Pediatric Chronic Intestinal Failure: Something Moving?
Abstract
:1. Introduction: Definitions, Prevalence and Goal of Treatment
2. Underlying Conditions
2.1. Short Bowel Syndrome
2.2. Intestinal Neuromuscular Motility Disorders
2.3. Congenital Enteropathies
3. Current Treatment of Pediatric Intestinal Failure
3.1. Multidisciplinary Care
3.2. Home Parenteral Nutrition
3.3. Medical Management
3.4. Intestinal Transplantation
4. Complications of Long-Term Home Parenteral Nutrition
4.1. Central Venous Catheter-Related Bloodstream Infection
4.2. Catheter-Related Thrombosis
4.3. Intestinal Failure-Associated Liver Disease (IFALD)
4.4. Small Intestinal Bacterial Overgrowth
4.5. Metabolic Bone Disease
4.6. Renal Dysfunction
4.7. Growth
4.8. Health-Related Quality of Life
5. Future Perspectives
5.1. Outcomes in Research
5.2. GLP-2
5.3. Transition
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Nagelkerke, S.C.J. Home Parenteral Nutrition in Children: Treatment, Complications and Patient Reported Outcomes. Ph.D. Thesis, Universiteit van Amsterdam, Amsterdam, The Netherlands, 2022. [Google Scholar]
- Neelis, E.G.; van Oers, H.A.; Escher, J.C.; Damen, G.M.; Rings, E.H.; Tabbers, M.M. Treatment of children with intestinal failure: Intestinal rehabilitation, home parenteral nutrition or small intestine transplantation? Ned. Tijdschr. Geneeskd. 2014, 158, A7771. [Google Scholar] [PubMed]
- Diamanti, A.; Capriati, T.; Gandullia, P.; Di Leo, G.; Lezo, A.; Lacitignola, L.; Spagnuolo, M.I.; Gatti, S.; D’Antiga, L.; Verlato, G.; et al. Pediatric Chronic Intestinal Failure in Italy: Report from the 2016 Survey on Behalf of Italian Society for Gastroenterology, Hepatology and Nutrition (SIGENP). Nutrients 2017, 9, 1217. [Google Scholar] [CrossRef] [PubMed]
- Antunes, H.; Nóbrega, S.; Correia, M.; Campos, A.P.; Silva, R.; Guerra, P.; Mourato, P.; Lopes, A.I.; Mansilha, H.; Tavares, M. Portuguese Prevalence of Pediatric Chronic Intestinal Failure. J. Pediatr. Gastroenterol. Nutr. 2020, 70, e85. [Google Scholar] [CrossRef]
- Goulet, O.; Ruemmele, F. Causes and management of intestinal failure in children. Gastroenterology 2006, 130 (Suppl. S1), S16–S28. [Google Scholar] [CrossRef]
- Hill, S.; Ksiazyk, J.; Prell, C.; Tabbers, M. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Home parenteral nutrition. Clin. Nutr. 2018, 37, 2401–2408. [Google Scholar] [CrossRef]
- Mangalat, N.; Teckman, J. Pediatric Intestinal Failure Review. Children 2018, 5, 100. [Google Scholar] [CrossRef]
- Neelis, E.G.; Olieman, J.F.; Hulst, J.M.; de Koning, B.A.; Wijnen, R.M.; Rings, E.H. Promoting intestinal adaptation by nutrition and medication. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 249–261. [Google Scholar] [CrossRef]
- Abi Nader, E.; Lambe, C.; Talbotec, C.; Pigneur, B.; Lacaille, F.; Garnier-Lengliné, H.; Petit, L.M.; Poisson, C.; Rocha, A.; Corriol, O.; et al. Outcome of home parenteral nutrition in 251 children over a 14-y period: Report of a single center. Am. J. Clin. Nutr. 2016, 103, 1327–1336. [Google Scholar] [CrossRef]
- Merras-Salmio, L.; Mutanen, A.; Ylinen, E.; Rintala, R.; Koivusalo, A.; Pakarinen, M.P. Pediatric Intestinal Failure: The Key Outcomes for the First 100 Patients Treated in a National Tertiary Referral Center During 1984–2017. JPEN J. Parenter. Enter. Nutr. 2018, 42, 1304–1313. [Google Scholar] [CrossRef]
- Hess, R.A.; Welch, K.B.; Brown, P.I.; Teitelbaum, D.H. Survival outcomes of pediatric intestinal failure patients: Analysis of factors contributing to improved survival over the past two decades. J. Surg. Res. 2011, 170, 27–31. [Google Scholar] [CrossRef] [PubMed]
- Torres, C.; Badalyan, V.; Mohan, P. Twelve-year outcomes of intestinal failure-associated liver disease in children with short-bowel syndrome: 97% transplant-free survival and 81% enteral autonomy. JPEN J. Parenter Enter. Nutr. 2022, 46, 197–206. [Google Scholar] [CrossRef] [PubMed]
- Lezo, A.; Diamanti, A.; Marinier, E.M.; Tabbers, M.; Guz-Mark, A.; Gandullia, P.; Spagnuolo, M.I.; Protheroe, S.; Peretti, N.; Merras-Salmio, L.; et al. Chronic Intestinal Failure in Children: An International Multicenter Cross-Sectional Survey. Nutrients 2022, 14, 1889. [Google Scholar] [CrossRef] [PubMed]
- Galea, M.H.; Holliday, H.; Carachi, R.; Kapila, L. Short-bowel syndrome: A collective review. J. Pediatr. Surg. 1992, 27, 592–596. [Google Scholar] [CrossRef]
- Wales, P.W.; Christison-Lagay, E.R. Short bowel syndrome: Epidemiology and etiology. Semin. Pediatr. Surg. 2010, 19, 3–9. [Google Scholar] [CrossRef]
- Wales, P.W.; de Silva, N.; Kim, J.; Lecce, L.; To, T.; Moore, A. Neonatal short bowel syndrome: Population-based estimates of incidence and mortality rates. J. Pediatr. Surg. 2004, 39, 690–695. [Google Scholar] [CrossRef]
- Cernat, E.; Corlett, C.; Iglesias, N.; Onyeador, N.; Steele, J.; Batra, A. Short bowel syndrome in infancy: Recent advances and practical management. Frontline Gastroenterol. 2021, 12, 614–621. [Google Scholar] [CrossRef]
- Saeman, M.R.; Piper, H.G. Recent Advances in the Management of Pediatric Short Bowel Syndrome: An Integrative Review of the Literature. Curr. Surg. Rep. 2016, 4, 7. [Google Scholar] [CrossRef]
- Spencer, A.U.; Neaga, A.; West, B.; Safran, J.; Brown, P.; Btaiche, I.; Kuzma-O’Reilly, B.; Teitelbaum, D.H. Pediatric short bowel syndrome: Redefining predictors of success. Ann. Surg. 2005, 242, 403–409; discussion 409–412. [Google Scholar] [CrossRef]
- Demehri, F.R.; Stephens, L.; Herrman, E.; West, B.; Mehringer, A.; Arnold, M.A.; Brown, P.I.; Teitelbaum, D.H. Enteral autonomy in pediatric short bowel syndrome: Predictive factors one year after diagnosis. J. Pediatr. Surg. 2015, 50, 131–135. [Google Scholar] [CrossRef]
- Belza, C.; Fitzgerald, K.; de Silva, N.; Avitzur, Y.; Wales, P.W. Early Predictors of Enteral Autonomy in Pediatric Intestinal Failure Resulting From Short Bowel Syndrome: Development of a Disease Severity Scoring Tool. JPEN J. Parenter. Enter. Nutr. 2019, 43, 961–969. [Google Scholar] [CrossRef] [PubMed]
- Peters, F.B.; Bone, J.N.; Van Oerle, R.; Albersheim, S.; Casey, L.; Piper, H. The Importance of the ileocecal valve and colon in achieving intestinal independence in infants with short bowel syndrome. J. Pediatr. Surg. 2022, 57, 117–121. [Google Scholar] [CrossRef]
