Association of Dietary Patterns, Suspected Sarcopenia, and Frailty Syndrome among Older Adults in Poland—A Cross-Sectional Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Sample
2.2. Questionnaire
- HGS. A standard hydraulic hand dynamometer with 90 kg capacity (12-0240; Fabricati Enterprises, Inc.) was used in our measurements. The subjects were asked to sit comfortably with their knees, pelvis, and back positioned at approximately 90 degrees. The elbow of the dominant subject’s hand was flexed to a 90-degree angle, the forearm was neutral, the wrist was kept between 0 and 15 degrees of ulnar deviation, and the shoulder was abducted and neutrally rotated. The dynamometer was positioned vertically and in line with the forearm. The subject was allowed one trial before the actual measurement. The hand grip strength was recorded when the subject was instructed to squeeze the dynamometer’s handle with maximal strength. The HGS value was the average of the three trials, with a 15 s intertrial rest interval between each trial [42].
- FTSST. This test consists of standing independently from a chair five times as quickly as possible without pushing off the chair. The subject kept both arms crossed in front of the chest and sat comfortably with the back supported by the back of the chair, and the knees were required to be maximally extended when standing from the chair. The person was given instructions about the task prior to the test and had two opportunities to practice. A stopwatch was used to record the performance in seconds from the starting seated position to the terminal seated position [43].
- GST. Gait speed was measured over a 4 m flat course at the subject’s usual pace and is expressed in m/s. The subject was positioned at the starting point in a standing, relaxed position and, at the start signal, was asked to walk a fixed distance [44].
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variables | β * | Exp(β) * | 95% CI * | p-Value ** | |
---|---|---|---|---|---|
Model 1. SARC-F (ref. < 4 points) | |||||
Factor 1 | 0.74 | 2.10 | 0.70 | 6.29 | 0.185 |
Factor 2 | 0.76 | 2.14 | 0.66 | 6.96 | 0.207 |
Factor 3 | −1.30 | 0.27 | 0.07 | 1.06 | 0.060 |
Factor 4 | −1.11 | 0.33 | 0.04 | 2.49 | 0.282 |
Factor 5 | −0.65 | 0.52 | 0.02 | 11.73 | 0.683 |
Factor 6 | 1.46 | 4.30 | 0.12 | 148.50 | 0.420 |
Factor 7 | −1.11 | 0.33 | 0.05 | 0.73 | 0.086 |
Factor 8 | −0.83 | 0.44 | 0.04 | 4.59 | 0.490 |
Factor 9 | 0.85 | 2.34 | 0.27 | 19.9891 | 0.439 |
Factor 10 | 0.65 | 1.91 | 0.97 | 3.77 | 0.061 |
Factor 11 | −3.78 | 0.02 | 0.00 | 334.2870 | 0.440 |
Gender (ref. women) | 1.63 | 5.10 | 1.95 | 13.33 | <0.001 |
Age | 0.07 | 1.07 | 1.01 | 1.13 | 0.021 |
Constant | −6.01 | 0.01 | 0.004 |
Variables | β * | Exp(β) * | 95% CI * | p-Value ** | |
---|---|---|---|---|---|
Model 2. GST (ref. n > 0.8 m/s) | |||||
Factor 1 | 4.71 | 111.49 | 8.18 | 1519.91 | <0.001 |
Factor 2 | 0.28 | 1.32 | 0.35 | 4.93 | 0.681 |
Factor 3 | −0.89 | 0.42 | 0.11 | 1.67 | 0.221 |
Factor 4 | −1.68 | 0.19 | 0.02 | 2.06 | 0.170 |
Factor 5 | 0.42 | 1.52 | 0.06 | 35.91 | 0.796 |
Factor 6 | −3.61 | 0.03 | 0.001 | 1.43 | 0.075 |
Factor 7 | −1.65 | 0.19 | 0.06 | 0.60 | 0.004 |
Factor 8 | 0.27 | 1.31 | 0.16 | 10.43 | 0.798 |
Factor 9 | 5.69 | 296.26 | 12.64 | 6943.85 | <0.001 |
Factor 10 | 0.86 | 2.35 | 1.19 | 4.87 | 0.081 |
