The Relationship between Vitamin D, Inflammatory Markers, and Insulin Resistance in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Exclusion Criteria
2.3. Clinical and Biochemical Parameters
2.4. Statistical Analyses
3. Results
4. Discussion
Limitations of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Ashwell, M.; Gunn, P.; Gibson, S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: Systematic review and meta-analysis. Obes. Rev. 2012, 13, 275–286. [Google Scholar] [CrossRef] [PubMed]
- You, S.; Zhong, C.; Zheng, D.; Xu, J.; Zhang, X.; Liu, H.; Zhang, Y.; Shi, J.; Huang, Z.; Cao, Y.; et al. Monocyte to HDL cholesterol ratio is associated with discharge and 3-month outcome in patients with acute intracerebral hemorrhage. J. Neurol. Sci. 2017, 372, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Karataş, M.B.; Çanga, Y.; Özcan, K.S.; İpek, G.; Güngör, B.; Onuk, T.; Durmuş, G.; Öz, A.; Karaca, M.; Bolca, O. Monocyte to high-density lipoprotein ratio as a new prognostic marker in patients with STEMI undergoing primary percutaneous coronary intervention. Am. J. Emerg. Med. 2016, 34, 240–244. [Google Scholar] [CrossRef] [PubMed]
- Canpolat, U.; Çetin, E.H.; Cetin, S.; Aydin, S.; Akboga, M.K.; Yayla, C.; Turak, O.; Aras, D.; Aydogdu, S. Association of Monocyte-to-HDL Cholesterol Ratio with Slow Coronary Flow is Linked to Systemic Inflammation. Clin. Appl. Thromb. Hemost. 2016, 22, 476–482. [Google Scholar] [CrossRef]
- Sivgin, H.; Çetin, S. Effect of empagliflozin use on monocyte high-density lipoprotein ratio and plasma atherogenic index in obese and non-obese type 2 diabetic patients. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 8090–8100. [Google Scholar]
- Chen, T.; Chen, H.; Xiao, H.; Tang, H.; Xiang, Z.; Wang, X.; Wang, X.; Zou, H. Comparison of the value of neutrophil to high-density lipoprotein cholesterol ratio and lymphocyte to high-density lipoprotein cholesterol ratio for predicting metabolic syndrome among a population in the southern coast of China. Diabetes Metab. Syndr. Obes. 2020, 13, 597–605. [Google Scholar] [CrossRef]
- De Cosmi, V.; Mazzocchi, A.; D’Oria, V.; Re, A.; Spolidoro, G.C.; Milani, G.P.; Berti, C.; Scaglioni, S.; Giavoli, C.; Bergamaschi, S.; et al. Effect of Vitamin D and Docosahexaenoic Acid Co-Supplementation on Vitamin D Status, Body Composition, and Metabolic Markers in Obese Children: A Randomized, Double Blind, Controlled Study. Nutrients 2022, 14, 1397. [Google Scholar] [CrossRef]
- Tang, L.; Zeng, H.; Yang, B.; Dong, C.; Li, M.; Zhang, X.; Pan, J. Vitamin D is inversely associated with Monocyte to HDL-C ratio among medical staff in Chengdu, China. BMC Endocr. Disord. 2023, 23, 149. [Google Scholar] [CrossRef]
- Altieri, B.; Grant, W.B.; Della Casa, S.; Orio, F.; Pontecorvi, A.; Colao, A.; Sarno, G.; Muscogiuri, G. Vitamin D and pancreas: The role of sunshine vitamin in the pathogenesis of diabetes mellitus and pancreatic cancer. Crit. Rev. Food. Sci. Nutr. 2017, 57, 3472–3488. [Google Scholar] [CrossRef]