- Khan, F.A.; Squires, R.H.; Litman, H.J.; Balint, J.; Carter, B.A.; Fisher, J.G.; Horslen, S.P.; Jaksic, T.; Kocoshis, S.; Martinez, J.A.; et al. Predictors of Enteral Autonomy in Children with Intestinal Failure: A Multicenter Cohort Study. J. Pediatr. 2015, 167, 29–34.e1. [Google Scholar] [CrossRef] [PubMed]
- Enman, M.A.; Wilkinson, L.T.; Meloni, K.B.; Shroyer, M.C.; Jackson, T.F.; Aban, I.; Dimmitt, R.A.; Martin, C.A.; Galloway, D.P. Key Determinants for Achieving Enteral Autonomy and Reduced Parenteral Nutrition Exposure in Pediatric Intestinal Failure. JPEN J. Parenter. Enter. Nutr. 2020, 44, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A. Intestinal loop lengthening—A technique for increasing small intestinal length. J. Pediatr. Surg. 1980, 15, 145–151. [Google Scholar] [CrossRef]
- Kim, H.B.; Fauza, D.; Garza, J.; Oh, J.T.; Nurko, S.; Jaksic, T. Serial transverse enteroplasty (STEP): A novel bowel lengthening procedure. J. Pediatr. Surg. 2003, 38, 425–429. [Google Scholar] [CrossRef]
- Nagelkerke, S.C.J.; Poelgeest, M.Y.V.; Wessel, L.M.; Mutanen, A.; Langeveld, H.R.; Hill, S.; Benninga, M.A.; Tabbers, M.M.; Bakx, R. Bowel Lengthening Procedures in Children with Short Bowel Syndrome: A Systematic Review. Eur. J. Pediatr. Surg. 2022, 32, 301–309. [Google Scholar] [CrossRef]
- Granström, A.L.; Irvine, W.; Hoel, A.T.; Tabbers, M.; Kyrklund, K.; Leon, F.F.; Fusaro, F.; Thapar, N.; Dariel, A.; Sloots, C.E.J.; et al. Ernica Clinical Consensus Statements on Total Colonic and Intestinal Aganglionosis. J. Pediatr. Surg. 2024, 161565. [Google Scholar] [CrossRef]
- Thapar, N.; Saliakellis, E.; Benninga, M.A.; Borrelli, O.; Curry, J.; Faure, C.; De Giorgio, R.; Gupte, G.; Knowles, C.H.; Staiano, A.; et al. Paediatric Intestinal Pseudo-obstruction: Evidence and Consensus-based Recommendations From an ESPGHAN-Led Expert Group. J. Pediatr. Gastroenterol. Nutr. 2018, 66, 991–1019. [Google Scholar] [CrossRef]
- Ko, D.; Yang, H.-B.; Youn, J.; Kim, H.-Y. Clinical Outcomes of Pediatric Chronic Intestinal Pseudo-Obstruction. J. Clin. Med. 2021, 10, 2376. [Google Scholar] [CrossRef]
- Vargas, J.H.; Sachs, P.; Ament, M.E. Chronic intestinal pseudo-obstruction syndrome in pediatrics. Results of a national survey by members of the North American Society of Pediatric Gastroenterology and Nutrition. J. Pediatr. Gastroenterol. Nutr. 1988, 7, 323–332. [Google Scholar] [PubMed]
- Gamboa, H.E.; Sood, M. Pediatric Intestinal Pseudo-obstruction in the Era of Genetic Sequencing. Curr. Gastroenterol. Rep. 2019, 21, 70. [Google Scholar] [CrossRef] [PubMed]
- Di Lorenzo, C.; Reddy, S.N.; Villanueva-Meyer, J.; Mena, I.; Martin, S.; Hyman, P.E. Cisapride in children with chronic intestinal pseudoobstruction. An acute, double-blind, crossover, placebo-controlled trial. Gastroenterology 1991, 101, 1564–1570. [Google Scholar] [CrossRef] [PubMed]
- Hyman, P.E.; Di Lorenzo, C.; McAdams, L.; Flores, A.F.; Tomomasa, T.; Garvey, T.Q., 3rd. Predicting the clinical response to cisapride in children with chronic intestinal pseudo-obstruction. Am. J. Gastroenterol. 1993, 88, 832–836. [Google Scholar]
- Ambartsumyan, L.; Flores, A.; Nurko, S.; Rodriguez, L. Utility of Octreotide in Advancing Enteral Feeds in Children with Chronic Intestinal Pseudo-Obstruction. Paediatr. Drugs 2016, 18, 387–392. [Google Scholar] [CrossRef]
- O’Dea, C.J.; Brookes, J.H.; Wattchow, D.A. The efficacy of treatment of patients with severe constipation or recurrent pseudo-obstruction with pyridostigmine. Color. Dis. 2010, 12, 540–548. [Google Scholar] [CrossRef]
- Emmanuel, A.V.; Kamm, M.A.; Roy, A.J.; Kerstens, R.; Vandeplassche, L. Randomised clinical trial: The efficacy of prucalopride in patients with chronic intestinal pseudo-obstruction—A double-blind, placebo-controlled, cross-over, multiple n = 1 study. Aliment. Pharmacol. Ther. 2012, 35, 48–55. [Google Scholar] [CrossRef]
- Mousa, H.; Hyman, P.E.; Cocjin, J.; Flores, A.F.; Di Lorenzo, C. Long-term outcome of congenital intestinal pseudoobstruction. Dig. Dis. Sci. 2002, 47, 2298–2305. [Google Scholar] [CrossRef]
- Connor, F.L.; Di Lorenzo, C. Chronic intestinal pseudo-obstruction: Assessment and management. Gastroenterology 2006, 130 (Suppl. 1), S29–S36. [Google Scholar] [CrossRef]
- Irtan, S.; Bellaïche, M.; Brasher, C.; El Ghoneimi, A.; Cézard, J.P.; Bonnard, A. Stomal prolapse in children with chronic intestinal pseudoobstruction: A frequent complication? J. Pediatr. Surg. 2010, 45, 2234–2237. [Google Scholar] [CrossRef]
- Demirok, A.; Nagelkerke, S.C.J.; Benninga, M.A.; Köglmeier, J.; Mutanen, A.; Arnell, H.; Felcht, J.; Guimber, D.; Wahlstedt, C.; Avitzur, Y.; et al. Development of a core outcome set for pediatric chronic intestinal failure. JPEN J. Parenter. Enter. Nutr. 2023, 47, 364–371. [Google Scholar] [CrossRef]
- Heneyke, S.; Smith, V.V.; Spitz, L.; Milla, P.J. Chronic intestinal pseudo-obstruction: Treatment and long term follow up of 44 patients. Arch. Dis. Child. 1999, 81, 21–27. [Google Scholar] [CrossRef]
- Muto, M.; Matsufuji, H.; Tomomasa, T.; Nakajima, A.; Kawahara, H.; Ida, S.; Ushijima, K.; Kubota, A.; Mushiake, S.; Taguchi, T. Pediatric chronic intestinal pseudo-obstruction is a rare, serious, and intractable disease: A report of a nationwide survey in Japan. J. Pediatr. Surg. 2014, 49, 1799–1803. [Google Scholar] [CrossRef]
- Elkadri, A.A. Congenital Diarrheal Syndromes. Clin. Perinatol. 2020, 47, 87–104. [Google Scholar] [CrossRef]
- Francis, K.L.; Verma, A.; Pacheco, M.C.; Wendel, D.; Vue, P.M.; Hu, S.J.; Scarlett, J.M. Neurogenin-3 Enteric Endocrinopathy: A Rare Case of Pediatric Congenital Diarrhea and Diabetes Mellitus. JPGN Rep. 2022, 3, e173. [Google Scholar] [CrossRef] [PubMed]
- Das, B.; Sivagnanam, M. Congenital Tufting Enteropathy: Biology, Pathogenesis and Mechanisms. J. Clin. Med. 2020, 10, 19. [Google Scholar] [CrossRef] [PubMed]
- Leng, C.; Rings, E.; de Wildt, S.N.; van IJzendoorn, S.C.D. Pharmacological and Parenteral Nutrition-Based Interventions in Microvillus Inclusion Disease. J. Clin. Med. 2020, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Groisman, G.M.; Amar, M.; Livne, E. CD10: A valuable tool for the light microscopic diagnosis of microvillous inclusion disease (familial microvillous atrophy). Am. J. Surg. Pathol. 2002, 26, 902–907. [Google Scholar] [CrossRef]
