Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Dysbiosis Test
2.3. Laboratory Tests
2.4. Breathing Test
2.5. Nutritional Intervention
2.6. Ethical Issues
2.7. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bassotti, G. Irritable Bowel Syndrome: A Multifaceted World Still to Discover. J. Clin. Med. 2022, 11, 4103. [Google Scholar] [CrossRef]
- Drossman, D.A. Functional Gastrointestinal Disorders: History, Pathophysiology, Clinical Features and Rome IV. Gastroenterology 2016, 150, 1262–1279. [Google Scholar] [CrossRef] [PubMed]
- Lacy, B.E.; Patel, N.K. Rome Criteria and a Diagnostic Approach to Irritable Bowel Syndrome. J. Clin. Med. 2017, 6, 99. [Google Scholar] [CrossRef]
- Barberio, B.; Judge, C.; Savarino, E.V.; Ford, A.C. Global prevalence of functional constipation according to the Rome criteria: A systemic review and meta-analysis. Lancet 2021, 6, 638–648. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, C.; Altomare, A.; Terrigno, V.; Carbpne, F.; Tack, J.; Cicala, m.; Guarino, M.P.L. Constipation-Predominant Irritable Bowel Syndrome(IBS-C): Effects of Different Nutritional Patterns on Intestinal Dysbiosis and Symptoms. Nutrients 2023, 15, 1647. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Liu, H.; Han, L.; Kang, Z.; Liang, L.; Jianag, S.; Meng, N.; Chen, P.; Xu, Q.; Wu, Q.; et al. Factors Related to Irritable Bowel Syndrome and Differences Among Subtypes: A Cross-Sectional Study in the UK Biobank. Front. Pharmacol. 2022, 13, 905564. [Google Scholar] [CrossRef]
- Palsson, O.S.; Baggish, J.S.; Turner, M.J.; Whithead, W.E. Patients Show Frequent Fluctuations between Loose/Watery andHard/Lumpy Stools: Implications for treatment. Am. J. Gastroenterol. 2012, 107, 286–295. [Google Scholar] [CrossRef]
- Chira, A.; Filip, M.; Dumitrescu, D.L. Patterns of alternation in irritable bowel Palsson, O.S.; Baggish, J.S.; Turner, M.J.; Whitehead, W.E. IBS syndrome. Clujul Med. 2016, 89, 220–223. [Google Scholar] [CrossRef]
- Forootan, M.; Bagheri, N.; Darvishi, M. Chronic Constipation: A Review of Literature. Medicine 2018, 97, e10631. [Google Scholar] [CrossRef]
- Russo, M.; Strisciuglio, C.; Scarpato, E.; Bruzzese, D.; Casertano, M.; Staiano, A. Functional Chronic Constipation: Rome III Criteria Versus Rome IV Criteria. J. Neurogastroenterol. Motil. 2019, 25, 123–128. [Google Scholar] [CrossRef]
- Matthews, D.E. An Overview of Phenyloalanine and Thyrosine Kinetics in Humans. J. Nutr. 2007, 137 (Suppl. 6), 1549–1578. [Google Scholar] [CrossRef]
- Klaessen, S.; Stroobant, V.; De Plaen, E.; Van den Eynde, B.J. Systemic TRP Hemeostasis. Front. Mol. Biosci. 2022, 9, 897929. [Google Scholar] [CrossRef]
- Chojnacki, C.; Poplawski, T.; Blasiak, J.; Fila, M.; Konrad, P.; Chojnacki, J. Alterd Dopamone Signalling in Chronic Epigastric Pain Syndrome. J. Physiol. Pharmacol. 2020, 71, 817–823. [Google Scholar] [CrossRef]
- Mezey, E.; Eisenhofer, G.; Hansson, S.; Harta, G.; Hoffman, B.J.; Gallatz, K.; Palkovits, M.; Hunyady, B. Non-neuronal dopamine in the gastrointestinal system. Clin. Exp. Pharmacol. Physiol. 1999, 26, 14–22. [Google Scholar] [PubMed]