- Al-Shoumer, K.A.; Al-Essa, T.M. Is there a relationship between vitamin D with insulin resistance and diabetes mellitus? World J. Diabetes 2015, 6, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
- Szymczak-Pajor, I.; Śliwińska, A. Analysis of association between vitamin D deficiency and insulin resistance. Nutrients 2019, 11, 794. [Google Scholar] [CrossRef]
- Saglam, D.; Samur, G.; Turan, S. Assessment of vitamin D status in Turkish adolescents: Its relation to obesity, cardiometabolic risk factors and nutritional status. Prog. Nutr. 2019, 21, 762–768. [Google Scholar]
- Torun, E.; Gönüllü, E.; Ozgen, I.T.; Cindemir, E.; Oktem, F. Vitamin D deficiency and insufficiency in obese children and adolescents and its relationship with insulin resistance. Int. J. Endocrinol. 2013, 2013, 631845. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Wang, H.; Wen, H.; Tao, H.; Zhao, X. Relationship between HOMA-IR and serum vitamin D in Chinese children and adolescents. J. Pediatr. Endocrinol. Metab. 2016, 29, 777–781. [Google Scholar] [CrossRef]
- American Diabetes Association. 2. Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021. Diabetes Care 2021, 44, 15–33. [Google Scholar] [CrossRef]
- Valerio, G.; Licenziati, M.R.; Iannuzzi, A.; Franzese, A.; Siani, P.; Riccardi, G.; Rubba, P. Insulin resistance and impaired glucose tolerance in obese children and adolescents from Southern Italy. Nutr. Metab. Cardiovasc. Dis. 2006, 16, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Keskin, M.; Kurtoglu, S.; Kendirci, M.; Atabek, M.E.; Yazici, C. Homeostasis model assessment is more reliable than the fasting glucose/insulin ratio and quantitative insulin sensitivity check index for assessing insulin resistance among obese children and adolescents. Pediatrics 2005, 115, e500–e503. [Google Scholar] [CrossRef]
- Katz, A.; Nambi, S.S.; Mather, K.; Baron, A.D.; Follmann, D.A.; Sullivan, G.; Quon, M.J. Quantitative insulin sensitivity check index:a simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 2000, 85, 2402–2410. [Google Scholar] [CrossRef]
- Hollis, B.W.; Wagner, C.L. Normal serum vitamin D levels. N. Engl. J. Med. 2005, 352, 515–516. [Google Scholar]
- Wang, H.; Chen, W.; Li, D.; Yin, X.; Zhang, X.; Olsen, N.; Zheng, S.G. Vitamin D and Chronic Diseases. Aging Dis. 2017, 8, 346–353. [Google Scholar] [CrossRef]
- Hofman-Hutna, J.; Hutny, M.; Matusik, E.; Olszanecka-Glinianowicz, M.; Matusik, P. Vitamin D Deficiency in Obese Children Is Associated with Some Metabolic Syndrome Components, but Not with Metabolic Syndrome Itself. Metabolites 2023, 13, 914. [Google Scholar] [CrossRef] [PubMed]
- Tao, S.; Yuan, Q.; Mao, L.; Chen, F.-L.; Ji, F.; Cui, Z.-H. Vitamin D deficiency causes insulin resistance by provoking oxidative stress in hepatocytes. Oncotarget 2017, 8, 67605–67613. [Google Scholar] [CrossRef]