- Müller, T.; Hess, M.W.; Schiefermeier, N.; Pfaller, K.; Ebner, H.L.; Heinz-Erian, P.; Ponstingl, H.; Partsch, J.; Röllinghoff, B.; Köhler, H.; et al. MYO5B mutations cause microvillus inclusion disease and disrupt epithelial cell polarity. Nat. Genet. 2008, 40, 1163–1165. [Google Scholar] [CrossRef]
- Aldrian, D.; Vogel, G.F.; Frey, T.K.; Ayyıldız Civan, H.; Aksu, A.; Avitzur, Y.; Ramos Boluda, E.; Çakır, M.; Demir, A.M.; Deppisch, C.; et al. Congenital Diarrhea and Cholestatic Liver Disease: Phenotypic Spectrum Associated with MYO5B Mutations. J. Clin. Med. 2021, 10, 481. [Google Scholar] [CrossRef]
- Salomon, J.; Goulet, O.; Canioni, D.; Brousse, N.; Lemale, J.; Tounian, P.; Coulomb, A.; Marinier, E.; Hugot, J.P.; Ruemmele, F.; et al. Genetic characterization of congenital tufting enteropathy: Epcam associated phenotype and involvement of SPINT2 in the syndromic form. Hum. Genet. 2014, 133, 299–310. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.J.; Mueller, J.L.; Okamoto, K.; Das, B.; Hertecant, J.; Greenhalgh, L.; Cole, T.; Pinsk, V.; Yerushalmi, B.; Gurkan, O.E.; et al. EPCAM mutation update: Variants associated with congenital tufting enteropathy and Lynch syndrome. Hum. Mutat. 2019, 40, 142–161. [Google Scholar] [CrossRef]
- Vlug, L.E.; Nagelkerke, S.C.J.; Jonkers-Schuitema, C.F.; Rings, E.; Tabbers, M.M. The Role of a Nutrition Support Team in the Management of Intestinal Failure Patients. Nutrients 2020, 12, 172. [Google Scholar] [CrossRef] [PubMed]
- Beath, S.; Pironi, L.; Gabe, S.; Horslen, S.; Sudan, D.; Mazeriegos, G.; Steiger, E.; Goulet, O.; Fryer, J. Collaborative strategies to reduce mortality and morbidity in patients with chronic intestinal failure including those who are referred for small bowel transplantation. Transplantation 2008, 85, 1378–1384. [Google Scholar] [CrossRef]
- Beath, S.V.; Gowen, H.; Puntis, J.W. Trends in paediatric home parenteral nutrition and implications for service development. Clin. Nutr. 2011, 30, 499–502. [Google Scholar] [CrossRef] [PubMed]
- Riskin, A.; Picaud, J.C.; Shamir, R. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Standard versus individualized parenteral nutrition. Clin. Nutr. 2018, 37, 2409–2417. [Google Scholar] [CrossRef]
- Nagelkerke, S.C.J.; Jonkers-Schuitema, C.F.; Kastelijn, W.L.M.; Gerards, A.E.; Benninga, M.A.; de Koning, B.A.E.; Tabbers, M.M. Standardized and Individualized Parenteral Nutrition Mixtures in a Pediatric Home Parenteral Nutrition Population. J. Pediatr. Gastroenterol. Nutr. 2020, 70, 269–274. [Google Scholar] [CrossRef]
- Riskin, A.; Shiff, Y.; Shamir, R. Parenteral nutrition in neonatology-to standardize or individualize? Isr. Med. Assoc. J. 2006, 8, 641–645. [Google Scholar]
- Senterre, T.; van den Akker, C.H.P.; Domellof, M.; Saenz de Pipaon, M.; Arnell, H.; Tabbers, M.; Valla, F.V.; Tomlin, S.; Paulsson, M.; Wackernagel, D.; et al. Safe and efficient practice of parenteral nutrition in neonates and children aged 0-18 years—The role of licensed multi-chamber bags. Clin. Nutr. 2024, 43, 1696–1705. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, P.B.; Staun, M.; Tjellesen, L.; Mortensen, P.B. Effect of intravenous ranitidine and omeprazole on intestinal absorption of water, sodium, and macronutrients in patients with intestinal resection. Gut 1998, 43, 763–769. [Google Scholar] [CrossRef]
- Castellani, C.; Singer, G.; Kashofer, K.; Huber-Zeyringer, A.; Flucher, C.; Kaiser, M.; Till, H. The influence of proton pump inhibitors on the fecal microbiome of infants with gastroesophageal reflux—A prospective longitudinal interventional study. Front. Cell. Infect. Microbiol. 2017, 7, 444. [Google Scholar] [CrossRef]
- Imhann, F.; Bonder, M.J.; Vila, A.V.; Fu, J.; Mujagic, Z.; Vork, L.; Tigchelaar, E.F.; Jankipersadsing, S.A.; Cenit, M.C.; Harmsen, H.J.; et al. Proton pump inhibitors affect the gut microbiome. Gut 2016, 65, 740–748. [Google Scholar] [CrossRef]
- Nightingale, J.M.D.; Lennard-Jones, J.E.; Walker, E.R.; Farthing, M.J. Jejunal efflux in short bowel syndrome. Lancet 1990, 336, 765–768. [Google Scholar] [CrossRef] [PubMed]
- King, R.F.; Norton, T.; Hill, G.L. A double-blind crossover study of the effect of loperamide hydrochloride and codeine phosphate on ileostomy output. Aust. N. Z. J. Surg. 1982, 52, 121–124. [Google Scholar] [CrossRef] [PubMed]
- Nehra, V.; Camilleri, M.; Burton, D.; Oenning, L.; Kelly, D.G. An open trial of octreotide long-acting release in the management of short bowel syndrome. Am. J. Gastroenterol. 2001, 96, 1494–1498. [Google Scholar] [CrossRef] [PubMed]
- Mas, E.; Borrelli, O.; Broekaert, I.; De-Carpi, J.M.; Dolinsek, J.; Miele, E.; Pienar, C.; Koninckx, C.R.; Thomassen, R.A.; Thomson, M.; et al. Drugs in Focus: Octreotide Use in Children With Gastrointestinal Disorders. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 1–6. [Google Scholar] [CrossRef]
- Eberlin, M.; Chen, M.; Mueck, T.; Däbritz, J. Racecadotril in the treatment of acute diarrhea in children: A systematic, comprehensive review and meta-analysis of randomized controlled trials. BMC Pediatr. 2018, 18, 124. [Google Scholar] [CrossRef]
- Marcais-Collado, H.; Uchida, G.; Costentin, J.; Schwartz, J.C.; Lecomte, J.M. Naloxone-reversible antidiarrheal effects of enkephalinase inhibitors. Eur. J. Pharmacol. 1987, 144, 125–132. [Google Scholar] [CrossRef]
- Baumer, P.; Akoue, K.; Bergmann, J.F.; Chaussade, S.; Nepveux, P.; Alexandre, C.L.; Schwartz, J.C.; Lecomte, J.M. Acetorphan, a potent enkephalinase inhibitor, does not modify orocecal and colonic transit times in healthy subjects. Gastroenterol. Clin. Biol. 1989, 13, 947–948. [Google Scholar]
- Bergmann, J.F.; Chaussade, S.; Couturier, D.; Baumer, P.; Schwartz, J.C.; Lecomte, J.M. Effects of acetorphan, an antidiarrhoeal enkephalinase inhibitor, on oro-caecal and colonic transit times in healthy volunteers. Aliment Pharmacol. Ther. 1992, 6, 305–313. [Google Scholar] [CrossRef]