Factor 11 | −12.29 | 0.00 | 0.00 | 6977.69 | 0.254 |
Gender (ref. women) | 1.18 | 3.25 | 1.15 | 9.22 | 0.027 |
Age | 0.03 | 1.02 | 0.99 | 1.08 | 0.403 |
Constant | −3.65 | 0.03 | 0.104 |
Variables | β * | Exp(β) * | 95% CI * | p-Value ** | |
---|---|---|---|---|---|
Model 3. FTSST (ref. ≤ 15 s) | |||||
Factor 1 | 0.80 | 2.23 | 0.79 | 6.30 | 0.128 |
Factor 2 | 0.07 | 1.07 | 0.34 | 3.36 | 0.910 |
Factor 3 | −1.14 | 0.32 | 0.08 | 1.21 | 0.094 |
Factor 4 | 0.20 | 1.22 | 0.20 | 7.32 | 0.826 |
Factor 5 | −2.33 | 0.10 | 0.01 | 2.45 | 0.157 |
Factor 6 | −0.06 | 0.94 | 0.03 | 25.44 | 0.973 |
Factor 7 | −0.251 | 0.78 | 0.37 | 1.63 | 0.506 |
Factor 8 | −0.085 | 0.92 | 0.11 | 7.65 | 0.937 |
Factor 9 | 1.813 | 6.13 | 0.77 | 48.67 | 0.086 |
Factor 10 | 0.231 | 1.26 | 0.67 | 2.38 | 0.476 |
Factor 11 | −13.154 | 0.00 | 0.00 | 199.61 | 0.162 |
Gender (ref. women) | 1.12 | 3.06 | 1.26 | 7.44 | 0.013 |
Age (ref. ≤ 65) | 0.06 | 1.06 | 1.01 | 1.12 | 0.020 |
Constant | −6.690 | 0.001 | <0.001 |
Variables | β * | Exp(β) * | 95% CI * | p-Value ** | |
---|---|---|---|---|---|
Model 4. HGS (ref. ≥ 16 kg (W) and ≥ 27 kg (M)) | |||||
Factor 1 | 0.53 | 1.70 | 0.43 | 6.74 | 0.450 |
Factor 2 | −0.24 | 0.78 | 0.14 | 4.43 | 0.784 |
Factor 3 | 0.34 | 1.40 | 0.32 | 6.07 | 0.650 |
Factor 4 | −1.88 | 0.15 | 0.01 | 3.66 | 0.247 |
Factor 5 | 1.96 | 7.14 | 0.24 | 214.19 | 0.257 |
Factor 6 | 0.06 | 1.06 | 0.02 | 53.17 | 0.977 |
Factor 7 | −0.54 | 0.58 | 0.22 | 1.51 | 0.266 |
Factor 8 | −1.57 | 0.21 | 0.01 | 19.07 | 0.496 |
Factor 9 | 2.06 | 7.88 | 0.66 | 94.42 | 0.103 |
Factor 10 | −1.29 | 0.27 | 0.09 | 0.85 | 0.025 |
Factor 11 | −8.20 | 0.00 | 0.00 | 1793.09 | 0.391 |
Gender (ref. women) | 2.21 | 9.13 | 2.92 | 28.51 | <0.001 |
Age | 0.05 | 1.05 | 0.98 | 1.12 | 0.147 |
Constant | −7.66 | 0.00 | 0.004 |
Variables | β * | Exp(β) * | 95% CI * | p-Value ** | |
---|---|---|---|---|---|
Model 5. EFS (ref. ≤ 4 points) | |||||
Factor 1 | 2.43 | 11.37 | 1.20 | 107.52 | 0.034 |
Factor 2 | 0.25 | 1.28 | 0.39 | 4.24 | 0.680 |
Factor 3 | −1.15 | 0.32 | 0.10 | 1.02 | 0.055 |
Factor 4 | −0.52 | 0.59 | 0.10 | 3.57 | 0.567 |
Factor 5 | 1.37 | 3.95 | 0.28 | 55.14 | 0.307 |
Factor 6 | 0.46 | 1.59 | 0.05 | 50.18 | 0.793 |
Factor 7 | −1.65 | 0.19 | 0.07 | 0.52 | 0.001 |
Factor 8 | −0.09 | 0.91 | 0.12 | 6.98 | 0.929 |
Factor 9 | 0.78 | 2.19 | 0.27 | 17.78 | 0.462 |
Factor 10 | 0.67 | 1.95 | 0.98 | 3.86 | 0.055 |
Factor 11 | −16.46 | 0.00 | 0.00 | 8.62 | 0.083 |
Gender (ref. women) | 0.44 | 1.55 | 0.61 | 3.94 | 0.357 |
Age | 0.08 | 1.08 | 1.03 | 1.15 | 0.004 |
Constant | −6.22 | 0.00 | 0.003 |
References
- Morales-Sánchez, A.; Calvo Arenillas, J.I.; Gutiérrez Palmero, M.J.; Martín-Conty, J.L.; Polonio-López, B.; Dzul López, L.A.; Mordillo-Mateos, L.; Bernal-Jiménez, J.J.; Conty-Serrano, R.; Torres-Falguera, F. A Prospective Observational Study of Frailty in Geriatric Revitalization Aimed at Community-Dwelling Elderly. J. Clin. Med. 2024, 13, 2514. [Google Scholar] [CrossRef] [PubMed]
- OECD. Healthy Life Years Statistics. Eurostat Statistics Explained. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Healthy_life_years_statistics (accessed on 3 May 2024).
- Informacja o Sytuacji Osób Starszych w Polsce za 2023 Rok. Available online: https://www.google.com/search?q=populacja+os%C3%B3b+starszych+w+polsce+w+2023 (accessed on 12 August 2024).