- Mawe, G.M.; Coates, M.D.; Moses, P.L. Review article: Intestinal serotonin signalling in irritable bowel syndrome. Aliment. Pharmacol. Ther. 2006, 23, 1067–1076. [Google Scholar] [CrossRef] [PubMed]
- Sikander, A.; Rana, S.V.; Prasad, K.K. Role of serotonin in gastrointestinal motility and irritable bowel syndrome. Clin. Chim. Acta 2009, 403, 47–55. [Google Scholar] [CrossRef]
- Dunlop, S.P.; Coleman, N.S.; Blackshaw, E.; Perkins, A.C.; Singh, G.; Marsden, C.A.; Spiller, R.C. Abnormalities of 5-Hydroxytryptamine Metabolism in Irritable Bowel Syndrome. Clin. Gastroenterol. Hepatol. 2005, 3, 349–357. [Google Scholar] [CrossRef]
- Atkinson, W.; Lockhart, S.; Whorwell, P.J.; Keevil, B.; Houghton, L.A. Altered 5-Hydroxytryptamine Signaling in Patients with Constipation- and Diarrhea-Predominant Irritable Bowel Syndrome. Gastroenterology 2006, 130, 34–43. [Google Scholar] [CrossRef]
- Spiller, R. Recent advances in understanding the role of serotonin in gastrointestinal motility in functional bowel disorders: Alteration in 5-HT signaling and metabolism in human diseases. Neurogastroenterol. Motil. 2007, 19 (Suppl. 2), 25–31. [Google Scholar] [CrossRef]
- You, F.Y.; Huang, S.G.; Zhang, H.Y.; Ye, H.; Chi, H.G.; Zou, Y.; Lv, R.X.; Zheng, X.B. Comparison of 5-hydroxytryptamine signaling pathway characteristics in diarrhea-predominant irritable bowel syndrome and ulcerative colitis. World J. Gastroenterol. 2016, 22, 3451–3459. [Google Scholar] [CrossRef]
- Coates, M.D.; Mahoney, C.R.; Linden, D.R.; Sampson, J.E.; Chen, J.; Blaszyk, H.; Crowell, M.D.; Sharkey, K.A.; Gershon, M.D.; Mawe, G.M.; et al. Molecular defects in mucosal serotonin and decreased serotonin reuptake transporter in ulcerative colitis and irritable bowel syndrome. Gastroenterology 2004, 126, 1657–1664. [Google Scholar] [CrossRef] [PubMed]
- Thijssen, A.Y.; Mujagic, Z.; Jonkers, D.M.A.E.; Ludidi, S.; Keszthelyi, D.; Hesselink, M.A.; Clemens, C.H.M.; Conchillo, J.M.; Kruimel, J.W.; Masclee, A.A.M. Alterations in serotonin metabolism in irritable bowel syndrome. Alimen. Pharmacol. Ther. 2016, 43, 272–282. [Google Scholar] [CrossRef] [PubMed]
- Magro, F.; Vieira-Coelho, M.A.; Fraga, S.; Serrao, M.M.; Veloso, F.T.; Robeiro, T.; Soares da Silva, P. Impaired synthesis or cellular storage of norepinephrine, dopamine, and 5-hydroxytryptamine in human inflammatory bowel diseases. Dig. Dis. Sci. 2002, 47, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.S.; Schmauss, C.; Ractliffe, E.; Gershon, M.D. Physiological; modulation of intestinal motility by enteric dopaminergic neurons and D2 receptor: Analysis of dopamine receptor expression, location, development, and function in wild-type and knock-out mice. J. Neurosci. 2006, 26, 2798–2807. [Google Scholar] [CrossRef]
- Zizzo, M.G.; Bellanca, A.; Amato, A.; Serio, R. Opposite effect of dopamine on the mechanical activity of circular and longitudinal muscle of human colon. Neurogastroenterol. Motil. 2020, 32, e13811. [Google Scholar] [CrossRef]
