Intakes of Dairy and Soy Products and 10-Year Coronary Heart Disease Risk in Korean Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Participants
2.3. Dairy or Soy Products Intake Frequency
2.4. Dairy or Soy Products Intake and General Characteristics
2.5. Dairy or Soy Products Intake and CHD Risk (FRS, AI, and AIP)
2.6. Statistics
3. Results
3.1. Participants’ Intakes of Dairy and Soy Products
3.2. General Characteristics of Participants
3.3. Relative Effects of FRS Factors on 10-Year CHD Risk
3.4. Ten-Year CHD Risk and Relative Factors According to Dairy or Soy Products’ Intake
3.5. Ten-Year CHD Risk According to Dairy or Soy Products’ Intake Frequencies (Age and Sex)
3.6. The Odds Ratio of 10-Year CHD Risk According to Dairy or Soy Products’ Intake Frequencies
3.7. Correlation between 10-Year CHD Risk and Nutrient Intakes or CHD Indices (AI and AIP)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dalen, J.E.; Alpert, J.S.; Goldberg, R.J.; Weinstein, R.S. The epidemic of the 20(th) century: Coronary heart disease. Am. J. Med. 2014, 127, 807–812. [Google Scholar] [CrossRef]
- Statistics Korea. Causes of Death Statistics [Internet]: 2021 Statistics Korea. Available online: http://kostat.go.kr/portal/eng/pressReleases/1/index.board (accessed on 20 June 2022).
- Infante, T.; Forte, E.; Schiano, C.; Cavaliere, C.; Tedeschi, C.; Soricelli, A.; Salvatore, M.; Napoli, C. An integrated approach to coronary heart disease diagnosis and clinical management. Am. J. Transl. Res. 2017, 9, 3148–3166. [Google Scholar]
- Pereira, P.C. Milk nutritional composition and its role in human health. Nutrition 2014, 30, 619–627. [Google Scholar] [CrossRef]
- Elwood, P.C.; Pickering, J.E.; Hughes, J.; Fehily, A.M.; Ness, A.R. Milk drinking, ischaemic heart disease and ischaemic stroke II. Evidence from cohort studies. Eur. J. Clin. Nutr. 2004, 58, 718–724. [Google Scholar] [CrossRef] [PubMed]
- Carmena, R. The dietary fat and cardiovascular risk. Aliment Nutr. Salud (ANS) 2016, 23, 1–3. [Google Scholar]
- Artaud-Wild, S.M.; Connor, S.L.; Sexton, G.; Connor, W.E. Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 1993, 88, 2771–2779. [Google Scholar] [CrossRef]
- Lordan, R.; Tsoupras, A.; Mitra, B.; Zabetakis, I. Dairy Fats and CHD: Do We Really Need to be Concerned? Foods 2018, 7, 29. [Google Scholar] [CrossRef] [PubMed]
- Qin, L.Q.; Xu, J.Y.; Han, S.F.; Zhang, Z.L.; Zhao, Y.Y.; Szeto, I.M. Dairy consumption and risk of CHD: An updated meta-analysis of prospective cohort studies. Asia. Pac. J. Clin. Nutr. 2015, 24, 90–100. [Google Scholar] [PubMed]
- Lamarche, B.; Givens, D.I.; Soedamah-Muthu, S.; Krauss, R.M.; Jakobsen, M.U.; Bischoff-Ferrari, H.A.; Pan, A.; Després, J.P. Does Milk Consumption Contribute to Cardiometabolic Health and Overall Diet Quality? Can. J. Cardiol. 2016, 32, 1026–1032. [Google Scholar] [CrossRef]