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef]
- Cesari, M.; Calvani, R.; Marzetti, E. Frailty in Older Persons. Clin. Geriatr. Med. 2017, 33, 293–303. [Google Scholar] [CrossRef]
- Ludlow, K.; Todd, O.; Reid, N.; Yaman, H. Frailty in primary care: Challenges, innovations, and future directions. BMC Prim. Care 2023, 24, 129–131. [Google Scholar] [CrossRef]
- Jeszka, J.; Hummel, D.; Woźniewicz, M.; Morinaka, T.; Sone, Y.; Crews, D.E. Allostatic load and frailty do not vary significantly among older residents of Greater Poland. J. Physiol. Anthropol. 2024, 43, 12–24. [Google Scholar] [CrossRef] [PubMed]
- Bruyère, O.; Buckinx, F.; Beaudart, C.; Reginster, J.Y.; Bauer, J.; Cherubini, A. How clinical practitioners assess frailty in their daily practice: An international survey. Aging Clin. Exp. Res. 2017, 29, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Checa-López, M.; Oviedo-Briones, M.; Pardo-Gómez, A.; Gonzales-Turín, J.; Guevara-Guevara, T.; Carnicero, J.A.; Alamo-Ascencio, S.; Landi, F.; Cesari, M.; Grodzicki, T.; et al. FRAILTOOLS study protocol: A comprehensive validation of frailty assessment tools to screen and diagnose frailty in different clinical and social settings and to provide instruments for integrated care in older adults. BMC Geriatr. 2019, 19, 86–94. [Google Scholar] [CrossRef]
- O’Caoimh, R.; Sezgin, D.; O’Donovan, M.R.; Molloy, D.W.; Clegg, A.; Rockwood, K.; Liew, A. Prevalence of frailty in 62 countries across the world: A systematic review and meta-analysis of population-level studies. Age Ageing 2021, 50, 96–104. [Google Scholar] [CrossRef]
- Hajek, A.; Kretzler, B.; König, H.H. Prevalence of prefrailty and frailty among older adults in Germany: A systematic review, meta-analysis and meta-regression. Front. Med. 2022, 9, 870714. [Google Scholar] [CrossRef]
- Błędowski, P.; Grodzicki, T.; Mossakowska, M.; Zdrojewski, T. (Eds.) Badanie Poszczególnych Obszarów Stanu Zdrowia Osób Starszych, w Tym Jakości Życia Związanej ze Zdrowiem. PolSenior2; Wydawnictwo Gdańskiego Uniwersytetu Medycznego: Gdańsk, Poland, 2021. [Google Scholar]
- Piotrowicz, K.; Kujawska-Danecka, H.; Hajduk, A.; Mossakowska, M.; Skalska, A. Zespół słabości. In Badanie Poszczególnych Obszarów Stanu Zdrowia Osób Starszych, w Tym Jakości Życia Związanej ze Zdrowiem. PolSenior2; Błędowski, P., Grodzicki, T., Mossakowska, M., Zdrojewski, T., Eds.; Wydawnictwo Gdańskiego Uniwersytetu Medycznego: Gdańsk, Poland, 2021; pp. 203–218. [Google Scholar]
- Newman, A.B.; Kupelian, V.; Visser, M.; Simonsick, E.M.; Goodpaster, B.H.; Kritchevsky, S.B.; Tylavsky, F.A.; Rubin, S.M.; Harris, T.B. Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2006, 61, 72–77. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Cesari, M.; Tosato, M.; Martone, A.M.; Bernabei, R.; Onder, G.; Marzetti, E. Sarcopenia as the Biological Substrate of Physical Frailty. Clin. Geriatr. Med. 2015, 31, 367–374. [Google Scholar] [CrossRef] [PubMed]
- Shaffie, G.; Keshtkar, A.; Soltani, A.; Ahadi, Z.; Larijani, B.; Heshmat, R. Prevalence of sarcopenia in the world: A systematic review and meta-analysis of general population studies. J. Diabetes Metab. Disord. 2017, 16, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues-Rejon, A.I.; Ruiz-Lopez, M.D.; Wanden-Berghe, C.; Artacho, R. Prevalence and diagnosis of sarcopenia in residential facilities: A systematic review. Adv. Nutr. 2019, 10, 51–58. [Google Scholar] [CrossRef]
- Kostka, T.; Hajduk, A.; Mierzejewska, M.; Woch, S.; Piotrowicz, K.; Kujawska-Danecka, H. Zjawisko sarkopenii i inne zmiany w składzie ciała. In Badanie Poszczególnych Obszarów Stanu Zdrowia Osób Starszych, w Tym Jakości Życia Związanej ze Zdrowiem. PolSenior2; Błędowski, P., Grodzicki, T., Mossakowska, M., Zdrojewski, T., Eds.; Wydawnictwo Gdańskiego Uniwersytetu Medycznego: Gdańsk, Poland, 2021; pp. 219–234. [Google Scholar]