- Wauters, L.; Tallewy, N.J.; Walker, M.M.; Tack, J.; Vanuytsel, T. Novel concepts in the pathophysiology and treatment of functional dyspepsia. Gut 2020, 69, 591–600. [Google Scholar] [CrossRef]
- Wachowska-Kelly, P.; Stępień, A.; Romanowski, M.; Chojnacki, C. Excretion and metabolism of dopamine in patients with functional dyspepsia. Pol. Merkur Lek. 2016, 40, 244–247. [Google Scholar] [PubMed]
- Corazza, G.R.; Biagi, F.; Albano, O.; Cheli, R.; Mazzacca, G.; Miglio, F.; Naccarato, R.; Quaglino, D.; Surrenti, C.; Verme, G.; et al. Levosulpiride in functional dyspepsia: A multicenter, double-blind, controlled trial. Ital. J. Gastroenterol. 1996, 28, 317–323. [Google Scholar] [PubMed]
- Chen, Y.; Xu, J.; Chen, Y. Regulatuin of Neurotransmitters by the Gut Microbiota and Effects on Cognition in Neurological Disorders. Nutrients 2021, 13, 2099. [Google Scholar] [CrossRef]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef]
- Chen, M.; Ruan, G.; Chen, L.; Ying, S.; Li, G.; Xu, F.; Xiao, Z.; Tian, Y.; Lv, L.; Ping, Y.; et al. Naurotransmitter and Intestinal Interactions: Focus on the Microbiota-Gut-Brain Axis in Irritable Bowel Syndrome. Front. Endocrinol. 2021, 13, 817100. [Google Scholar] [CrossRef]
- Strandwitz, P. Neurotransmitterr modulation by the gut microbiota. Brain Res. 2018, 1693, 128–133. [Google Scholar] [CrossRef] [PubMed]
- Chojnacki, C.; Błońska, A.; Kaczka, A.; Chojnacki, J.; Stępień, A.; Gąsiorowska, A. Evaluation of serotonin and dopaminę secretion and metabolism in patients with irritable bowel syndrome. Pol. Arch. Int. Med. 2018, 128, 711–771. [Google Scholar] [CrossRef]
- Sharma, S.K.; Patney, N.L.; Mehrotra, M.P.; Verma, R.B.; Kumar, A. Urinary indicant in healthy Indian subjects. Indian J. Physiol. Pharmacol. 1977, 21, 342–346. [Google Scholar] [PubMed]
- Casen, C.; Vebo, H.C.; Sekelja, M.; Hegge, F.T.; Karlsson, M.K.; Ciemniejewska, E.; Dzankovic, S.; Frøyland, C.; Nestestog, R.; Engstrand, L.; et al. Deviations in human gut microbiota: A novel diagnostic test for determining dysbiosis in patients with IBS or IBD. Aliment. Pharmacol. Therap. 2015, 42, 71–83. [Google Scholar] [CrossRef]
- Błońska, A.; Chojnacki, M.; Macieja, A.; Błasiak, J.; Majsterek, I.; Chojnacki, J.; Popławski, T. Typtophan Metabolism in Postmenopausal Women with Functional Constipation. Int. J. Mol. Sci. 2024, 25, 273. [Google Scholar] [CrossRef]
- Tews, H.C.; Elger, T.; Gunawan, S.; Fererberger, T.; Sommersberger, S.; Loibl, J.; Huss, M.; Liebisch, G.; Müller, M.; Kandulski, A.; et al. Fecal short chain fatty acids and urinary 3-indoxyl sulfate do not discriminate between patients with Crohn’s disease and ulcerative colitis and are not of diagnostic utility for predicting disease severity. Lipids Health Dis. 2023, 22, 164. [Google Scholar] [CrossRef] [PubMed]
- Quigley, E.M.M.; Murray, J.A.; Pimentel, M. AGA Clinical Practice Update on Small Intestinal Bacterial Overgrowth. Expert Review. Gastroenterology 2020, 159, 1526–1532. [Google Scholar] [CrossRef]