- Guo, J.; Astrup, A.; Lovegrove, J.A.; Gijsbers, L.; Givens, D.I.; Soedamah-Muthu, S.S. Milk and dairy consumption and risk of CHDs and all-cause mortality: Dose-response meta-analysis of prospective cohort studies. Eur. J. Epidemiol. 2017, 32, 269–287. [Google Scholar] [CrossRef]
- Sethi, S.; Tyagi, S.K.; Anurag, R.K. Plant-based milk alternatives an emerging segment of functional beverages: A review. J. Food Sci. Technol. 2016, 53, 3408–3423. [Google Scholar] [CrossRef] [PubMed]
- Rizzo, G.; Baroni, L. Soy products, Soy. Foods and Their Role in Vegetarian Diets. Nutrients 2018, 10, 43. [Google Scholar] [CrossRef] [PubMed]
- Maleki, Z.; Jazayeri, S.; Eslami, O.; Shidfar, F.; Hosseini, A.F.; Agah, S.; Norouzi, H. Effect of soy milk consumption on glycemic status, blood pressure, fibrinogen and malondialdehyde in patients with non-alcoholic fatty liver disease: A randomized controlled trial. Complement. Ther. Med. 2019, 44, 44–50. [Google Scholar] [CrossRef] [PubMed]
- Eslami, O.; Shidfar, F.; Maleki, Z.; Jazayeri, S.; Hosseini, A.F.; Agah, S.; Ardiyani, F. Effect of soy milk on metabolic status of patients with nonalcoholic fatty liver disease: A randomized clinical trial. J. Am. Coll. Nutr. 2019, 38, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Beavers, K.M.; Serra, M.C.; Beavers, D.P.; Cooke, M.B.; Willoughby, D.S. Soymilk supplementation does not alter plasma markers of inflammation and oxidative stress in postmenopausal women. Nutr. Res. 2009, 29, 616–622. [Google Scholar] [CrossRef]
- Zarei, A.; Stasi, C.; Mahmoodi, M.; Masoumi, S.J.; Zare, M.; Jalali, M. Effect of soy consumption on liver enzymes, lipid profile, anthropometry indices, and oxidative stress in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis of clinical trials. Iran. J. Basic Med. Sci. 2020, 23, 1245. [Google Scholar]
- Seo, H.-B.; Choi, Y.-S. Sex-and age group-specific associations between intakes of dairy foods and pulses and bone health in Koreans aged 50 years and older: Based on 2008~ 2011 Korea National Health and Nutrition Examination Survey. J. Nutr. Health 2016, 49, 165–178. [Google Scholar] [CrossRef]
- Keshavarz, S.A.; Nourieh, Z.; Attar, M.J.H.; Azadbakht, L. Effect of soymilk consumption on waist circumference and cardiovascular risks among overweight and obese female adults. Int. J. Prev. Med. 2012, 3, 798. [Google Scholar]
- Wang, Q.; Zheng, D.; Liu, J.; Fang, L.; Li, Q. Atherogenic index of plasma is a novel predictor of non-alcoholic fatty liver disease in obese participants: A cross-sectional study. Lipids Health Dis. 2018, 17, 284. [Google Scholar] [CrossRef]
- Després, J.P.; Lemieux, I.; Dagenais, G.R.; Cantin, B.; Lamarche, B. HDL-cholesterol as a marker of coronary heart disease risk: The Quebec cardiovascular study. Atherosclerosis 2000, 153, 263–272. [Google Scholar] [CrossRef]