- Hu, F.B.; Rimm, E.; Smith-Warner, S.A.; Feskanich, D.; Stampfer, M.J.; Ascherio, A.; Sampson, L.; Willet, W.C. Reproducibility and validity of dietary patterns assessed with a food-frequency questionnaire. Am. J. Clin. Nutr. 1999, 69, 243–249. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef]
- Wirfält, E.; Drake, I.; Wallström, P. What do review papers conclude about food and dietary patterns? Food Nutr. Res. 2013, 57, 20523. [Google Scholar] [CrossRef]
- Waijers, P.M.C.M.; Feskens, E.J.M.; Ocke, M.C. A critical review of predefined diet quality scores. Br. J. Nutr. 2007, 97, 219–231. [Google Scholar] [CrossRef]
- Kant, A.K. Dietary patterns: Biomarkers and chronic disease risk. Appl. Physiol. Nutr. Metab. 2010, 35, 199–206. [Google Scholar] [CrossRef]
- Reedy, J.; Subar, A.F.; George, S.M.; Krebs-Smith, S.M. Extending methods in dietary patterns research. Nutrients 2018, 10, 571. [Google Scholar] [CrossRef]
- Aljuraiban, G.S.; Gibson, R.; Oude Griep, L.M.; Okuda, N.; Steffen, L.M.; Van Horn, L.; Chan, Q. The application of a priori diet quality scores to cardiovascular disease risk—A critical evaluation of current scoring systems. Adv. Nutr. 2020, 11, 10–24. [Google Scholar] [CrossRef] [PubMed]
- Wingrove, K.; Lawrence, M.A.; McNaughton, S.A. A systematic review of the methods used to assess and report dietary patterns. Front. Nutr. 2022, 9, 892351. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.P.; Bauer, J.M.; Barazzoni, R.; Biolo, G.; Boirie, Y.; Bosy-Westphol, A.; Cederholm, T.; Cruz-Jentoft, A.; Krznaric, Z.; Nair, S.K.; et al. Protein intake and exercise for optimal muscle function with aging: Recommendations from the ESPEN Expert Groups. Clin. Nutr. 2014, 33, 929–936. [Google Scholar] [CrossRef]
- Naseeb, M.A.; Volpe, S.L. Protein and exercise in the prevention of sarcopenia and aging. Nutr. Res. 2017, 40, 1–20. [Google Scholar] [CrossRef]
- Liao, C.-D.; Chen, H.-C.; Huang, S.-W.; Liou, T.-H. The role of muscle mass gain following protein supplementation plus exercise therapy in older adults with sarcopenia and frailty risk: A systematic rewiev and meta-regression analysis on randomized trials. Nutrients 2019, 11, 1713–1736. [Google Scholar] [CrossRef] [PubMed]
- Gkekas, N.K.; Anagnostis, P.; Paraschou, V.; Stamiris, D.; Dellis, S.; Kenanidis, E.; Potoupnis, M.; Tsiridis, E.; Goulis, D.G. The effect of vitamin D plus protein supplementation on sarcopenia: A systematic review and meta-analysis of randomized controlled trials. Maturitas 2021, 145, 56–63. [Google Scholar] [CrossRef]
- Beaudart, C.; Buckins, F.; Rabenda, V.; Gillain, S.; Caralier, E.; Slomian, J.; Petemans, J.; Reginster, J.-Y.; Bruyère, O. The effect of vitamin D on skeletal muscle strength, muscle mass and muscle power; a systematic review and meta-nanalysis of randomized controlled trals. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef]
- Sezgin, D.; O’Donovan, M.; Cornelly, N.; Liew, A.; O’Caoimh, R.O. Defining frailty for healthcare practice and research: A qualitative systematic rewiev with thematic analysis. Int. J. Nurs. Stud. 2019, 92, 16–26. [Google Scholar] [CrossRef]
- Gagesch, M.; Wieczorek, M.; Vellas, B.; Kressig, R.W.; Rizzoli, R.; Kanis, J.; Willett, W.C.; Egli, A.; Lang, W.; Orav, E.J.; et al. Effects of Vitamin D, Omega-3 Fatty Acids and a Home Exercise Program on Prevention of Pre-Frailty in Older Adults: The DO-HEALTH Randomized Clinical Trial. J. Frailty Aging 2023, 12, 71–77. [Google Scholar] [CrossRef]
- Kaimoto, K.; Yamashita, M.; Suzuki, T.; Makizako, H.; Koriyama, C.; Kubozono, T.; Takenaka, T.; Ohishi, M.; Kanouchi, H. Association of protein and magnesium intake with prevalence of prefrailty and frailty in community-dwelling older Japanese women. J. Nutr. Sci. Vitaminol. 2021, 67, 39–47. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [CrossRef] [PubMed]
- KomPan®. Kwestionariusz do Badania Poglądów i Zwyczajów Żywieniowych Oraz Procedura Opracowania Danych, 2nd ed.; KomPan®: Olsztyn, Poland, 2020; Available online: https://knozc.pan.pl/images/stories/MLonnie/kompan_procedura_wersja_2.0_25-11-2020%20last%20korekta%202021.pdf (accessed on 7 September 2022).