- Sharifi, F.; Mousavinasab, N.; Mellati, A.A. Defining a cutoff point for vitamin D deficiency based on insulin resistance in children. Diabetes Metab. Syndr. 2013, 7, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Moschonis, G.; Androutsos, O.; Hulshof, T.; Dracopoulou, M.; Chrousos, G.P.; Manios, Y. Vitamin D insufficiency is associated with insulin resistance independently of obesity in primary school children. Healthy Growth Study Pediatr. Diabetes 2018, 19, 866–873. [Google Scholar] [CrossRef] [PubMed]
- Abbas, M.A. Physiological functions of Vitamin D in adipose tissue. J. Steroid. Biochem. Mol. Biol. 2017, 165, 369–381. [Google Scholar] [CrossRef]
- Peterson, C.A.; Heffernan, M.E. Serum tumor necrosis factor alpha concentrations are negatively correlated with serum 25(OH) D concentrations in healthy women. J. Inflamm. 2008, 5, 10. [Google Scholar] [CrossRef]
- Hewison, M.; Zehnder, D.; Chakraverty, R.; Adams, J.S. Vitamin D and barrier function: A novel role for extra-renal 1 alpha-hydroxylase. Mol. Cell. Endocrinol. 2004, 215, 31–38. [Google Scholar] [CrossRef]
- Jeng, L.; Yamshchikov, A.V.; Judd, S.E.; Blumberg, H.M.; Martin, G.S.; Ziegler, T.R.; Tangpricha, V. Alterations in vitamin D status and anti-microbial peptide levels in patients in the intensive care unit with sepsis. J. Transl. Med. 2009, 7, 28. [Google Scholar] [CrossRef]
- Reyman, M.V.; Verrijn Stuart, A.A.; van Summeren, M.; Rakhshandehroo, M.; Nuboer, R.; De Boer, F.K.; Van Den Ham, H.J.; Kalkhoven, E.; Prakken, B.; Schipper, H.S. Vitamin D deficiency in childhood obesity is associated with high levels of circulating inflammatory mediators, and low insulin sensitivity. Int. J. Obes. 2014, 38, 46–52. [Google Scholar] [CrossRef]
- Ghigliotti, G.; Barisione, C.; Garibaldi, S.; Fabbi, P.; Brunelli, C.; Spallarossa, P.; Altieri, P.; Rosa, G.; Spinella, G.; Palombo, D.; et al. Adipose tissue immune response: Novel triggers and consequences for chronic inflammatory conditions. Inflammation 2014, 37, 1337–1353. [Google Scholar] [CrossRef] [PubMed]
- Vieira-Potter, V.J. Inflammation and macrophage modulation in adipose tissues. Cell. Microbiol. 2014, 16, 1484–1492. [Google Scholar] [CrossRef]
- Mraz, M.; Haluzik, M. The role of adipose tissue immune cells in obesity and low-grade inflammation. J. Endocrinol. 2014, 222, R113–R127. [Google Scholar] [CrossRef] [PubMed]
- Johnsen, S.H.; Fosse, E.; Joakimsen, O.; Mathiesen, E.B.; Stensland-Bugge, E.; Njølstad, I.; Arnesen, E. Monocyte count is a predictor of novel plaque formation: A 7-year follow-up study of 2610 persons without carotid plaque at baseline the Tromsø Study. Stroke 2005, 36, 715–719. [Google Scholar] [CrossRef] [PubMed]
- Murphy, A.J.; Chin-Dusting, J.P.; Sviridov, D.; Woollard, K.J. The anti inflammatory effects of high density lipoproteins. Curr. Med. Chem. 2009, 16, 667–675. [Google Scholar] [CrossRef]