- Buchman, A.L.; Fryer, J.; Wallin, A.; Ahn, C.W.; Polensky, S.; Zaremba, K. Clonidine reduces diarrhea and sodium loss in patients with proximal jejunostomy: A controlled study. JPEN J. Parenter. Enteral. Nutr. 2006, 30, 487–491. [Google Scholar] [CrossRef]
- Wenzl, H.H.; Fine, K.D.; Schiller, L.R.; Fordtran, J.S. Determinants of decreased fecal consistency in patients with diarrhea. Gastroenterology 1995, 108, 1729–1738. [Google Scholar] [CrossRef] [PubMed]
- Murphy, J.; Stacey, D.; Crook, J.; Thompson, B.; Panetta, D. Testing control of radiation-induced diarrhea with a psyllium bulking agent: A pilot study. Can. Oncol. Nurs. J. 2000, 10, 96–100. [Google Scholar] [CrossRef] [PubMed]
- Wierdsma, N.J.; Peters, J.H.; van Bokhorst-de van der Schueren, M.A.; Mulder, C.J.; Metgod, I.; van Bodegraven, A.A. Bomb calorimetry, the gold standard for as-sessment of intestinal absorption capacity: Normative values in healthy ambulant adults. J. Hum. Nutr. Diet. 2014, 27 (Suppl. S2), 57–64. [Google Scholar] [CrossRef] [PubMed]
- Mutalib, M.; Kammermeier, J.; Vora, R.; Borrelli, O. Prucalopride in intestinal pseudo obstruction, paediatric experience and systematic review. Acta Gastroenterol. Belg. 2021, 84, 429–434. [Google Scholar] [CrossRef] [PubMed]
- Raphael, B.P.; Nurko, S.; Jiang, H.; Hart, K.; Kamin, D.S.; Jaksic, T.; Duggan, C. Cisapride improves enteral tolerance in pediatric short-bowel syndrome with dysmotility. J. Pediatr. Gastroenterol. Nutr. 2011, 52, 590–594. [Google Scholar] [CrossRef] [PubMed]
- Manini, M.L.; Camilleri, M.; Grothe, R.; Di Lorenzo, C. Application of Pyridostigmine in Pediatric Gastrointestinal Motility Disorders: A Case Series. Paediatr. Drugs 2018, 20, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Avelar Rodriguez, D.; Ryan, P.M.; Toro Monjaraz, E.M.; Ramirez Mayans, J.A.; Quigley, E.M. Small Intestinal Bacterial Overgrowth in Children: A State-of-The-Art Review. Front Pediatr. 2019, 7, 363. [Google Scholar] [CrossRef]
- Reddy, V.S.; Patole, S.K.; Rao, S. Role of probiotics in short bowel syndrome in infants and children--a systematic review. Nutrients 2013, 5, 679–699. [Google Scholar] [CrossRef]
- Blumenstein, I. GLP-2 Analogues as First Specific Treatment of Intestinal Failure. Visc. Med. 2019, 35, 320–323. [Google Scholar] [CrossRef]
- Kaufman, S.S.; Atkinson, J.B.; Bianchi, A.; Goulet, O.J.; Grant, D.; Langnas, A.N.; McDiarmid, S.V.; Mittal, N.; Reyes, J.; Tzakis, A.G. Indications for pediatric intestinal transplantation: A position paper of the American Society of Transplantation. Pediatr. Transplant. 2001, 5, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, S.S.; Avitzur, Y.; Beath, S.V.; Ceulemans, L.J.; Gondolesi, G.E.; Mazariegos, G.V.; Pironi, L. New Insights Into the Indications for Intestinal Transplantation: Consensus in the Year 2019. Transplantation 2020, 104, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Martinez Rivera, A.; Wales, P.W. Intestinal transplantation in children: Current status. Pediatr. Surg. Int. 2016, 32, 529–540. [Google Scholar] [CrossRef]
- Ganousse-Mazeron, S.; Lacaille, F.; Colomb-Jung, V.; Talbotec, C.; Ruemmele, F.; Sauvat, F.; Chardot, C.; Canioni, D.; Jan, D.; Revillon, Y.; et al. Assessment and outcome of children with intestinal failure referred for intestinal transplantation. Clin. Nutr. 2015, 34, 428–435. [Google Scholar] [CrossRef]
- Asouzu, M.A.; Shroyer, M.; Graham, J.S.; Wilkinson, L.; Galloway, D.P.; Martin, C.A. Development of venous thrombi in a pediatric population of intestinal failure. J. Pediatr. Surg. 2019, 54, 2145–2148. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Forbes, A.; Joly, F.; Colomb, V.; Lyszkowska, M.; Van Gossum, A.; Baxter, J.; Thul, P.; Hébuterne, X.; Gambarara, M.; et al. Survival of patients identified as candidates for intestinal transplantation: A 3-year prospective follow-up. Gastroenterology 2008, 135, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Kolaček, S.; Puntis, J.W.L.; Hojsak, I. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Venous access. Clin. Nutr. 2018, 37, 2379–2391. [Google Scholar] [CrossRef] [PubMed]
- Hartman, C.; Shamir, R.; Simchowitz, V.; Lohner, S.; Cai, W.; Decsi, T. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Complications. Clin. Nutr. 2018, 37, 2418–2429. [Google Scholar] [CrossRef]
- Mermel, L.A.; Allon, M.; Bouza, E.; Craven, D.E.; Flynn, P.; O’Grady, N.P.; Raad, I.I.; Rijnders, B.J.; Sherertz, R.J.; Warren, D.K. Clinical practice guidelines for the diagnosis and management of intravascular catheter-related infection: 2009 Update by the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 49, 1–45. [Google Scholar] [CrossRef]
- Demirok, A.; Illy, D.H.C.; Nagelkerke, S.Q.; Lagerweij, M.F.; Benninga, M.A.; Tabbers, M.M. Catheter salvage or removal in catheter-related bloodstream infections with Staphylococcus aureus in children with chronic intestinal failure receiving home parenteral nutrition and the use of prophylactic taurolidine catheter lock solution: A descriptive cohort study. JPEN J. Parenter Enter. Nutr. 2024, 48, 486–494. [Google Scholar]
- Chu, H.P.; Brind, J.; Tomar, R.; Hill, S. Significant reduction in central venous catheter-related bloodstream infections in children on HPN after starting treatment with taurolidine line lock. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Savarese, I.; Yazami, S.; De Rose, D.U.; Carkeek, K.; Campi, F.; Auriti, C.; Danhaive, O.; Piersigilli, F. Use of 2% taurolidine lock solution for treatment and prevention of catheter-related bloodstream infections in neonates: A feasibility study. J. Hosp. Infect. 2024, 143, 76–81. [Google Scholar] [CrossRef]
- Saunders, J.; Naghibi, M.; Leach, Z.; Parsons, C.; King, A.; Smith, T.; Stroud, M. Taurolidine locks significantly reduce the incidence of catheter-related blood stream infections in high-risk patients on home parenteral nutrition. Eur. J. Clin. Nutr. 2015, 69, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Olthof, E.D.; Rentenaar, R.J.; Rijs, A.J.; Wanten, G.J. Absence of microbial adaptation to taurolidine in patients on home parenteral nutrition who develop catheter related bloodstream infections and use taurolidine locks. Clin. Nutr. 2013, 32, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Neelis, E.; de Koning, B.; van Winckel, M.; Tabbers, M.; Hill, S.; Hulst, J. Wide variation in organisation and clinical practice of paediatric intestinal failure teams: An international survey. Clin. Nutr. 2018, 37, 2271–2279. [Google Scholar] [CrossRef]