- Wadolowska, L.; Stasiewicz, B. The manual for developing nutritional data from the KomPAN® questionnaire. In KomPAN® Dietary Habits and Nutrition Beliefs Questionnaire and the Manual for Developing Nutritional Data; Gawecki, J., Ed.; The Committee of Human Nutrition, Polish Academy of Sciences: Olsztyn, Poland, 2020; pp. 35–56. [Google Scholar]
- Malmstrom, T.K.; Miller, D.K.; Simonsik, E.M.; Ferruci, L.; Morley, J.E. SARC-F: A symptom score to predict personnn with sarcopenia at risk for poor functional outcomes. J. Cachaxia Sarcopenia Muscle 2016, 7, 28–36. [Google Scholar] [CrossRef]
- Sousa-Santos, A.R.; Amaral, T.F. Differences in handgrip strength protocols to identify sarcopenia and frailty—A systematic review. BMC Geriatr. 2017, 17, 238–259. [Google Scholar] [CrossRef]
- Yin, L.; Sawaya, Y.; Sato, R.; Shiba, T.; Hirose, T.; Onoda, K.; Urano, T. Minimal Detectable Changes in the Five Times Sit-to-Stand Test in Older Japanese Adults with Sarcopenia Requiring Long-Term Care. Medicina 2023, 59, 2019. [Google Scholar] [CrossRef] [PubMed]
- Horowitz, B.; Tollin, R.; Cassidy, G. Grip Strength. Phys. Occup. Ther. Geriatr. 2009, 15, 53–64. [Google Scholar] [CrossRef]
- Albalwi, A.A.; Alharbi, A.A. Optimal procedure and characteristics in using five times sit to stand test among older adults: A systematic review. Medicine 2023, 102, e34160. [Google Scholar] [CrossRef]
- Peel, N.M.; Kuys, S.S.; Klein, K. Gait speed as a measure in geriatric assessment in clinical settings: A systematic review. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 39–46. [Google Scholar] [CrossRef]
- Navarro-Flores, E.; de Bengoa Vallejo, R.B.; Losa-Iglesias, M.E.; Palomo-López, P.; Calvo-Lobo, C.; López-López, D.; Martínez-Jiménez, E.M.; Romero-Morales, C. The reliability, validity, and sensitivity of the Edmonton Frail Scale (EFS) in older adults with foot disorders. Aging 2020, 12, 24623–24632. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo-López, L.; Maseda, A.; de Labra, C.; Regueiro-Folgueira, L.; Rodríguez-Villamil, J.L.; Millán-Calenti, J.C. Nutritional Determinants of Frailty in Older Adults: A Systematic Review. BMC Geriatr. 2017, 17, 108. [Google Scholar] [CrossRef]
- Dodds, R.M.; Murray, J.C.; Robinson, S.M.; Sayer, A.A. The identification of probable sarcopenia in early old age based on the SARC-F tool and clinical suspicion: Findings from the 1946 British birth cohort. Eur. Geriatr. Med. 2020, 11, 433–441. [Google Scholar] [CrossRef]
- Piotrowicz, K.; Kujawska-Danecka, H.; Jagiełło, K.; Hajduk, A.; Skalska, A.; Mossakowska, M.; Zdrojewski, T.; Grodzicki, T.; Gąsowski, J. The national burden of frailty and disproportionate distribution of its components-the predominance of slow gait speed: A 2018-19 face-to-face epidemiologic assessment representative of population of older Poles. Aging Clin. Exp. Res. 2023, 35, 571–579. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Bustos, A.; Carnicero-Carreño, J.A.; Davies, B.; Garcia-Garcia, F.J.; Rodríguez-Artalejo, F.; Rodríguez-Mañas, L.; Alonso-Bouzón, C. Role of sarcopenia in the frailty transitions in older adults: A population-based cohort study. J. Cachexia Sarcopenia Muscle 2022, 13, 2352–2360. [Google Scholar] [CrossRef]
- Hoogendijk, E.O.; Afilalo, J.; Ensrud, K.E.; Kowal, P.; Onder, G.; Fried, L.P. Frailty: Implications for clinical practice and public health. Lancet 2019, 394, 1365–1375. [Google Scholar] [CrossRef] [PubMed]
- Seo, J.H.; Lee, Y. Association of physical activity with sarcopenia evaluated based on muscle mass and strength in older adults: 2008–2011 and 2014 – 2018 Korea National Health and Nutrition Examination Surveys. BMC Geriatr. 2022, 22, 217. [Google Scholar] [CrossRef]