- Rezaie, A.; Buresi, M.; Lembo, A.; Lin, H.; McCallum, R.; Rao, S.; Schmulson, M.; Valdovinos, M.; Zakko, S.; Pimentel, M. Hydrogen and Methane-Based Breath Testing in Gastrointestinl Disorders. Am. J. Gatroenterol. 2017, 112, 775–784. [Google Scholar] [CrossRef] [PubMed]
- Losurdo, G.; Leandro, G.; Ierardi, E.; Perri, F.; Barone, M.; Leo, A.D. Breath Tests for the Non-invasive Diagosis of Small Intestinal Bacterial Overgrowth. A systematic Review with Meta-analysis. J. Neurogastroenterol. Motil. 2020, 26, 16–28. [Google Scholar] [CrossRef]
- Brannelly, N.T.; Hamilton-Shield, J.P.; Killard, A.J. The Measurement of Ammonia in Human Breath and its Potential in Clinical Diagnostics. Crit. Rev. Anal. Chem. 2016, 46, 490–501. [Google Scholar] [CrossRef]
- Imran, M.; Waqar, S.; Ogata, K.; Ahmed, M.; Noreen, Z.; Javed, S.; Bibi, N.; Bokhari, H.; Amjad, A.; Muddassar, M. Indentification of novel bacterial urease inhibitors through molecular shape and structure based virtual screening approaches. RSC Adv. 2020, 10, 16061. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.J.; Gran, R.Y.; Zhou, T.; Xu, D.P.; Li, H.B. Impact of gut bacteria on human health and diseases. Int. J. Mol. Sci. 2015, 16, 7493–7519. [Google Scholar] [CrossRef] [PubMed]
- Hata, T.; Asano, Y.; Yoshihara, K.; Kimura-Todani, T.; Miyata, N.; Zhang, X.T.; Takakura, S.; Aiba, Y.; Koga, Y.; Sudo, N. Regulation of gut luminal serotonin by commensal microbiota in mice. PLoS ONE 2017, 12, e0180745. [Google Scholar] [CrossRef] [PubMed]
- Shishov, V.A.; Kudrin, V.S.; Olekin, A.V. Amine neuromediators, their precursors, and oxidation products oin the culture of Escherichia coli K-12. Prikl. Biokhim. Mikrobiol. 2009, 45, 494–497. [Google Scholar] [PubMed]
- Özogul, F.K.E.; Özogul, L.; Özogul, I. The function of LKactic Bacteria of Biogenic Amines Production by Food-Borne Pathogens in Arginine Decarboxylase Broth. Food Sci. Techn. Res. 2012, 18, 795–804. [Google Scholar] [CrossRef] [PubMed]
- Yano, J.M.; Yu, K.; Donaldson, G.P.; Shastri, G.G.; Ann, P.; Ma, L.; Nagler, C.R.; Ismagilov, R.F.; Mazmanian, S.K.; Hsiao, E.Y. Indigenous Bactria of Gut Microbiota Regulate Serotonin Biosynthesis. Cell 2015, 161, 264–276. [Google Scholar] [CrossRef]
- Tsavkelova, E.A.; Botvinko, I.V.; Kudrin, V.S.; Oleskin, A.V. Detection of neurotransmitter amines in microorganisms with the use of high-performance liquid chromatography. Dokl. Biochem. 2000, 372, 115–117. [Google Scholar] [PubMed]
- Liu, W.H.; Chuang, H.L.; Huang, Y.T.; Wu, C.C.; Chou, G.-T.; Wang, S.; Tsai, Y.-C. Alteration of Behavior and Monoamine Levels Attributale to Lactopbacillus Plantarum PS128 I Germ-Free Mice. Behav. Brain Res. 2016, 298, 202–209. [Google Scholar] [CrossRef]
- Villageliu, D.; Lyte, M. Dopamine production in Enteroccocus faecium: A microbial endocrinology-based mechanism for the selection of probiotics based on neurochemical-producing potential. PLoS ONE 2018, 13, e0207038. [Google Scholar] [CrossRef]