- Wilson, P.W.; D’Agostino, R.B.; Levy, D.; Belanger, A.M.; Silbershatz, H.; Kannel, W.B. Prediction of coronary heart disease using risk factor categories. Circulation 1998, 97, 1837–1847. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, R.B.; Grundy, S.; Sullivan, L.M.; Wilson, P.; Group, C.R.P. Validation of the Framingham coronary heart disease prediction scores: Results of a multiple ethnic groups investigation. JAMA 2001, 286, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Cortés, Y.I.; Reame, N.; Zeana, C.; Jia, H.; Ferris, D.C.; Shane, E.; Yin, M.T. Cardiovascular risk in HIV-infected and uninfected postmenopausal minority women: Use of the Framingham risk score. J. Womens Health 2017, 26, 241–248. [Google Scholar] [CrossRef]
- Kwon, S.Y.; Na, Y.A. The assessment of framingham risk score and 10 Year CHD risk according to application of LDL cholesterol or total cholesterol. Korean J. Clin. Lab. Sci. 2016, 48, 54–61. [Google Scholar] [CrossRef]
- Kang, H.M.; Kim, D.J. Metabolic syndrome versus Framingham risk score for association of self-reported coronary heart disease: The 2005 Korean Health and Nutrition Examination Survey. Diabetes Metab. J. 2012, 36, 237–244. [Google Scholar] [CrossRef]
- Choi, M.K.; Bae, Y.J. Evaluation of nutrient intake and food variety in Korean male adults according to Framingham Risk Score. J. Korean Soc. Food Sci. Nutr. 2014, 27, 484–494. [Google Scholar] [CrossRef]
- Younjhin, A.; Lee, J.-E.; Paik, H.-Y.; Lee, H.-K.; Inho, J. Development of a semi-quantitative food frequency questionnaire based on dietary data from the Korea National Health and Nutrition Examination Survey. Nutr. Sci. 2003, 6, 173–184. [Google Scholar]
- Lee, C.J.; Joung, H. Milk intake is associated with metabolic syndrome-using data from the Korea National Health and Nutrition Examination Survey 2007~2010. Korean J. Community Nutr. 2012, 17, 795–804. [Google Scholar] [CrossRef]
- Choi, M. Analysis of the pulse consumption in Korea and related factors: Using the 2018 Korea National Health and Nutrition Examination Survey. Korean J. Food Cook Sci. 2020, 36, 280–288. [Google Scholar] [CrossRef]
- Kim, J. Dairy food consumption is inversely associated with the risk of the metabolic syndrome in Korean adults. J. Hum. Nutr. Diet. 2013, 26, 171–179. [Google Scholar] [CrossRef]
- Kim, D.; Kim, J. Dairy consumption is associated with a lower incidence of the metabolic syndrome in middle-aged and older Korean adults: The Korean Genome and Epidemiology Study (KoGES). Br. J. Nutr. 2017, 117, 148–160. [Google Scholar] [CrossRef]
- Kwon, H.T.; Lee, C.M.; Park, J.H.; Ko, J.A.; Seong, E.J.; Park, M.S.; Cho, B. Milk intake and its association with metabolic syndrome in Korean: Analysis of the third Korea National Health and Nutrition Examination Survey (KNHANES III). J. Korean Med. Sci. 2010, 25, 1473–1479. [Google Scholar] [CrossRef]
- Shin, H.; Yoon, Y.S.; Lee, Y.; Kim, C.-I.; Oh, S.W. Dairy product intake is inversely associated with metabolic syndrome in Korean adults: Anseong and Ansan cohort of the Korean Genome and Epidemiology Study. J. Korean Med. Sci. 2013, 28, 1482–1488. [Google Scholar] [CrossRef]