- Sánchez-Sánchez, J.L.; He, L.; Morales, J.S.; de Souto Barreto, P.; Jiménez-Pavón, D.; Carbonell-Baeza, P.; Casas-Herrero, A.; Gallardo-Gómez, D.; Lucia, A.; del Pozo Cruz, B.; et al. Association of physical behaviours with sarcopenia in older adults: A systematic review and meta-analysis of observational studies. Lancet Healthy Longev. 2024, 5, e108–e119. [Google Scholar] [CrossRef]
- Rabassa, M.; Zamora-Ros, R.; Urpi-Sarda, M.; Bandinelli, S.; Ferrucci, L.; Andres-Lacueva, C.; Cherubini, A. Association of habitual dietary resveratrol exposure with the development of frailty in older age: The Invecchiare in Chianti study. Am. J. Clin. Nutr. 2015, 102, 1534–1542. [Google Scholar] [CrossRef]
- Bollwein, J.; Diekmann, R.; Kaiser, M.J.; Bauer, J.M.; Uter, W.; Sieber, C.C.; Volkert, D. Dietary quality is related to frailty in community-dwelling older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2013, 68, 483–489. [Google Scholar] [CrossRef]
- Shikany, J.M.; Barrett-Connor, E.; Ensrud, K.E.; Cawthon, P.M.; Lewis, C.E.; Dam, T.-T.L.; Shannon, J.; Redden, D.T.; for the Osteoporotic Fractures in Men (MrOS) Research Group. Macronutrients, diet quality, and frailty in older men. J. Gerontol. A Biol. Sci. Med. Sci. 2014, 69, 695–701. [Google Scholar] [CrossRef] [PubMed]
- Chan, R.; Leung, J.; Woo, J. Dietary patterns and risk of frailty in Chinese community-dwelling older people in Hong Kong: A prospective cohort study. Nutrients 2015, 7, 7070–7084. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.E.; Orkaby, A.R.; Chen, J.; Hashieh, T.T.; Driver, J.A.; Gaziano, J.M.; Djousse, L. Association between diet quality and frailty prevalence in the physicians’ healthy study. J. Am. Geriatr. Soc. 2020, 68, 770–776. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S.; Asakura, K.; Suga, H.; Sasaki, S. High protein intake is associated with low prevelence of frailty among old Japanese women: A multicenter cross-sectional study. Nutr. J. 2013, 12, 164. [Google Scholar] [CrossRef] [PubMed]
Total | Total | ||
---|---|---|---|
N * | % | ||
172 | 100.0 | ||
Gender | Men Women | 36 136 | 20.9 79.1 |
Age (years) | 65 and below 66–70 71–75 above 75 | 27 43 44 58 | 15.7 25.0 25.6 33.7 |
Education | Primary Vocational Secondary High | 37 82 36 17 | 21.5 47.7 20.9 9.9 |
Place of residence | A village A town with less than 100,000 inhabitants A city with 100,000 plus inhabitants | 17 24 131 | 9.9 14.0 76.1 |
Residential status | Care institution I live alone I live with my partner I live with my family without a partner I live with my family and my partner | 39 68 42 16 7 | 22.7 39.5 24.4 9.3 4.1 |
Food Groups | Factors | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
White bread and bakery products, e.g., wheat bread, rye bread, wheat–rye bread, etc. | 0.753 * | 0.016 | −0.053 | −0.058 | −0.126 | −0.053 | 0.155 | 0.099 | −0.064 | −0.117 | 0.154 |
White rice; white pasta; fine-ground groats, e.g., semolina, couscous | 0.518 * | 0.244 | −0.255 | −0.206 | 0.167 | 0.110 | −0.108 | −0.084 | −0.036 | −0.175 | −0.089 |
Butter as a bread spread or as an addition to your meals, for frying, for baking, etc. | 0.605 * | −0.025 | 0.192 | 0.117 | −0.294 | 0.074 | 0.011 | −0.189 | 0.146 | 0.023 | −0.048 |
Potatoes (excluding chips and crisps) | 0.550 * | 0.264 | −0.034 | −0.119 | 0.047 | 0.032 | −0.207 | 0.086 | 0.137 | 0.050 | −0.041 |
Fruit juices | 0.064 | 0.871 * | 0.050 | 0.108 | −0.038 | −0.042 | −0.002 | 0.081 | 0.018 | 0.040 | 0.045 |
Vegetable juices | 0.060 | 0.719 * | −0.094 | 0.097 | 0.202 | −0.032 | 0.091 | −0.152 | 0.037 | 0.147 | 0.028 |
Sweetened carbonated or drinks such as Coca-Cola, Pepsi, Sprite, Fanta | 0.132 | 0.535 * | 0.047 | −0.249 | 0.053 | 0.270 | −0.168 | 0.029 | 0.005 | −0.297 | −0.067 |