- Zoppi, G.; Cinquetti, M.; Luciano, A. The intestinal ecosystem in chronic functional constipation. Acta Paediatr. 1998, 87, 836–841. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Liu, W.; Alkhouri, R.; Baker, R.; Bard, J.E.; Quigley, E.M.; Baker, S.S. Structral Structural changes in the gut microbiome of constipated patients. Physiol. Genom. 2014, 46, 679–686. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Liu, X.; An, Y.; Zhou, G.; Liu, Y.; Xu, M.; Dong, W.; Wang, S.; Yan, F.; Jiang, K.; et al. Dysbiosis contributes to chronic constipation development via regulation of serotonin transporter in the intestine. Sci. Rep. 2017, 7, 10322. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-K.; Yao, S.-K. Roles of Gut Microbiota and Metabolites in Pathogenesis of Functional Constipation. E-Bas. Copl. Altern. Med. 2021, 2021, 5560310. [Google Scholar] [CrossRef] [PubMed]
- Ohkusa, T.; Koido, S.; Nishikawa, Y.; Sato, N. Gut Microbiota and Chronic Constipation: A Review and Update. Front. Med. 2019, 6, 433299. [Google Scholar] [CrossRef]
- Khalif, I.L.; Quigley, E.M.; Konowith, E.A.; Maximowa, I.D. Alterations in the colonic flora and intestinal permeability and evidence of immune activation in chronic constipation. Dig. Liver Dis. 2005, 37, 838–849. [Google Scholar] [CrossRef]
- Kim, S.E.; Choi, S.C.; Park, K.S.; Park, M.I.; Shin, J.E.; Lee, T.H.; Jung, K.W.; Koo, H.S.; Myung, S.J. Change of fecal flora and effectiveness of short-term VSL-3 probiotic treatment in patients with functional constipation. J. Neurogastroenterol. Motil. 2015, 21, 111–120. [Google Scholar] [CrossRef]
- Mancabelli, L.; Milani, C.; Lugli, G.A.; Turroni, F.; Mangifesta, M.; Viappiani, A.; Ticinesi, A.; Nouvenne, A.; Meschi, T.; Van Sinderen, D.; et al. Unvelling the gut microbiota composition and functionality associated with constipation trough metagenomic analyses. Sci. Rep. 2017, 7, 9879. [Google Scholar] [CrossRef]
- Pittayanon, R.; Lau, J.T.; Yuan, Y.; Leontiadis, G.I.; Tse, F.; Surette, M.; Moayyedi, P. Gut microbiota in Patients With Irritable Bowel Syndrome. A Systemic Review. Gastroenterology 2019, 157, 97–108. [Google Scholar] [CrossRef]
- Mazzawi, T.; Lied, G.A.; Sangnes, D.A.; El-Salhy, M.; Hov, J.R.; Gilja, O.H.; Hatlebakk, J.G.; Hausken, T. The kinetics of gut microbial community composition in patients with irritable bowel syndrome following fecal microbiota transplantation. PLoS ONE 2018, 13, e0194904. [Google Scholar] [CrossRef]
- Iribarren, C.; Nordlander, S.; Sundin, J.; Isaksson, S.; Savolainen, O.; Törnblom, H.; Magnusson, M.K.; Simrén, M.; Öhman, L. Fecal luminal factors from patients with irritable bowel syndrome induce distinct gene expression of colonoids. Neurogastroenterol. Mitillity 2022, 34, e14390. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, B.; Iribarren, C.; Magnusson, M.K.; Sundin, J.; Clevers, E.; Savolainen, O.; Ross, A.B.; Törnblom, H.; Simrén, M.; Öhman, L. A distinct faecal microbiota and metabolite profile linked to bowel habits in patients with irritable bowel syndrome. Cell 2021, 10, 1459. [Google Scholar] [CrossRef] [PubMed]