- Usta, A.; Avci, E.; Bulbul, C.B.; Kadi, H.; Adali, E. The monocyte counts to HDL cholesterol ratio in obese and lean patients with polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2018, 16, 34. [Google Scholar] [CrossRef]
- Akboga, M.K.; Balci, K.G.; Maden, O.; Ertem, A.G.; Kirbas, O.; Yayla, C.; Acar, B.; Aras, D.; Kisacik, H.; Aydogdu, S. Usefulness of monocyte to HDL-cholesterol ratio to predict high SYNTAX score in patients with stable coronary artery disease. Biomark. Med. 2016, 10, 375–383. [Google Scholar] [CrossRef]
- Onat, A.; Can, G.; Kaya, H.; Hergenç, G. “Atherogenic index of plasma” (log10 triglyceride/high-density lipoprotein-cholesterol) predicts high blood pressure, diabetes, and vascular events. J. Clin. Lipidol. 2010, 4, 89–98. [Google Scholar] [CrossRef]
- Jorde, R.; Grimnes, G. Vitamin D and metabolic health with special reference to the effect of vitamin D on serum lipids. Prog. Lipid Res. 2011, 50, 303–312. [Google Scholar] [CrossRef]
- Zhu, X.; Yu, L.; Zhou, H.; Ma, Q.; Zhou, X.; Lei, T.; Hu, J.; Xu, W.; Yi, N.; Lei, S. Atherogenic index of plasma is a novel and better biomarker associated with obesity: A population-based cross-sectional study in China. Lipids Health Dis. 2018, 17, 37. [Google Scholar] [CrossRef]
- King-Morris, K.R.; Deger, S.M.; Hung, A.M.; Egbert, P.A.; Ellis, C.D.; Graves, A.; Shintani, A.; Ikizler, T.A. Measurement and Correlation of Indices of Insulin Resistance in Patients on Peritoneal Dialysis. Perit. Dial. Int. 2016, 36, 433–444. [Google Scholar] [CrossRef] [PubMed]
- So, A.; Sakaguchi, K.; Okada, Y.; Morita, Y.; Yamada, T.; Miura, H.; Otowa-Suematsu, N.; Nakamura, T.; Komada, H.; Hirota, Y.; et al. Relation between HOMA-IR and insulin sensitivity index determined by hyperinsulinemic-euglycemic clamp analysis during treatment with a sodium-glucose cotransporter 2 inhibitor. Endocr. J. 2020, 67, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Anoop, S.S.; Dasgupta, R.; Rebekah, G.; Jose, A.; Inbakumari, M.P.; Finney, G.; Thomas, N. Lipid accumulation product (LAP) as a potential index to predict risk of insulin resistance in young, non-obese Asian Indian males from Southern India: Observations from hyperinsulinemic-euglycemic clamp studies. BMJ Open Diabetes Res. Care 2021, 9, e002414. [Google Scholar] [CrossRef] [PubMed]
- Roth, C.L.; Elfers, C.; Kratz, M.; Hoofnagle, A.N. Vitamin d deficiency in obese children and its relationship to insulin resistance and adipokines. J. Obes. 2011, 2011, 495101. [Google Scholar] [CrossRef] [PubMed]
- Erol, M.; Bostan Gayret, Ö.; Hamilcikan, S.; Can, E.; Yigit, O.L. Vitamin D deficiency and insulin resistance as risk factors for dyslipidemia in obese children. Arch. Argent Pediatr. 2017, 115, 133–139. [Google Scholar]