- Lee, S.-S.; Kim, S.-L.; Kim, S.-H. An association between milk consumption and serum lipid profiles of postmenopausal women in Korea. J. Nutr. Health 2005, 38, 144–150. [Google Scholar]
- Elwood, P.C.; Pickering, J.E.; Givens, D.I.; Gallacher, J.E. The consumption of milk and dairy foods and the incidence of vascular disease and diabetes: An overview of the evidence. Lipids 2010, 45, 925–939. [Google Scholar] [CrossRef]
- Kratz, M.; Baars, T.; Guyenet, S. The relationship between high-fat dairy consumption and obesity, cardiovascular, and metabolic disease. Eur. J. Nutr. 2013, 52, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Givens, D.I. Milk and dairy foods: Implications for cardiometabolic health. Cardiovasc. Endocrinol. Metab. 2018, 7, 56. [Google Scholar] [CrossRef] [PubMed]
- Samtiya, M.; Samtiya, S.; Badgujar, P.C.; Puniya, A.K.; Dhewa, T.; Aluko, R.E. Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022, 14, 3001. [Google Scholar] [CrossRef]
- Wardle, J.; Haase, A.M.; Steptoe, A.; Nillapun, M.; Jonwutiwes, K.; Bellisie, F. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. 2004, 27, 107–116. [Google Scholar] [CrossRef]
- Jun, S.; Ha, K.; Chung, S.; Joung, H. Meat and milk intake in the rice-based Korean diet: Impact on cancer and metabolic syndrome. Proc. Nutr. Soc. 2016, 75, 374–384. [Google Scholar] [CrossRef]
- Park, H.; Kityo, A.; Kim, Y.; Lee, S.-A. Macronutrient intake in adults diagnosed with metabolic syndrome: Using the health examinee (HEXA) cohort. Nutrients 2021, 13, 4457. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Wofford, M.R.; Reynolds, K.; Chen, J.; Chen, C.-S.; Myers, L.; Minor, D.L.; Elmer, P.J.; Jones, D.W.; Whelton, P.K. Effect of dietary protein supplementation on blood pressure: A randomized, controlled trial. Circulation 2011, 124, 589–595. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Sacks, F.M.; Carey, V.J.; Obarzanek, E.; Swain, J.F.; Miller, E.R.; Conlin, P.R.; Erlinger, T.P.; Rosner, B.A.; Laranjo, N.M. Effects of protein, monounsaturated fat, and carbohydrate intake on blood pressure and serum lipids: Results of the OmniHeart randomized trial. JAMA 2005, 294, 2455–2464. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Zhang, X.; Li, C.; Jiao, S.; Dong, W. Association between consumption of soy and risk of cardiovascular disease: A meta-analysis of observational studies. Eur. J. Prev. Cardiol. 2017, 24, 735–747. [Google Scholar] [CrossRef] [PubMed]
- Namazi, N.; Saneei, P.; Larijani, B.; Esmaillzadeh, A. Soy product consumption and the risk of all-cause, cardiovascular and cancer mortality: A systematic review and meta-analysis of cohort studies. Food Funct. 2018, 23, 2576–2588. [Google Scholar] [CrossRef]
Dairy Products | ||||||
Total (n = 8747) | <2/week (n = 4034) | ≥2/week (n = 4713) | ||||
Frequency (times/week) | Intake (g/day) | Frequency (times/week) | Intake (g/day) | Frequency (times/week) | Intake (g/day) | |