- Vasapolli, R.; Schulz, C.; Schweden, M.; Casèn, C.; Kirubakaran, G.T.; Kirste, K.H.; Macke, L.; Link, A.; Schütte, K.; Malfertheiner, P. Gut microbiota profiles and the role od anti-CdtB ant anti-vinculin antibodies in patients with functional gastrointestinal disorders (FGID). Eur. J. Clin. Investig. 2021, 51, e13666. [Google Scholar] [CrossRef] [PubMed]
- Hou, K.; Wu, Z.X.; Chen, X.Y.; Wang, J.Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in health and diseases. Signal Transd. Targ. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Fujisaka, S.; Watanabe, Y.; Tobe, K. The gut microbiome: A core regulator of metabolism. J. Endocrinol. 2023, 256, e220111. [Google Scholar] [CrossRef]
- Jeffery, I.B.; Das, A.; O’Herlihy, E.; Coughlan, S.; Cisek, K.; Moore, M.; Bradley, F.; Carty, T.; Pradhan, M.; Dwibedi, C.; et al. Differences in Fecal Microbiomes and Metabolomes of People With vs Without Irritable Bowel Syndrome and Bile Acid Malabsorption. Gastroenterology 2020, 158, 1016–1028.e8. [Google Scholar] [CrossRef]
- Duan, R.; Zhu, S.; Wang, B.; Duan, L. Alterations of Gut Microbiota in Patients With Irritable Bowel Syndrome based on 16S rRNA-Targeted Sequencing: A Systemic Review. Clin. Tranl. Gastroenterol. 2019, 10, e00012. [Google Scholar] [CrossRef]
- Wang, L.; Alammar, N.; Singh, R.; Nanavati, J.; Chaudhary, R.; Mullin, G.E. Gut Microbial Dysbiosis in the Irritable Bowel Syndrome: A Systemic Review and Meta-Analysis of Case-Control Studies. J. Acad. Nutr. Diet. 2020, 120, 565–586. [Google Scholar] [CrossRef]
- Napolitano, M.; Fasulo, E.; Ungaro, F.; Massimino, L.; Sinagra, E.; Danese, S.; Mandarino, F.V. Gut Dysbiosis in Irritable Bowel Syndrome: A Narrative Review on Correlation with Disease Subtypes and Novel Therapeutic Implications. Microorganisms 2023, 11, 2369. [Google Scholar] [CrossRef]
- Teige, E.S.; Sortvik, U.; Lied, G.A. A Systemic Review: Fecal Bacterial Profile in Patients with Irritable Bowel Syndrome Analyzed with the GA-Map Dysbiosis Test Based on the 16S rRNA Gene of Bacterial Species or Groups. Clin. Exper. Gastroenterol. 2024, 17, 109–120. [Google Scholar] [CrossRef]
- Hooks, K.B.; O’Malley, M.A. Dysbiosis and Its Discontents. Mbio 2017, 8, e01492-17. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Hiramoto, T.; Nishino, R.; Aiba, Y.; Yoshihara, K.; Koga, Y.; Sudo, N. Critical role of gut microbiota in the pathogenesis in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastroinest. Liver Physiol. 2012, 303, 1288–1295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Wang, R.; Li, D.; Zhao, L.; Zhu, L. Role of gut microbiota in functional constipation. Gastroenterol. Rep. 2021, 9, 392–401. [Google Scholar] [CrossRef] [PubMed]
Feature | Group I (n = 40) | Group II (n = 40) | p-Value |
---|---|---|---|
Age (years) | 37.7 ± 5.8 | 38.0 ± 5.3 | 0.916 |
Gender—F | 40 | 40 | n/a |
BMI (kg/m2) | 23.1 ± 0.8 | 23.4 ± 0.5 | 0.054 |
GFR (mL/min) | 99.3 ± 3.4 | 97.7 ± 4.3 | 0.062 |
ALT (µ/L) | 16.6 ± 3.8 | 15.3 ± 3.9 | 0.057 |
AST (µ/L) | 14.7 ± 1.9 | 16.4 ± 1.4 | 0.092 |
CRP (mg/L) | 3.0 ± 0.8 | 3.1 ± 0.7 | 0.192 |
FC (µg/g) | 28.3 ± 4.7 | 34.6 ± 7.5 | 0.0007 |
Bacteria | Decrease | Increase | p-Value | 95% CI |