- Newall, F.; Barnes, C.; Savoia, H.; Campbell, J.; Monagle, P. Warfarin therapy in children who require long-term total parenteral nutrition. Pediatrics 2003, 112, e386. [Google Scholar] [CrossRef]
- Vegting, I.L.; Tabbers, M.M.; Benninga, M.A.; Wilde, J.C.; Serlie, M.J.; Tas, T.A.; Jonkers, C.F.; van Ommen, C.H. Prophylactic anticoagulation decreases catheter-related thrombosis and occlusion in children with home parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2012, 36, 456–462. [Google Scholar] [CrossRef]
- Nagelkerke, S.C.J.; Schoenmaker, M.H.A.; Tabbers, M.M.; Benninga, M.A.; van Ommen, C.H.; Gouw, S.C. Prophylactic anticoagulation in children receiving home parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2022, 46, 1036–1044. [Google Scholar] [CrossRef]
- Colomb, V.; Dabbas-Tyan, M.; Taupin, P.; Talbotec, C.; Révillon, Y.; Jan, D.; De Potter, S.; Gorski-Colin, A.M.; Lamor, M.; Herreman, K.; et al. Long-term outcome of children receiving home parenteral nutrition: A 20-year single-center experience in 302 patients. J. Pediatr. Gastroenterol. Nutr. 2007, 44, 347–353. [Google Scholar] [CrossRef]
- Bishay, M.; Pichler, J.; Horn, V.; Macdonald, S.; Ellmer, M.; Eaton, S.; Hill, S.; Pierro, A. Intestinal failure-associated liver disease in surgical infants requiring long-term parenteral nutrition. J. Pediatr. Surg. 2012, 47, 359–362. [Google Scholar] [CrossRef]
- Lauriti, G.; Zani, A.; Aufieri, R.; Cananzi, M.; Chiesa, P.L.; Eaton, S.; Pierro, A. Incidence, prevention, and treatment of parenteral nutrition-associated cholestasis and intestinal failure-associated liver disease in infants and children: A systematic review. JPEN J. Parenter. Enter. Nutr. 2014, 38, 70–85. [Google Scholar] [CrossRef] [PubMed]
- Lacaille, F.; Gupte, G.; Colomb, V.; D’Antiga, L.; Hartman, C.; Hojsak, I.; Kolacek, S.; Puntis, J.; Shamir, R. Intestinal failure-associated liver disease: A position paper of the ESPGHAN Working Group of Intestinal Failure and Intestinal Transplantation. J. Pediatr. Gastroenterol. Nutr. 2015, 60, 272–283. [Google Scholar] [CrossRef]
- Goulet, O.; Joly, F.; Corriol, O.; Colomb-Jung, V. Some new insights in intestinal failure-associated liver disease. Curr. Opin. Organ Transplant. 2009, 14, 256–261. [Google Scholar] [CrossRef]
- D’Antiga, L.; Goulet, O. Intestinal failure in children: The European view. J. Pediatr. Gastroenterol. Nutr. 2013, 56, 118–126. [Google Scholar] [CrossRef]
- Nagelkerke, S.C.J.; Draijer, L.G.; Benninga, M.A.; Koot, B.G.P.; Tabbers, M.M. The prevalence of liver fibrosis according to non-invasive tools in a pediatric home parenteral nutrition cohort. Clin. Nutr. 2021, 40, 460–466. [Google Scholar] [CrossRef]
- Hukkinen, M.; Kivisaari, R.; Lohi, J.; Heikkilä, P.; Mutanen, A.; Merras-Salmio, L.; Pakarinen, M.P. Transient elastography and aspartate aminotransferase to platelet ratio predict liver injury in paediatric intestinal failure. Liver Int. 2016, 36, 361–369. [Google Scholar] [CrossRef]
- Hong, C.R.; Han, S.M.; Staffa, S.J.; Carey, A.N.; Lee, C.K.; Modi, B.P. Noninvasive assessment of liver fibrosis in pediatric intestinal failure patients using liver stiffness measurement by Vibration-Controlled Transient Elastography. J. Pediatr. Surg. 2019, 54, 1174–1178. [Google Scholar] [CrossRef] [PubMed]
- Naik, M.; Lawrence, A.; Davidson, A.; Chapman, J.; Ferguson, D.; Speer, A.L.; Imseis, E. Comparison of two formulations of intravenous lipid emulsions in pediatric intestinal failure. Pediatr. Surg. Int. 2024, 40, 97. [Google Scholar] [CrossRef] [PubMed]
- Navaratnarajah, N.; Girard, G.; Sant’Anna, G.; Langlois, H.; Sant’Anna, A.M. The impact of a lipid injectable emulsion (SMOF) on conjugated bilirubin levels in children receiving prolonged parenteral nutrition: A large single center experience. Clin. Nutr. ESPEN 2022, 49, 289–294. [Google Scholar] [CrossRef]
- Goulet, O.; de Potter, S.; Antébi, H.; Driss, F.; Colomb, V.; Béréziat, G.; Alcindor, L.G.; Corriol, O.; Le Brun, A.; Dutot, G.; et al. Long-term efficacy and safety of a new olive oil-based intravenous fat emulsion in pediatric patients: A double-blind randomized study. Am. J. Clin. Nutr. 1999, 70, 338–345. [Google Scholar] [CrossRef]
- Cavicchi, M.; Beau, P.; Crenn, P.; Degott, C.; Messing, B. Prevalence of liver disease and contributing factors in patients receiving home parenteral nutrition for permanent intestinal failure. Ann. Intern. Med. 2000, 132, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Clayton, P.T.; Bowron, A.; Mills, K.A.; Massoud, A.; Casteels, M.; Milla, P.J. Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 1993, 105, 1806–1813. [Google Scholar] [CrossRef]
- Gura, K.M.; Duggan, C.P.; Collier, S.B.; Jennings, R.W.; Folkman, J.; Bistrian, B.R.; Puder, M. Reversal of parenteral nutrition-associated liver disease in two infants with short bowel syndrome using parenteral fish oil: Implications for future management. Pediatrics 2006, 118, e197–e201. [Google Scholar] [CrossRef]
- Goulet, O.; Antébi, H.; Wolf, C.; Talbotec, C.; Alcindor, L.G.; Corriol, O.; Lamor, M.; Colomb-Jung, V. A new intravenous fat emulsion containing soybean oil, medium-chain triglycerides, olive oil, and fish oil: A single-center, double-blind randomized study on efficacy and safety in pediatric patients receiving home parenteral nutrition. JPEN J. Parenter. Enteral. Nutr. 2010, 34, 485–495. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, R.; Bremner, R.; Protheroe, S.; Johnson, T.; Holden, C.; Murphy, M.S. Resolution of parenteral nutrition-associated jaundice on changing from a soybean oil emulsion to a complex mixed-lipid emulsion. J. Pediatr. Gastroenterol. Nutr. 2012, 54, 797–802. [Google Scholar] [CrossRef]
- Martindale, R.G.; Berlana, D.; Boullata, J.I.; Cai, W.; Calder, P.C.; Deshpande, G.H.; Evans, D.; Garcia-de-Lorenzo, A.; Goulet, O.J.; Li, A.; et al. Summary of Proceedings and Expert Consensus Statements From the International Summit “Lipids in Parenteral Nutrition”. JPEN J. Parenter. Enter. Nutr. 2020, 44 (Suppl. S1), S7–S20. [Google Scholar] [CrossRef]