Fermented milk drinks, e.g., yoghurts, kefir (natural or flavored) | −0.134 | 0.129 | 0.677 * | 0.138 | 0.234 | −0.067 | 0.119 | −0.146 | 0.015 | 0.018 | −0.017 |
Fresh cheese curd products, e.g., cottage cheese, cream cheese | 0.062 | −0.096 | 0.803 * | −0.091 | 0.057 | −0.029 | −0.232 | 0.054 | 0.048 | −0.033 | −0.018 |
Eggs | −0.049 | −0.110 | 0.055 | 0.672 * | 0.413 | −0.081 | 0.010 | −0.043 | 0.062 | −0.084 | 0.008 |
Tinned (jar) vegetables, e.g., pickle | −0.048 | 0.245 | −0.081 | 0.715 * | −0.157 | 0.068 | 0.120 | 0.190 | −0.086 | 0.085 | 0.055 |
Fish | −0.023 | 0.151 | 0.205 | 0.035 | 0.665 * | 0.174 | 0.027 | −0.097 | −0.168 | 0.090 | −0.033 |
Legume-based foods, e.g., beans, peas, soybeans, lentils | −0.154 | 0.061 | 0.030 | 0.070 | 0.715 * | −0.114 | 0.098 | 0.045 | 0.097 | 0.044 | 0.005 |
Red meat, e.g., pork, beef, veal, lamb, game | 0.265 | −0.193 | 0.046 | 0.061 | −0.030 | 0.567 * | −0.080 | 0.093 | 0.147 | 0.334 | 0.055 |
Tinned (jar) meats | −0.091 | 0.022 | −0.087 | −0.045 | −0.028 | 0.641 * | 0.046 | 0.028 | 0.445 | −0.104 | 0.035 |
Energy drinks such as Red Bull, Monster, Rockstar, or other | −0.016 | 0.096 | −0.080 | 0.005 | 0.026 | 0.795 * | 0.021 | −0.026 | −0.127 | −0.038 | −0.011 |
Fruit | −0.144 | 0.110 | 0.289 | 0.257 | 0.079 | −0.045 | 0.521 * | −0.043 | −0.068 | −0.071 | 0.406 |
Water, e.g., mineral water, tap water | 0.098 | −0.058 | −0.086 | 0.075 | 0.094 | 0.075 | 0.754 * | 0.038 | −0.084 | 0.010 | −0.164 |
Lard as a bread spread, or as an addition to your meals, for frying, for baking, etc. | 0.009 | 0.030 | 0.104 | 0.091 | −0.219 | 0.193 | −0.031 | 0.666 * | −0.166 | −0.183 | 0.005 |
Instant soups or ready-made soups, e.g., tinned, jar, concentrates | −0.001 | −0.048 | −0.139 | −0.001 | 0.152 | −0.092 | −0.069 | 0.785 * | 0.046 | 0.019 | 0.000 |
Cheese (including processed cheese, blue cheese) | −0.011 | 0.217 | 0.117 | −0.206 | −0.007 | −0.077 | −0.166 | −0.061 | 0.689 * | 0.019 | 0.149 |
Cured meat, smoked sausages | 0.426 | −0.177 | 0.010 | 0.193 | 0.009 | 0.115 | −0.085 | −0.037 | 0.639 * | −0.033 | −0.059 |
Whole wheat (brown) bread/bread roll | −0.080 | 0.030 | 0.017 | 0.018 | 0.026 | 0.037 | 0.021 | −0.023 | 0.053 | 0.822 * | −0.074 |
Fast foods, e.g., potato chips/French fries, hamburgers, pizza, hot dogs | −0.001 | 0.054 | −0.130 | 0.037 | −0.074 | −0.003 | −0.091 | 0.008 | 0.086 | −0.012 | 0.825 * |
Variance explained (%) | 10.5 | 8.5 | 7.4 | 6.1 | 5.4 | 4.9 | 4.5 | 4.0 | 3.6 | 3.6 | 3.3 |
Total variance explained (%) | 61.8 |
Factors * | Median | Range |
---|---|---|
1. White bread and bakery products, white rice and pasta, butter, potatoes | 0.66 | 0–2 |
2. Fruit and vegetable juices, sweetened carbonated drinks | 0.07 | 0–2 |
3. Fermented milk drinks, fresh cheese curd products | 0.50 | 0–2 |
4. Eggs, tinned vegetables | 0.25 | 0–2 |
5. Fish, legume-based foods | 0.10 | 0–2 |
6. Red meat, tinned meats, energy drinks | 0.04 | 0–2 |
7. Fruit, water | 1.50 | 0–2 |
8. Lard, instant soups | 0.00 | 0–2 |
9. Cheese, cured meat, smoked sausages | 0.21 | 0–2 |
10. Whole wheat bread | 0.14 | 0–2 |
11. Fast foods | 0.00 | 0–2 |
Total Sample % (N) * | Gender | Age | |||||
---|---|---|---|---|---|---|---|
Women, % (N) | Men, % (N) | 65 and below, % (N) | 66–70, % (N) | 71–75, % (N) | Over 75, % (N) | ||
SARC-F ** no (<4 points) yes (≥4 points) | <0.001 *** | 0.004 | |||||
68.0 (117) | 76.5 (104) | 36.1 (13) | 59.3 (16) | 83.7 (36) | 77.3 (34) | 53.4 (31) | |
32.0 (55) | 23.5 (32) | 63.9 (23) | 40.7 (11) | 16.3 (7) | 22.7 (10) | 46.6 (58) | |
GST ≤0.8 m/s >0.8 m/s | <0.001 | 0.007 | |||||
69.2 (119) | 75.7 (103) | 44.4 (16) | 63.0 (17) | 86.0 (37) | 75.0 (33) | 55.2 (32) | |
30.8 (53) | 24.3 (33) | 55.6 (20) | 37.0 (10) | 14.0 (6) | 25.0 (11) | 44.8 (26) | |