---|---|---|---|---|
Actinomycetales | 3 (7.5) | 8 (20.0) | 0.052 | n/a |
Bifidobacterium spp. | 9 (12.5) | 23 (57.5) | 0.00069 | 0.241–0.659 |
Bacteroides fragilis | 3 (7.5) | 21 (52.5) | 0.00006 | 0.295–0.703 |
Clostridium spp. | 6 (15.0) | 17 (42.5) | 0.003 | 0.077–0.473 |
Faecalibacterium praise | 6 (15.0) | 6 (15.0) | 0.50 | n/a |
Furmicutes (varia) | 9 (22.5) | 7 (17.5) | 0.28 | n/a |
Lactobacillus spp. | 12 (30.0) | 4 (10.0) | 0.013 | n/a |
Prevotella spp. | 4 (10.0) | 6 (15.0) | 0.25 | n/a |
Ruminococcus (varia) | 10 (25.0) | 4 (10.0) | 0.039 | n/a |
Streptococcus spp. | 9 (22.5) | 6 (15.0) | 0.19 | n/a |
Ions (Time, min) | Group I (ppm) | Group II (ppm) | p-Value | Θ |
---|---|---|---|---|
Hydrogen (0) | 6.75 ± 2.1 | 14.77 ± 5.7 | <0.001 | 0.75 |
Hydrogen (90) | 23.07 ± 5.7 | 29.80 ± 9.7 | <0.001 | 0.35 |
Hydrogen (150) | 93.45 ± 19.9 | 99.15 ± 14.9 | 0.18 | n/a |
Methane (0) | 4.72 ± 1.6 | 4.72 ± 1.3 | 0.94 | n/a |
Methane (90) | 4.57 ± 1.1 | 5.25 ± 1.2 | 0.01 | 0.28 |
Methane (150) | 12.07 ± 4.1 | 15.40 ± 5.7 | 0.007 | 0.3 |
Ammonia(0) | 4.12 ± 1.0 | 4.26 ± 1.0 | 0.67 | n/a |
Ammonia (90) | 5.37 ± 0.9 | 5.27 ± 1.0 | 0.52 | n/a |
Ammonia (150) | 8.92 ± 2.0 | 8.94 ± 1.7 | 0.96 | n/a |
Variable | DI | S-Score | HVA | 5-HIAA | HVA/HIAA | PhAc | 3-IS |
---|---|---|---|---|---|---|---|
DI | 1 | 0.68 0.00018 * | 0.17 (0.31) | −0.12 (0.44) | 0.81 0.00019 * | −0.13 (0.42) | 0.18 (0.27) |
S-Score | 0.68 0.00018 * | 1 | 0.20 (0.2) | 0.13 (0.93) | 0.67 0.00022 * | −0.15 (0.35) | 0.11 (0.51) |
HVA | 0.17 (0.31) | 0.20 (0.2) | 1 | −0.21 (0.19) | 0.33 0.034 * | 0.01 (0.97) | −0.16 (0.33) |
5-HIAA | −0.12 (0.44) | 0.13 (0.93) | −0.20 (0.19) | 1 | −0.11 (0.5) | 0.31 (0.052) | −0.69 (0.24) |
HVA/HIAA | 0.81 0.00019 * | 0.67 0.00022 * | 0.33 0.034 * | −0.11 (0.5) | 1 | −0.08 (0.62) | 0.23 (0.14) |
PhAc | −0.13 (0.42) | −0.15 (0.35) | 0.01 (0.97) | 0.31 (0.051) | −0.08 (0.62) | 1 | −0.09 (0.59) |
3-IS | 0.18 (0.28) | 0.11 (0.51) | −0.16 (0.33) | −0.19 (0.24) | 0.23 (0.14) | −0.09 (0.59) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chojnacki, J.; Popławski, T.; Kaczka, A.; Romanowska, N.; Chojnacki, C.; Gąsiorowska, A. Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation. Nutrients 2024, 16, 2981. https://doi.org/10.3390/nu16172981
Chojnacki J, Popławski T, Kaczka A, Romanowska N, Chojnacki C, Gąsiorowska A. Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation. Nutrients. 2024; 16(17):2981. https://doi.org/10.3390/nu16172981
Chicago/Turabian StyleChojnacki, Jan, Tomasz Popławski, Aleksandra Kaczka, Natalia Romanowska, Cezary Chojnacki, and Anita Gąsiorowska. 2024. "Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation" Nutrients 16, no. 17: 2981. https://doi.org/10.3390/nu16172981
APA StyleChojnacki, J., Popławski, T., Kaczka, A., Romanowska, N., Chojnacki, C., & Gąsiorowska, A. (2024). Assessment of Urinary Dopamine and Serotonin Metabolites in Relation to Dysbiosis Indicators in Patients with Functional Constipation. Nutrients, 16(17), 2981. https://doi.org/10.3390/nu16172981