Cow’s milk | 2.00 ± 0.04 | 60.68 ± 1.25 | 0.24 ± 0.01 | 6.96 ± 0.2 | 3.60 ± 0.06 | 109.22 ± 1.96 |
Yogurt (Liquid) | 0.99 ± 0.03 | 11.80 ± 0.35 | 0.17 ± 0.01 | 1.89 ± 0.07 | 1.73 ± 0.05 | 20.76 ± 0.6 |
Yogurt (Solid) | 0.73 ± 0.02 | 11.37 ± 0.39 | 0.12 ± 0.00 | 1.70 ± 0.06 | 1.29 ± 0.04 | 20.12 ± 0.68 |
Total | 3.73 ± 0.06 | 83.86 ± 1.49 | 0.52 ± 0.01 | 10.55 ± 0.23 | 6.62 ± 0.07 | 150.1 ± 2.09 |
Soy Products | ||||||
Total (n = 8747) | <2/week (n = 5092) | ≥2/week (n = 2845) | ||||
Frequency (times/week) | Intake (g/day) | Frequency (times/week) | Intake (g/day) | Frequency (times/week) | Intake (g/day) | |
Soymilk | 0.42 ± 0.02 | 11.98 ± 0.45 | 0.09 ± 0 | 2.51 ± 0.1 | 1.12 ± 0.04 | 31.79 ± 1.21 |
Bean curd (Solid) | 0.76 ± 0.01 | 12.76 ± 0.25 | 0.35 ± 0.01 | 5.75 ± 0.09 | 1.62 ± 0.03 | 27.43 ± 0.6 |
Bean curd (Liquid) | 0.39 ± 0.01 | 11.87 ± 0.26 | 0.21 ± 0 | 6.39 ± 0.13 | 0.77 ± 0.02 | 23.32 ± 0.67 |
Soybean (Cooked) | 0.49 ± 0.02 | 1.17 ± 0.05 | 0.11 ± 0 | 0.26 ± 0.01 | 1.3 ± 0.05 | 3.06 ± 0.13 |
Total | 2.07 ± 0.03 | 37.79 ± 0.69 | 0.76 ± 0.01 | 14.92 ± 0.2 | 4.81 ± 0.07 | 85.61 ± 1.45 |
Variables | Total (n = 8747) | Dairy Products | p-Value 2 | Soy Products | p-Value | ||
---|---|---|---|---|---|---|---|
<2/week | ≥2/week | <2/week | ≥2/week | ||||
Sex | |||||||
Men | 49.3 1 | 56.2 | 43.1 | <0.0001 | 48.9 | 50.1 | 0.3516 |
Women | 50.7 | 43.8 | 56.9 | 51.1 | 49.9 | ||
Age group | |||||||
40~49 year | 46.4 | 45.9 | 46.8 | 0.1023 | 46.7 | 45.8 | 0.3711 |
50~59 year | 41.2 | 40.8 | 41.6 | 40.7 | 42.3 | ||
60~69 year | 12.4 | 13.2 | 11.6 | 12.6 | 11.9 | ||
Education (graduate) | |||||||
Elementary | 13.4 | 15.0 | 10.5 | <0.0001 | 13.4 | 14.0 | 0.8789 |
Middle school | 13.1 | 14.3 | 10.8 | 13.0 | 13.6 | ||
High school | 39.8 | 39.2 | 40.8 | 39.8 | 40.2 | ||
≥College | 33.7 | 31.4 | 37.8 | 33.9 | 32.2 | ||
Family income | |||||||
low | 9.3 | 11.2 | 7.5 | <0.0001 | 9.9 | 8.0 | 0.0051 |
Middle–low | 23.3 | 24.9 | 21.8 | 23.8 | 22.1 | ||
Middle–high | 30.6 | 31.2 | 30.0 | 30.7 | 30.2 | ||
high | 36.9 | 32.6 | 40.8 | 35.6 | 39.6 | ||
Living area | |||||||
Large city | 45.5 | 44.5 | 47.1 | 0.0136 | 45.6 | 44.0 | 0.6961 |
Middle city | 37.2 | 37.1 | 37.4 | 37.2 | 37.4 | ||
Rural area | 17.3 | 18.4 | 15.5 | 17.2 | 18.6 | ||
Drinking | |||||||
≥1/month | 85.4 | 85.0 | 86.1 | 0.1828 | 85.5 | 84.1 | 0.3919 |
Obesity 3 | |||||||
Underweight | 2.2 | 2.2 | 2.3 | 0.2301 | 2.1 | 3.5 | 0.0628 |
Normal | 62.0 | 61.3 | 63.2 | 61.9 | 63.0 | ||
Obese | 35.8 | 36.5 | 34.5 | 36.0 | 33.4 |
Parameter | Estimate | Standardized Estimate | Standard Error | t Value | p-Value | Multicollinearity | |
---|---|---|---|---|---|---|---|
Tolerance | VIF | ||||||
Intercept | −12.254 | −7 × 1015 | 0.625 | −19.58 | <0.0001 | ||
Age (year) | 0.255 | 0.331 | 0.007 | 34.99 | <0.0001 | 0.89099 | 1.12235 |
sex (Men) | 2.026 | 0.193 | 0.108 | 18.68 | <0.0001 | ||
sex (Women) | Ref. | ||||||
Total cholesterol (mg/dL) | 0.042 | 0.288 | 0.001 | 26.57 | <0.0001 | 0.91661 | 1.09097 |