- Contreras-Bolívar, V.; García-Fontana, B.; García-Fontana, C.; Muñoz-Torres, M. Mechanisms Involved in the Relationship between Vitamin D and Insulin Resistance: Impact on Clinical Practice. Nutrients 2021, 13, 3491. [Google Scholar] [CrossRef]
Insulin Resistance Status | |||||
---|---|---|---|---|---|
No Insulin Resistance (n: 114; 54.3%) | Insulin Resistance (n: 96; 45.7%) | ||||
n | % | n | % | p Value | |
Vitamin D (ng/mL) | |||||
Normal vitamin D | 70 | 61.4% | 0 | 0% | |
Vitamin D (21–29) | 30 | 26.3% | 40 | 41.7% | <0.001 * |
Vitamin D < 21 | 14 | 12.3% | 56 | 58.3% | |
Vitamin D | |||||
Normal vitamin D | 70 | 61.4% | 0 | 0% | <0.001 * |
Vitamin D < 29 | 44 | 38.6% | 96 | 100% |
No Insulin Resistance | Insulin Resistance | ||
---|---|---|---|
Mean ± Std or Median (25p–75p) | Mean ± Std or Median (25p–75p) | p Value | |
Age (years) | 11.91 ± 3.35 | 12.41 ± 3.29 | 0.139 |
Gender (M/F) | 60/54 | 46/50 | - |
Body Mass Index (BMI) (kg/m2) | 24.33 (23.14–26.02) | 26.1 (23.71–28.28) | 0.002 ¥ |
Waist circumference (cm) | 69.9 ± 8.89 | 79.22 ± 7.17 | <0.001 † |
Vitamin D (ng/mL) | 31.1 (24–34.8) | 18.7 (12.55–24) | <0.001 ¥ |
Systolic blood pressure (mmHg) | 108 (103–115) | 115 (108–127.5) | <0.001 ¥ |
Diastolic blood pressure (mmHg) | 65 (63–70) | 67 (63–71) | 0.188 ¥ |
White blood cell (103/µL) | 7.54 (6.5–8.78) | 8.34 (7.12–9.75) | 0.009 ¥ |
Platelet (106/µL) | 304.01 ± 41.92 | 310.84 ± 40.07 | 0.231 † |
Lymphocytes (103/µL) | 2.91 ± 0.66 | 2.6 ± 0.76 | 0.002 † |
Lymphocytes (%) | 36.99 ± 8.02 | 33.84 ± 10.23 | 0.013 † |
Neutrophil (103/µL) | 3.42 (2.71–4.41) | 4.26 (3.36–5.3) | <0.001 ¥ |
Neutrophil (%) | 52.1 (47.1–58.9) | 54 (47.55–59.65) | 0.182 ¥ |
Monocyte (103/µL) | 5.5 (4.9–6.4) | 7.3 (5.85–8.3) | <0.001 ¥ |
Neutrophil/lymphocyte ratio (NLR) | 1.18 (0.99–1.59) | 1.6 (1.23–2.03) | <0.001 ¥ |
Platelet–lymphocyte ratio (PLR) | 108.4 (87.83–120.78) | 121.1 (96.5–150.85) | 0.001 ¥ |
Systemic immune-inflammation index (SII) | 366.61 (296.27–485.16) | 510.76 (387.23–643.42) | <0.001 ¥ |
Monocyte/HDL cholesterol | 11.66 (9.57–14.22) | 18.62 (16.02–22.99) | <0.001 ¥ |
CRP (mg/L) | 0.85 (0.5–1.54) | 1.96 (0.91–2.77) | <0.001 ¥ |
Total cholesterol (mg/dL) | 154.5 (147–165) | 163 (149–180) | 0.022 ¥ |
HDL cholesterol (mg/dL) | 48.6 (42.4–51.2) | 38.5 (33.4–43.9) | <0.001 ¥ |
LDL cholesterol (mg/dL) | 89 (81–99) | 106 (95–121.5) | <0.001 ¥ |
VLDL cholesterol (mg/dL) | 17.2 (14–18.8) | 18.5 (16.6–19.8) | <0.001 ¥ |
Triglyceride (mg/dL) | 86 (70–94) | 92.5 (83–99) | <0.001 ¥ |
Glucose (mg/dL) | 90.68 ± 8.17 | 94.22 ± 9.97 | 0.005 † |
Glucose (mMol/L) | 5.03 ± 0.45 | 5.23 ± 0.55 | 0.005 † |
Fasting insulin (µIU/mL) | 7.25 (5.49–9.3) | 19.25 (16.7–23.2) | <0.001 ¥ |
Plasma atherogenic index | 0.23 ± 0.12 | 0.38 ± 0.12 | <0.001 † |
HOMA-IR | 1.65 (1.26–2.08) | 4.56 (3.83–5.46) | <0.001 ¥ |
FGIR | 12.68 (9.08–16.92) | 5.08 (4.04–5.73) | <0.001 ¥ |
HOMA-B | 95.59 (74.63–125) | 233.09 (189.01–309.18) | <0.001 ¥ |
