.285 | 0.987 | −0.056 | 0.954 | 1.359 | 1.487 | 0.191 |
InQ ← PDH | 1.493 | 2.313 ** | 0.020 | 1.925 | 4.340 *** | 0.000 | 1.821 | 3.850 *** | 0.000 |
FI ← PDH | 6.030 | 23.593 *** | 0.000 | 3.157 | 10.119 *** | 0.000 | 13.853 | 60.287 *** | 0.000 |
URB ← PDH | 5.872 | 22.854 *** | 0.000 | 3.121 | 9.948 *** | 0.000 | 3.178 | 10.218 *** | 0.000 |
FI ← PDH | 2.305 | 6.120 *** | 0.000 | 2.374 | 6.449 *** | 0.000 | 2.135 | 5.325 *** | 0.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Azimi, M.N.; Rahman, M.M.; Maraseni, T. The Interplay of Dietary Habits, Economic Factors, and Globalization: Assessing the Role of Institutional Quality. Nutrients 2024, 16, 3116. https://doi.org/10.3390/nu16183116
Azimi MN, Rahman MM, Maraseni T. The Interplay of Dietary Habits, Economic Factors, and Globalization: Assessing the Role of Institutional Quality. Nutrients. 2024; 16(18):3116. https://doi.org/10.3390/nu16183116
Chicago/Turabian StyleAzimi, Mohammad Naim, Mohammad Mafizur Rahman, and Tek Maraseni. 2024. "The Interplay of Dietary Habits, Economic Factors, and Globalization: Assessing the Role of Institutional Quality" Nutrients 16, no. 18: 3116. https://doi.org/10.3390/nu16183116
APA StyleAzimi, M. N., Rahman, M. M., & Maraseni, T. (2024). The Interplay of Dietary Habits, Economic Factors, and Globalization: Assessing the Role of Institutional Quality. Nutrients, 16(18), 3116. https://doi.org/10.3390/nu16183116