HDL-cholesterol (mg/dL) | −0.131 | −0.318 | 0.004 | −31.39 | <0.0001 | 0.90332 | 1.10703 |
Systolic blood pressure (mmHg) | 0.089 | 0.268 | 0.004 | 21.68 | <0.0001 | 0.91173 | 1.09681 |
Diabetes (No) | 4.518 | −0.223 | 0.302 | −14.93 | <0.0001 | 0.96743 | 1.03367 |
Diabetes (Yes) | Ref. | ||||||
Smoking (No) | −3.708 | −0.294 | 0.181 | −20.42 | <0.0001 | 0.92948 | 1.07588 |
Smoking (Yes) | Ref. |
Variables | Dairy Products | Soy Products | Total | ||
---|---|---|---|---|---|
<2/week | ≥2/week | <2/week | ≥2/week | ||
age (year) 1 | 51 ± 0.1 2 NS 3 | 50.3 ± 0.2 | 50.6 ± 0.1 * | 51.5 ± 0.3 | 50.5 ± 0.1 |
Total cholesterol (mg/dL) | 195.4 ± 0.6 NS | 196.7 ± 0.7 | 195.9 ± 0.5 NS | 195.7 ± 1.9 | 195 ± 0.5 |
HDL-cholesterol (mg/dL) | 49.7 ± 0.2 * | 51.9 ± 0.3 | 50.3 ± 0.2 NS | 50.7 ± 0.6 | 50 ± 0.2 |
Systolic blood pressure (mmHg) | 118.8 ± 0.3 NS | 117.7 ± 0.3 | 118.4 ± 0.2 NS | 118 ± 0.7 | 118 ± 0.2 |
Diabetes status (Yes %) | 8.3 * | 6.0 | 7.1 NS | 7.0 | 7.1 |
Smoking status (Yes %) | 24.6 NS | 24.1 | 22.2 NS | 22.6 | 22.5 |
FRS score | 4.4 ± 0.1 * | 3.8 ± 0.1 | 4.0 ± 0.1 NS | 4.1 ± 0.2 | 4.1 ± 0.1 |
10-year CHD risk (%) | 7.3 ± 0.1 * | 6.2 ± 0.1 * | 6.6 ± 0.1 NS | 6.5 ± 0.1 | 6.7 ± 0.1 |
Low % 4 | 72.4 *** | 78.2 | 74.6 | 73.6 | 73.6 |
Intermediate % | 23.3 | 19.0 | 21.8 | 21.2 | 21.2 |
High % | 4.3 | 2.7 | 3.6 | 5.2 | 5.2 |
AI | 3.15 ± 0.02 NS | 3.03 ± 0.02 | 3.11 ± 0.02 NS | 3.07 ± 0.06 | 3.07 ± 0.02 |
AIP | 0.42 ± 0.01 * | 0.37 ± 0.01 | 0.40 ± 0.01 NS | 0.39 ± 0.02 | 0.39 ± 0.01 |
Sex/Age | Classification | Dairy Products | Soy Products | Total | ||
---|---|---|---|---|---|---|
<2/week | ≥2/week | <2/week | ≥2/week | |||
Men | ||||||
40~49 | Low | 76.9 1NS2 | 78.6 | 77.3 NS | 79.6 | 77.5 |
Intermediate | 20.9 | 20.6 | 21.0 | 18.7 | 20.8 | |
High | 2.1 | 0.8 | 1.7 | 1.7 | 1.7 | |
50~59 | Low | 49.1 NS | 50.1 | 48.9 NS | 53.8 | 49.4 |
Intermediate | 41.5 | 44.1 | 42.8 | 36.9 | 42.3 | |
High | 9.4 | 5.9 | 8.2 | 9.3 | 8.3 | |
60~69 | Low | 25.9 NS | 26.4 | 26.2 NS | 24.3 | 26.0 |
Intermediate | 52.7 | 51.1 | 52.7 | 47.4 | 52.2 | |
High | 21.4 | 22.5 | 21.0 | 28.2 | 21.7 | |
Total | Low | 59.5 * | 62.0 | 60.3 NS | 60.1 | 60.3 |
Intermediate | 33.2 | 33.0 | 33.3 | 31.1 | 33.1 | |
High | 7.3 | 5.0 | 6.4 | 8.8 | 6.6 | |
Women | ||||||
40~49 | Low | 99.7 NS | 99.6 | 99.6 NS | 100 | 99.6 |
Intermediate | 0.3 | 0.4 | 0.4 | 0.0 | 0.4 | |
High | ||||||
50~59 | Low | 82.4 ** | 88.5 | 84.6 NS | 83.2 | 84.4 |
Intermediate | 16.8 | 11.1 | 14.7 | 15.2 | 14.7 | |
High | 0.8 | 0.4 | 0.8 | 1.6 | 0.8 | |
60~69 | Low | 63.7 NS | 63.7 | 63.3 NS | 68.6 | 63.7 |
Intermediate | 33.3 | 31.0 | 32.9 | 27.2 | 32.5 | |
High | 3.0 | 5.3 | 3.8 | 4.2 | 3.9 | |
Total | Low | 87.2 ** | 90.3 | 88.5 NS | 88.0 | 88.5 |
Intermediate | 12.0 | 8.7 | 10.7 | 10.7 | 10.7 | |
High | 0.8 | 1.0 | 0.8 | 1.3 | 0.9 |
Model 1 1 | Model 2 2 | ||||
---|---|---|---|---|---|
OR 3 | 95% CI 4 | OR | 95% CI | ||