QUICKI | 0.36 ± 0.02 | 0.31 ± 0.01 | <0.001 † |
Vitamin D (ng/mL) | ||||
---|---|---|---|---|
Normal Vitamin D | Vitamin D (21–29) | Vitamin D (<21) | ||
Mean ± Std or Median (25p-75p) | Mean ± Std or Median (25p-75p) | Mean ± Std or Median (25p-75p) | p Value | |
Age (years) | 11.54 ± 3.41 | 12.31 ± 3.13 | 12.54 ± 3.29 | 0.066 |
Gender (M/F) | 37/33 | 34/36 | 38/32 | - |
Body Mass Index (BMI) (kg/m2) | 23.73 (22.64–24.46) a | 27.11 (25.62–28.25) b | 25.36 (22.66–29.04) c | <0.001 ¥ |
Waist circumference (cm) | 65.01 ± 6.21 a | 75.09 ± 5.29 b | 82.39 ± 6.71 c | <0.001 † |
Systolic blood pressure (mmHg) | 105 (102–108) a | 120 (110–125) b | 110 (108–130) b | <0.001 ¥ |
Diastolic blood pressure (mmHg) | 65 (63–70) | 65 (60–75) | 67 (65–70) | 0.146 ¥ |
White blood cell (103/µL) | 7.49 (6.63–8.63) a | 8.02 (6.29–9.1) a,b | 8.39 (7.25–11.11) b | 0.016 ¥ |
Platelet (106/µL) | 309.3 ± 42.84 | 300.9 ± 52.26 | 311.2 ± 22.27 | 0.290 † |
Lymphocytes (103/µL) | 3.03 ± 0.56 a | 2.71 ± 0.67 b | 2.57 ± 0.84 b | <0.001 † |
Lymphocytes (%) | 38.62 ± 6.98 a | 34.54 ± 7.39 b | 33.46 ± 11.79 b | 0.002 † |
Neutrophil (103/µL) | 3.15 (2.53–3.71) a | 4.27 (3.06–5.2) b | 4.26 (3.44–5.27) b | <0.001 ¥ |
Neutrophil (%) | 51.2 (46–56.4) | 53.95 (48.9–60.8) | 53.6 (47.5–58.9) | 0.158 ¥ |
Monocyte (103/µL) | 5.1 (4.6–6.1) a | 7.35 (6.3–8.5) b | 6.3 (5.3–7.5) c | <0.001 ¥ |
Monocyte (%) | 510 (460–610) a | 735 (630–850) b | 630 (530–750) c | <0.001 ¥ |
Neutrophil/lymphocyte ratio (NLR) | 1.06 (0.87–1.29) a | 1.59 (1.23–2.06) b | 1.57 (1.21–2.22) b | <0.001 ¥ |
Platelet/lymphocyte ratio (PLR) | 107.91 (86.3–117.86) a | 112.01 (90.78–131.73) a,b | 121.1 (102.85–145.24) b | 0.002 ¥ |
Systemic immune-inflammation index (SII) | 328.44 (264–404.76) a | 486 (355.01–630.97) b | 498.72 (381.33–648.41) b | <0.001 ¥ |
Monocyte/HDL cholesterol | 10.41 (8.94–12.2) a | 18.4 (14.69–22.7) b | 17.06 (14.01–19.79) b | <0.001 ¥ |
CRP (mg/L) | 0.7 (0.4–1.1) a | 1.55 (0.95–2.35) b | 1.99 (0.88–2.89) b | <0.001 ¥ |
Total cholesterol (mg/dL) | 150 (145–157.5) a | 165 (152–181) b | 166.5 (149–186) b | <0.001 ¥ |
HDL cholesterol (mg/dL) | 49.8 (46.6–52.6) a | 41.1 (35.4–48.4) b | 39.5 (33.2–43.2) b | <0.001 ¥ |
LDL cholesterol (mg/dL) | 84.5 (78–90) a | 102.5 (95–121) b | 109.5 (97–124) b | <0.001 ¥ |
VLDL cholesterol (mg/dL) | 17 (14–18.4) a | 16.6 (14–19) a | 19 (17.8–19.8) b | <0.001 ¥ |
Triglyceride (mg/dL) | 85 (70–92) a | 83 (70–95) a | 95 (89–99) b | <0.001 ¥ |
Glucose (mg/dL) | 88.67 ± 6.4 a | 93.44 ± 9.66 b | 94.79 ± 10.03 b | <0.001 † |
Glucose (mMol/L) | 4.92 ± 0.36 a | 5.19 ± 0.54 b | 5.26 ± 0.56 b | <0.001 † |
Fasting insulin (µIU/mL) | 5.75 (5.05–7.3) a | 14.2 (9.7–19.8) b | 18.15 (15.3–22.2) c | <0.001 ¥ |
Plasma atherogenic index | 0.2 ± 0.11 a | 0.3 ± 0.14 b | 0.41 ± 0.1 c | <0.001 † |
HOMA-IR | 1.28 (1.13–1.63) a | 3.39 (2.13–4.83) b | 4.08 (3.54–5.23) b | <0.001 ¥ |