HGS ≥16 kg (W) * ≥27 kg (M) * <16 kg (W) * <27 kg (M) * | <0.001 | 0.213 | |||||
83.7 (144) | 89.7 (122) | 61.1 (22) | 85.2 (23) | 93.0 (40) | 81.8 (36) | 77.6 (45) | |
16.3 (28) | 10.3 (14) | 38.9 (14) | 14.8 (4) | 7.0 (3) | 18.2 (8) | 22.4 (13) | |
FTSST ≤15 s >15 s | 0.001 | 0.020 | |||||
69.2 (119) | 75.0 (102) | 47.2 (17) | 70.4 (19) | 83.7 (36) | 72.7 (32) | 55.2 (32) | |
30.8 (53) | 25.0 (34) | 52.8 (19) | 29.6 (27) | 16.3 (7) | 27.3 (12) | 44.8 (26) | |
EFS non-frail pre-frail or frail | 0.015 | <0.001 | |||||
54.1 (93) | 58.8 (80) | 36.1 (13) | 63.0 (17) | 76.7 (33) | 50.0 (22) | 36.2 (21) | |
45.9 (79) | 41.2 (56) | 63.9 (23) | 37.0 (10) | 23.3 (10) | 50.0 (22) | 63.8 (37) |
Variables | β * | Exp(β) * | 95% CI * | p-Value ** | |
---|---|---|---|---|---|
Model 1. SARC-F (ref. < 4 points) | |||||
Gender (ref. women) | 1.63 | 5.10 | 1.95 | 13.33 | <0.001 |
Age (≤65) | 0.07 | 1.07 | 1.01 | 1.13 | 0.021 |
Model 2. GST (ref. n > 0.8 m/s) | |||||
Factor 1. White bread and bakery products, white rice and pasta, butter, potatoes (ref. non-factor 1) | 4.71 | 111.49 | 8.18 | 1519.91 | <0.001 |
Factor 7. Fruit, water (ref. non-factor 7) | −1.65 | 0.19 | 0.06 | 0.60 | 0.004 |
Factor 9. Cheese, cured meat, smoked sausages (ref. non-factor 9) | 5.69 | 296.26 | 12.64 | 6943.85 | <0.001 |
Gender (ref. women) | 1.18 | 3.25 | 1.15 | 9.22 | 0.027 |
Model 3. FTSST (ref. ≤ 15 s) | |||||
Gender (ref. women) | 1.12 | 3.06 | 1.26 | 7.44 | 0.013 |
Age (ref. ≤ 65) | 0.06 | 1.06 | 1.01 | 1.12 | 0.020 |
Model 4. HGS (ref. ≥ 16 kg (W) and ≥27 kg (M)) | |||||
Gender (ref. women) | 2.21 | 9.13 | 2.92 | 28.51 | <0.001 |
Model 5. EFS (ref. ≤ 4 points) | |||||
Factor 1. White bread and bakery products, white rice and pasta, butter, potatoes (ref. non-factor 1) | 2.43 | 11.37 | 1.20 | 107.52 | 0.034 |
Factor 7. Fruit, water (ref. non-factor 7) | −1.65 | 0.19 | 0.07 | 0.52 | 0.001 |
Age (ref. ≤ 65) | 0.08 | 1.08 | 1.03 | 1.15 | 0.004 |
Variables | Model 6. SC (ref. nSC) | ||||
---|---|---|---|---|---|
β * | Exp(β) * | 95% CI * | p-Value ** | ||
EFS (ref. ≤ 4 points) | 2.80 | 16.45 | 5.46 | 49.59 | <0.001 |
Gender (ref. women) | 1.77 | 5.86 | 1.89 | 18.17 | 0.002 |
Factor 1. White bread and bakery products, white rice and pasta, butter, potatoes (ref. non-factor 1) | 2.55 | 12.82 | 0.99 | 165.80 | 0.050 |
Factor 9. Cheese, cured meat, smoked sausages (non-factor 9) | 3.60 | 36.63 | 1.45 | 924.83 | 0.029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gajda, R.; Jeżewska-Zychowicz, M.; Raczkowska, E.; Rak, K.; Szymala-Pędzik, M.; Noculak, Ł.; Sobieszczańska, M. Association of Dietary Patterns, Suspected Sarcopenia, and Frailty Syndrome among Older Adults in Poland—A Cross-Sectional Study. Nutrients 2024, 16, 3090. https://doi.org/10.3390/nu16183090
Gajda R, Jeżewska-Zychowicz M, Raczkowska E, Rak K, Szymala-Pędzik M, Noculak Ł, Sobieszczańska M. Association of Dietary Patterns, Suspected Sarcopenia, and Frailty Syndrome among Older Adults in Poland—A Cross-Sectional Study. Nutrients. 2024; 16(18):3090. https://doi.org/10.3390/nu16183090
Chicago/Turabian StyleGajda, Robert, Marzena Jeżewska-Zychowicz, Ewa Raczkowska, Karolina Rak, Małgorzata Szymala-Pędzik, Łukasz Noculak, and Małgorzata Sobieszczańska. 2024. "Association of Dietary Patterns, Suspected Sarcopenia, and Frailty Syndrome among Older Adults in Poland—A Cross-Sectional Study" Nutrients 16, no. 18: 3090. https://doi.org/10.3390/nu16183090
APA StyleGajda, R., Jeżewska-Zychowicz, M., Raczkowska, E., Rak, K., Szymala-Pędzik, M., Noculak, Ł., & Sobieszczańska, M. (2024). Association of Dietary Patterns, Suspected Sarcopenia, and Frailty Syndrome among Older Adults in Poland—A Cross-Sectional Study. Nutrients, 16(18), 3090. https://doi.org/10.3390/nu16183090