- Lapillonne, A.; Fidler Mis, N.; Goulet, O.; van den Akker, C.H.P.; Wu, J.; Koletzko, B. ESPGHAN/ESPEN/ESPR/CSPEN guidelines on pediatric parenteral nutrition: Lipids. Clin. Nutr. 2018, 37, 2324–2336. [Google Scholar] [CrossRef] [PubMed]
- Gunnar, R.; Lumia, M.; Pakarinen, M.; Merras-Salmio, L. Children With Intestinal Failure Undergoing Intestinal Rehabilitation Are at Risk for Essential Fatty Acid Deficiency. JPEN J. Parenter. Enter. Nutr. 2018, 42, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Raphael, B.P.; Duggan, C. Prevention and treatment of intestinal failure-associated liver disease in children. Semin. Liver Dis. 2012, 32, 341–347. [Google Scholar] [CrossRef]
- Fousekis, F.S.; Mitselos, I.V.; Christodoulou, D.K. New insights into intestinal failure-associated liver disease in adults: A comprehensive review of the literature. Saudi J. Gastroenterol. 2021, 27, 3–12. [Google Scholar] [CrossRef]
- Chen, C.Y.; Tsao, P.N.; Chen, H.L.; Chou, H.C.; Hsieh, W.S.; Chang, M.H. Ursodeoxycholic acid (UDCA) therapy in very-low-birth-weight infants with parenteral nutrition-associated cholestasis. J. Pediatr. 2004, 145, 317–321. [Google Scholar] [CrossRef] [PubMed]
- De Marco, G.; Sordino, D.; Bruzzese, E.; Di Caro, S.; Mambretti, D.; Tramontano, A.; Colombo, C.; Simoni, P.; Guarino, A. Early treatment with ursodeoxycholic acid for cholestasis in children on parenteral nutrition because of primary intestinal failure. Aliment. Pharmacol. Ther. 2006, 24, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Beuers, U. Drug insight: Mechanisms and sites of action of ursodeoxycholic acid in cholestasis. Nat. Clin. Pract. Gastroenterol. Hepatol. 2006, 3, 318–328. [Google Scholar] [CrossRef]
- Gutierrez, I.M.; Kang, K.H.; Calvert, C.E.; Johnson, V.M.; Zurakowski, D.; Kamin, D.; Jaksic, T.; Duggan, C. Risk factors for small bowel bacterial overgrowth and diagnostic yield of duodenal aspirates in children with intestinal failure: A retrospective review. J. Pediatr. Surg. 2012, 47, 1150–1154. [Google Scholar] [CrossRef]
- Bohm, M.; Siwiec, R.M.; Wo, J.M. Diagnosis and management of small intestinal bacterial overgrowth. Nutr. Clin. Pract. 2013, 28, 289–299. [Google Scholar] [CrossRef]
- Cole, C.R.; Frem, J.C.; Schmotzer, B.; Gewirtz, A.T.; Meddings, J.B.; Gold, B.D.; Ziegler, T.R. The rate of bloodstream infection is high in infants with short bowel syndrome: Relationship with small bowel bacterial overgrowth, enteral feeding, and inflammatory and immune responses. J. Pediatr. 2010, 156, 941–947.e1. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.R.; Han, S.M.; Staffa, S.J.; Carey, A.N.; Modi, B.P.; Jaksic, T. Long-term outcomes of ultrashort bowel syndrome due to malrotation with midgut volvulus managed at an interdisciplinary pediatric intestinal rehabilitation center. J. Pediatr. Surg. 2019, 54, 964–967. [Google Scholar] [CrossRef] [PubMed]
- Galloway, D.; Mezoff, E.; Zhang, W.; Byrd, M.; Cole, C.; Aban, I.; Kocoshis, S.; Setchell, K.D.; Heubi, J.E. Serum Unconjugated Bile Acids and Small Bowel Bacterial Overgrowth in Pediatric Intestinal Failure: A Pilot Study. JPEN J. Parenter. Enter. Nutr. 2019, 43, 263–270. [Google Scholar] [CrossRef]
- Khan, M.Z.; Lyu, R.; McMichael, J.; Gabbard, S. Chronic Intestinal Pseudo-Obstruction Is Associated with Intestinal Methanogen Overgrowth. Dig. Dis. Sci. 2022, 67, 4834–4840. [Google Scholar] [CrossRef]
- Deloose, E.; Tack, J. Redefining the functional roles of the gastrointestinal migrating motor complex and motilin in small bacterial overgrowth and hunger signaling. Am. J. Physiol. Gastrointest. Liver Physiol. 2016, 310, G228–G233. [Google Scholar] [CrossRef]
- Sieczkowska, A.; Landowski, P.; Kamińska, B.; Lifschitz, C. Small Bowel Bacterial Overgrowth in Children. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhang, L.; Hou, X. Efficacy of rifaximin in treating with small intestine bacterial overgrowth: A systematic review and meta-analysis. Expert Rev. Gastroenterol. Hepatol. 2021, 15, 1385–1399. [Google Scholar] [CrossRef] [PubMed]
- Scarpellini, E.; Giorgio, V.; Gabrielli, M.; Filoni, S.; Vitale, G.; Tortora, A.; Ojetti, V.; Gigante, G.; Fundarò, C.; Gasbarrini, A. Rifaximin treatment for small intestinal bacterial overgrowth in children with irritable bowel syndrome. Eur. Rev. Med. Pharmacol. Sci. 2013, 17, 1314–1320. [Google Scholar] [CrossRef] [PubMed]
- Pichler, J.; Chomtho, S.; Fewtrell, M.; Macdonald, S.; Hill, S.M. Growth and bone health in pediatric intestinal failure patients receiving long-term parenteral nutrition. Am. J. Clin. Nutr. 2013, 97, 1260–1269. [Google Scholar] [CrossRef] [PubMed]
- Abi Nader, E.; Lambe, C.; Talbotec, C.; Acramel, A.; Pigneur, B.; Goulet, O. Metabolic bone disease in children with intestinal failure is not associated with the level of parenteral nutrition dependency. Clin. Nutr. 2021, 40, 1974–1982. [Google Scholar] [CrossRef]
- Advenier, E.; Landry, C.; Colomb, V.; Cognon, C.; Pradeau, D.; Florent, M.; Goulet, O.; Ricour, C.; Corriol, O. Aluminum contamination of parenteral nutrition and aluminum loading in children on long-term parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 2003, 36, 448–453. [Google Scholar]
- Pastore, S.; Londero, M.; Barbieri, F.; Di Leo, G.; Paparazzo, R.; Ventura, A. Treatment with pamidronate for osteoporosis complicating long-term intestinal failure. J. Pediatr. Gastroenterol. Nutr. 2012, 55, 615–618. [Google Scholar] [CrossRef]
- Multanen, J.; Nieminen, M.T.; Häkkinen, A.; Kujala, U.M.; Jämsä, T.; Kautiainen, H.; Lammentausta, E.; Ahola, R.; Selänne, H.; Ojala, R.; et al. Effects of high-impact training on bone and articular cartilage: 12-month randomized controlled quantitative MRI study. J. Bone Miner. Res. 2014, 29, 192–201. [Google Scholar] [CrossRef]
- Roberts, A.J.; Belza, C.; Wales, P.W.; Courtney-Martin, G.; Harvey, E.; Avitzur, Y. Nephrocalcinosis and Renal Dysfunction in Pediatric Intestinal Failure. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 789–793. [Google Scholar] [CrossRef]
- Kosar, C.; De Silva, N.; Avitzur, Y.; Steinberg, K.; Courtney-Martin, G.; Chambers, K.; Fitzgerald, K.; Harvey, E.; Wales, P.W. Prevalence of renal abnormality in pediatric intestinal failure. J. Pediatr. Surg. 2016, 51, 794–797. [Google Scholar] [CrossRef]