FGIR | 14.83 (12.68–18.02) a | 6.58 (5.12–8.84) b | 5.19 (4.14–6.35) c | <0.001 ¥ |
HOMA-β (%) | 84.63 (65.15–105.6) a | 170.44 (122.78–234.98) b | 206.44 (153.81–276.46) b | <0.001 ¥ |
QUICKI | 0.37 ± 0.01 a | 0.32 ± 0.02 b | 0.31 ± 0.02 b | <0.001 † |
Dependent Variable | Covariate | p Value | D Vit Group (p Value) | 1 vs. 2 | 1 vs. 3 | 2 vs. 3 | Partial Eta Squared |
---|---|---|---|---|---|---|---|
HOMA-IR | NLR | 0.075 | <0.001 | <0.001 | <0.001 | 0.001 | 0.433 |
HOMA-IR | PLR | 0.228 | <0.001 | <0.001 | <0.001 | 0.001 | 0.474 |
HOMA-IR | SII | 0.064 | <0.001 | <0.001 | <0.001 | 0.002 | 0.435 |
HOMA-IR | MHR | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.304 |
HOMA-IR | PAI | <0.001 | <0.001 | <0.001 | <0.001 | 0.239 | 0.301 |
NLR | HOMA-IR | 0.075 | 0.009 | 0.091 | 0.006 | 0.320 | 0.045 |
PLR | HOMA-IR | 0.228 | 0.103 | 1 | 0.196 | 0.179 | 0.022 |
SII | HOMA-IR | 0.064 | 0.010 | 0.218 | 0.008 | 0.160 | 0.043 |
MHR | HOMA-IR | <0.001 | <0.001 | <0.001 | 1 | <0.001 | 0.127 |
PAI | HOMA-IR | <0.001 | <0.001 | 0.719 | <0.001 | <0.001 | 0.107 |
HOMA-IR | FGIR | HOMA-B | QUICKI | Monocyte/HDL-C | NLR | PLR | SII | ||
---|---|---|---|---|---|---|---|---|---|
PAI | r | 0.682 | −0.641 | 0.518 | −0.639 | 0.574 | 0.256 | 0.174 | 0.269 |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.012 | <0.001 | |
HOMA-IR | r | −0.952 | 0.781 | −1.000 | 0.739 | 0.447 | 0.231 | 0.434 | |
p | <0.001 | <0.001 | <0.001 | <0.001 | <0.001 | 0.001 | <0.001 | ||
FGIR | r | −0.926 | 0.952 | −0.709 | −0.438 | −0.212 | −0.421 | ||
p | <0.001 | <0.001 | <0.001 | <0.001 | 0.002 | <0.001 | |||
HOMA-β: | r | −0.781 | 0.591 | 0.358 | 0.139 | 0.333 | |||
p | <0.001 | <0.001 | <0.001 | 0.044 | <0.001 | ||||
QUICKI | r | −0.739 | −0.447 | −0.231 | −0.434 | ||||
p | <0.001 | <0.001 | 0.001 | <0.001 | |||||
Monocyte/HDL-C | r | 0.351 | 0.222 | 0.341 | |||||
p | <0.001 | 0.001 | <0.001 | ||||||
NLR | r | 0.402 | 0.946 | ||||||
p | <0.001 | <0.001 | |||||||
PLR | r | 0.529 | |||||||
p | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okuyan, O.; Dumur, S.; Elgormus, N.; Uzun, H. The Relationship between Vitamin D, Inflammatory Markers, and Insulin Resistance in Children. Nutrients 2024, 16, 3005. https://doi.org/10.3390/nu16173005
Okuyan O, Dumur S, Elgormus N, Uzun H. The Relationship between Vitamin D, Inflammatory Markers, and Insulin Resistance in Children. Nutrients. 2024; 16(17):3005. https://doi.org/10.3390/nu16173005
Chicago/Turabian StyleOkuyan, Omer, Seyma Dumur, Neval Elgormus, and Hafize Uzun. 2024. "The Relationship between Vitamin D, Inflammatory Markers, and Insulin Resistance in Children" Nutrients 16, no. 17: 3005. https://doi.org/10.3390/nu16173005
APA StyleOkuyan, O., Dumur, S., Elgormus, N., & Uzun, H. (2024). The Relationship between Vitamin D, Inflammatory Markers, and Insulin Resistance in Children. Nutrients, 16(17), 3005. https://doi.org/10.3390/nu16173005