Age group | 50~64 | 5.485 | (4.620, 6.511) 5*** | 9.869 | (7.360, 13.235) *** |
40~49 | 1 | Reference | 1 | Reference | |
Sex | Men | 8.899 | (7.831, 10.948) *** | 21.019 | (15.019, 28.691) *** |
Women | 1 | Reference | 1 | Reference | |
Smoking status | Yes | 1.974 | (1.185, 3.288) *** | 6.811 | (4.644, 9.988) *** |
No | 1 | Reference | 1 | Reference | |
Education level | Elementary | 3.921 | (2.521, 4.924) *** | 2.140 | (1.444, 3.174) ** |
Middle school | 1.999 | (2.521, 2.529) *** | 1.596 | (1.142, 2.417) * | |
High school | 0.914 | (0.763, 1.094) | 1.169 | (0.908, 1.506) NS | |
University | 1 | Reference | 1 | Reference | |
Income | Low | 1.917 | (1.489, 2.598) *** | 1.661 | (1.142, 2.417) * |
Medium-low | 1.540 | (1.250, 1.896) *** | 1.307 | (0.965, 1.770) NS | |
High-low | 1.011 | (0.827, 1.235) | 0.943 | (0.727, 1.224) NS | |
High | 1 | Reference | 1 | Reference | |
Living area | Rural area | 1.353 | (1.097, 1.669) * | 0.954 | (0.737, 1.236) NS. |
Middle and Small City | 0.925 | (0.778, 1.099) | 0.855 | (0.674, 1.086) NS | |
Large city | 1 | Reference | 1 | Reference | |
Obesity level | Underweight | 0.381 | (0.222, 0.655) ** | 0.340 | (0.164, 0.763) ** |
Obesity | 2.300 | (1.913, 2.765) *** | 2.594 | (2.045, 3.290) *** | |
Normal | 1 | Reference | 1 | Reference | |
Dairy products intake | Yes | 0.671 | (0.567, 0.793) *** | 0.742 | (0.619, 0.890) ** |
No | 1 | Reference | 1 | Reference | |
Soy products intake | Yes | 1.298 | (0.839, 2.008) NS | 0.732 | (0.383, 1.414) NS |
No | 1 | Reference | 1 | Reference |
Men | Women | Total | |
---|---|---|---|
1 Dairy products intake (g/d) | 2 −0.04813 3** | −0.0463 ** | −0.1321 * |
0.005 | 0.0008 | <0.001 | |
Calcium intake (mg/d) | −0.0120 NS | −0.0359 * | −0.0395 ** |
0.7047 | 0.0106 | 0.0024 | |
Fat intake (g/d) | 0.02364 NS | −0.01727 NS | −0.0292 ** |
0.1646 | 0.2062 | 0.0066 | |
Protein intake (g/d) | 0.00941 NS | −0.0149 | 0.0434 *** |
0.58 | 0.2845 | <0.001 | |
Carbohydrate intake(g/d) | −0.02706 NS | 0.02573 * | 0.064 *** |
0.1116 | 0.0500 | <0.001 | |
4 AI | 0.58693 *** | 0.53287 *** | 0.55167 *** |
<0.0001 | <0.0001 | <0.0001 | |
5 AIP | 0.48411 *** | 0.49919 *** | 0.531 *** |
<0.0001 | <0.0001 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, S.; Ha, A.W. Intakes of Dairy and Soy Products and 10-Year Coronary Heart Disease Risk in Korean Adults. Nutrients 2024, 16, 2959. https://doi.org/10.3390/nu16172959
Hwang S, Ha AW. Intakes of Dairy and Soy Products and 10-Year Coronary Heart Disease Risk in Korean Adults. Nutrients. 2024; 16(17):2959. https://doi.org/10.3390/nu16172959
Chicago/Turabian StyleHwang, Sinwoo, and Ae Wha Ha. 2024. "Intakes of Dairy and Soy Products and 10-Year Coronary Heart Disease Risk in Korean Adults" Nutrients 16, no. 17: 2959. https://doi.org/10.3390/nu16172959
APA StyleHwang, S., & Ha, A. W. (2024). Intakes of Dairy and Soy Products and 10-Year Coronary Heart Disease Risk in Korean Adults. Nutrients, 16(17), 2959. https://doi.org/10.3390/nu16172959