- Moukarzel, A.A.; Ament, M.E.; Buchman, A.; Dahlstrom, K.A.; Vargas, J. Renal function of children receiving long-term parenteral nutrition. J. Pediatr. 1991, 119, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Neelis, E.; Kouwenhoven, S.; Olieman, J.; Tabbers, M.; Jonkers, C.; Wells, J.; Fewtrell, M.; Wijnen, R.; Rings, E.; de Koning, B.; et al. Body Composition Using Air Displacement Plethysmography in Children With Intestinal Failure Receiving Long-Term Home Parenteral Nutrition. JPEN J. Parenter. Enter. Nutr. 2020, 44, 318–326. [Google Scholar] [CrossRef]
- Matrat, L.; Ruiz, M.; Ecochard-Dugelay, E.; Loras-Duclaux, I.; Marotte, S.; Heissat, S.; Poinsot, P.; Sellier-Leclerc, A.L.; Bacchetta, J.; Dubourg, L.; et al. Combined use of creatinine and cystatin C improves the detection of renal dysfunction in children undergoing home parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2022, 46, 180–189. [Google Scholar] [CrossRef]
- Hukkinen, M.; Merras-Salmio, L.; Pakarinen, M.P. Health-related quality of life and neurodevelopmental outcomes among children with intestinal failure. Semin. Pediatr. Surg. 2018, 27, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Gottrand, F.; Staszewski, P.; Colomb, V.; Loras-Duclaux, I.; Guimber, D.; Marinier, E.; Breton, A.; Magnificat, S. Satisfaction in different life domains in children receiving home parenteral nutrition and their families. J. Pediatr. 2005, 146, 793–797. [Google Scholar] [CrossRef]
- Mutanen, A.; Kosola, S.; Merras-Salmio, L.; Kolho, K.L.; Pakarinen, M.P. Long-term health-related quality of life of patients with pediatric onset intestinal failure. J. Pediatr. Surg. 2015, 50, 1854–1858. [Google Scholar] [CrossRef] [PubMed]
- Olieman, J.F.; Penning, C.; Poley, M.J.; Utens, E.M.; Hop, W.C.; Tibboel, D. Impact of infantile short bowel syndrome on long-term health-related quality of life: A cross-sectional study. J. Pediatr. Surg. 2012, 47, 1309–1316. [Google Scholar] [CrossRef]
- van Oers, H.A.; Haverman, L.; Olieman, J.F.; Neelis, E.G.; Jonkers-Schuitema, C.F.; Grootenhuis, M.A.; Tabbers, M.M. Health-related quality of life, anxiety, depression and distress of mothers and fathers of children on Home parenteral nutrition. Clin. Nutr. 2019, 38, 1905–1912. [Google Scholar] [CrossRef]
- Neam, V.C.; Faino, A.; O’Hara, M.; Wendel, D.; Horslen, S.P.; Javid, P.J. Prospective evaluation of the family’s health-related quality of life in pediatric intestinal failure. JPEN J. Parenter. Enter. Nutr. 2022, 46, 652–659. [Google Scholar] [CrossRef]
- Nagelkerke, S.C.J.; van Oers, H.A.; Haverman, L.; Vlug, L.E.; de Koning, B.A.E.; Benninga, M.A.; Tabbers, M.M. Longitudinal Development of Health-related Quality of Life and Fatigue in Children on Home Parenteral Nutrition. J. Pediatr. Gastroenterol. Nutr. 2022, 74, 116–122. [Google Scholar] [CrossRef]
- Duister, R.A.L.; Vlug, L.E.; Tabbers, M.M.; Rings, E.H.H.M.; Wijnen, R.M.H.; Spoel, M.; de Koning, B.A.E.; Legerstee, J.S.; Lambregtse-van den Berg, M.P.; Verloop, M.W.; et al. Parent-child interaction is related to emotional and behavioral problems in pediatric intestinal failure. J. Pediatr. Gastroenterol. Nutr. 2024, 78, 1241–1250. [Google Scholar] [CrossRef]
- Boctor, D.L.; Jutteau, W.H.; Fenton, T.R.; Shourounis, J.; Galante, G.J.; Eicher, I.; Goulet, O.; Lambe, C. The prevalence of feeding difficulties and potential risk factors in pediatric intestinal failure: Time to consider promoting oral feeds? Clin. Nutr. 2021, 40, 5399–5406. [Google Scholar] [CrossRef] [PubMed]
- Goulet, O.; Finkel, Y.; Kolacek, S.; Puntis, J. 1. Short bowel syndrome: Half a century of progress. J. Pediatr. Gastroenterol. Nutr. 2018, 66, S71–S76. [Google Scholar] [CrossRef]
- Avitzur, Y.; Pahl, E.; Venick, R. The Development of the International Intestinal Failure Registry and an Overview of its Results. Eur. J. Pediatr. Surg. 2024, 34, 172–181. [Google Scholar] [CrossRef]
- Nagelkerke, S.C.J.; Mager, D.J.; Benninga, M.A.; Tabbers, M.M. Reporting on outcome measures in pediatric chronic intestinal failure: A systematic review. Clin. Nutr. 2020, 39, 1992–2000. [Google Scholar] [CrossRef]
- Kirkham, J.J.; Williamson, P. Core outcome sets in medical research. BMJ Med. 2022, 1, e000284. [Google Scholar] [CrossRef]
- Brubaker, P.L. Glucagon-like Peptide-2 and the Regulation of Intestinal Growth and Function. Compr. Physiol. 2018, 8, 1185–1210. [Google Scholar]
- Kocoshis, S.A.; Merritt, R.J.; Hill, S.; Protheroe, S.; Carter, B.A.; Horslen, S.; Hu, S.; Kaufman, S.S.; Mercer, D.F.; Pakarinen, M.P.; et al. Safety and Efficacy of Teduglutide in Pediatric Patients With Intestinal Failure due to Short Bowel Syndrome: A 24-Week, Phase III Study. JPEN J. Parenter. Enter. Nutr. 2020, 44, 621–631. [Google Scholar] [CrossRef] [PubMed]
- Ramos Boluda, E.; Redecillas Ferreiro, S.; Manrique Moral, O.; García Romero, R.; Irastorza Terradillos, I.; Nuñez Ramos, R.; Germán Díaz, M.; Polo Miquel, B.; Vives Piñera, I.; Alcolea Sánchez, A.; et al. Experience With Teduglutide in Pediatric Short Bowel Syndrome: First Real-life Data. J. Pediatr. Gastroenterol. Nutr. 2020, 71, 734–739. [Google Scholar] [CrossRef]
- Gigola, F.; Cianci, M.C.; Cirocchi, R.; Ranucci, M.C.; Del Riccio, M.; Coletta, R.; Morabito, A. Use of Teduglutide in Children With Intestinal Failure: A Systematic Review. Front. Nutr. 2022, 9, 866518. [Google Scholar] [CrossRef]
- Chen, K.; Mu, F.; Xie, J.; Kelkar, S.S.; Olivier, C.; Signorovitch, J.; Jeppesen, P.B. Impact of Teduglutide on Quality of Life Among Patients With Short Bowel Syndrome and Intestinal Failure. JPEN J. Parenter. Enter. Nutr. 2020, 44, 119–128. [Google Scholar] [CrossRef] [PubMed]
- Gattini, D.; Belza, C.; Kraus, R.; Avitzur, Y.; Ungar, W.J.; Wales, P.W. Cost-utility analysis of teduglutide compared to standard care in weaning parenteral nutrition support in children with short bowel syndrome. Clin. Nutr. 2023, 42, 2363–2371. [Google Scholar] [CrossRef] [PubMed]
- Raghu, V.K.; Rudolph, J.A.; Smith, K.J. Cost-effectiveness of teduglutide in pediatric patients with short bowel syndrome: Markov modeling using traditional cost-effectiveness criteria. Am. J. Clin. Nutr. 2021, 113, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, J.; Hvistendahl, M.K.; Freund, N.; Bolognani, F.; Meyer, C.; Jeppesen, P.B. Apraglutide, a novel glucagon-like peptide-2 analog, improves fluid absorption in patients with short bowel syndrome intestinal failure: Findings from a placebo-controlled, randomized phase 2 trial. JPEN J. Parenter. Enter. Nutr. 2022, 46, 896–904. [Google Scholar] [CrossRef] [PubMed]
- Naimi, R.M.; Hvistendahl, M.K.; Poulsen, S.S.; Kissow, H.; Pedersen, J.; Nerup, N.A.; Ambrus, R.; Achiam, M.P.; Svendsen, L.B.; Jeppesen, P.B. Effects of glepaglutide, a long-acting glucagon-like peptide-2 analog, on intestinal morphology and perfusion in patients with short bowel syndrome: Findings from a randomized phase 2 trial. JPEN J. Parenter. Enter. Nutr. 2023, 47, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Demirok, A.; Benninga, M.A.; Diamanti, A.; El Khatib, M.; Guz-Mark, A.; Hilberath, J.; Lambe, C.; Norsa, L.; Pironi, L.; Sanchez, A.A.; et al. Transition from pediatric to adult care in patients with chronic intestinal failure on home parenteral nutrition: How to do it right? Clin. Nutr. 2024, 43, 1844–1851. [Google Scholar] [CrossRef]
Medication | Type of Intestinal Failure | Reason to Use | Use for Pediatrics/Adults/Both | Evidence and References | Comment and References |
---|---|---|---|---|---|
1.1. Antisecretory agents | |||||
1.1. Histamine H2 receptors | I, II, III | Reduction in hyperacidity after massive resection. | Both | Level I [61] | |
1.2. Proton-pump inhibitors | I, II, III | Reduction in hyperacidity after massive resection. | Both | Level I [61]. | - Altering the fecal gut microbiota. - Causing hypomagnesaemia. [62,63]. |
1.3. Opioid receptor agonist | I, III | Prolonged intestinal transit time. | Both | Level I [64,65] | Increasing duodenal muscle tone and inhibiting propulsive motor activity. Side effects: fatigue, dizziness, nausea and vomiting. Loperamide associated with less side effects compared to codeine. |
1.5. Bile acid sequestrants | I, II, III | Bile salt malabsorption after terminal ileal resection. | Both | Level IIa | Reducing absorption of fat-soluble nutrients. |
1.6. Somatostatin analogue | I | Reduction in gastric acid and secretion of pancreatic enzymes. Reduction in gastric emptying, gall-bladder contractions and ileal and longitudinal muscle contractions. | Both | Level IIb [66,67] | Glucose levels assessment and blood pressure monitoring whilst on an octreotide infusion is advised. |
1.7. Enkephalinase inhibitor | I | Decrease in intestinal secretion and increase in absorption. | Both | Level I [68] | No change in gastrointestinal transit times in rat or mice or healthy human volunteers on racecadotril (enkephalinase inhibitor). [69,70,71] |
1.8. α2-receptor agonist | I, II | Stimulation of α2-adrenergic receptors on enteric neurons that also reduce gastric and colonic motility and intestinal fluid secretion. | Adults | Level I [72]. | No significant benefit of clonidine (α2-receptor agonist) on volume output reported. |
2. Adjunctive absorptive agents | |||||
2.1. Fibers (e.g., psyllium seeds) | I, II, III | Improvement of feces consistency. | Both | Level IIa [73,74] | |
2.2. Pancreatic enzymes | I | Increase in intestinal digestion (especially fat) in pancreatic atrophy and exocrine insufficiency. | Both | Level III expert opinion | Proven fat malabsorption (preferably assessed by BOMB calorimetry). [75]. |
3. Prokinetic agents | |||||
3.1. Serotonin 5-HT4 agonist | II | Delayed gastric emptying. | Both | Level IIb [76,77] | Prucalopride is safe and effective in children. Patients treated with cisapride (serotonin 5-HT4 agonist) require careful cardiac monitoring because of corrected QT prolongation, risk of cardiac dysrhythmias and deaths. |
3.2. Erythromycin, clarithromycin, amoxicillin–clavulanic Acid | II | Pro-motility effect. | Both | Level IIa | |
3.3. Acetylcholinesterase inhibitor | II | Pro-motility effect. | Both | Level IIb [78]. | Pyridostigmine and neostigmine are safe and effective in children in case series. |
4. Antibiotic agents | |||||
Mostly used: Rifaximin, Metrodinazole and Amoxicillin/Clavulanic Acid | I, II, III | Treatment of small-intestinal bacterial overgrowth. | Both | Level IIa [79]. | - Risk of fungal infections, antimicrobial resistance, or Clostridium difficile infection. - Functional ileocecal valve is of influence for maintaining a balanced microbial flora. - Risk of altering fecal gut microbiota. |
5. Probiotic agents | |||||
Many strains and dosages over the counter are available | I, II, III | No evidence of benefit in small studies; risk of bacterial translocation leading to sepsis. | Both | Level IIa [80]. | High risk of adverse effects in immunocompromised and debilitated patients. |
6. Growth factors | |||||
GLP-2 analogues | I | Stimulation of intestinal adaptation and absorption, decreasing fecal losses. | Both | Level I [81]. | Teduglutide is licensed for use in adults and children with short bowel syndrome. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Demirok, A.; Nagelkerke, S.C.J.; Benninga, M.A.; Jonkers-Schuitema, C.F.; van Zundert, S.M.C.; Werner, X.W.; Sovran, B.; Tabbers, M.M. Pediatric Chronic Intestinal Failure: Something Moving? Nutrients 2024, 16, 2966. https://doi.org/10.3390/nu16172966
Demirok A, Nagelkerke SCJ, Benninga MA, Jonkers-Schuitema CF, van Zundert SMC, Werner XW, Sovran B, Tabbers MM. Pediatric Chronic Intestinal Failure: Something Moving? Nutrients. 2024; 16(17):2966. https://doi.org/10.3390/nu16172966
Chicago/Turabian StyleDemirok, Aysenur, Sjoerd C. J. Nagelkerke, Marc A. Benninga, Cora F. Jonkers-Schuitema, Suzanne M. C. van Zundert, Xavier W. Werner, Bruno Sovran, and Merit M. Tabbers. 2024. "Pediatric Chronic Intestinal Failure: Something Moving?" Nutrients 16, no. 17: 2966. https://doi.org/10.3390/nu16172966
APA StyleDemirok, A., Nagelkerke, S. C. J., Benninga, M. A., Jonkers-Schuitema, C. F., van Zundert, S. M. C., Werner, X. W., Sovran, B., & Tabbers, M. M. (2024). Pediatric Chronic Intestinal Failure: Something Moving? Nutrients, 16(17), 2966. https://doi.org/10.3390/nu16172966