Dietary Pattern’s Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD
Abstract
:1. Introduction
1.1. DNA Methylation
1.2. Histone Modifications
1.3. MicroRNAs
1.4. Influence of Dietary Patterns in Metabolic Diseases
2. Methods
2.1. Study Selection, Inclusion and Exclusion Criteria
2.2. Screening and Eligibility Criteria
3. Results and Discussion
3.1. Epigenetic Modulation of MEDITERRANEAN, Low Fat, and Low Carb Diets in NAFLD
3.2. Epigenetic Modulation of Nutrient Intake in NAFLD
3.2.1. Dietary One-Carbon Sources
3.2.2. Omega-3 PUFA and EVOO
3.2.3. δ-Tocotrienol and Trans-Resveratrol
3.2.4. Evidence-Based Dietary Recommendations for the Prevention and Management of NAFLD to the General Population
- I.
- Adopt a diet mainly plant-based and minimize saturated fats to reduce inflammation:Consume a diet that is mainly composed of plant-based food minimizing animal-derived nutrient sources rich in saturated fats, particularly red meat.
- II.
- High-fiber intake to stimulate gut microbiota and regulate fasting glucose:Increase consumption of high-fiber meals by incorporating a variety of fruits, vegetables, legumes, and whole grains into daily meals.
- III.
- Increase PUFAs and MUFAs fatty acids to optimize lipid profile:Increase the consumption of polyunsaturated fatty acids (PUFAs), specifically omega-3 fatty acids, by including oily fish such as salmon, sardines, or trout in the diet and add monounsaturated fatty acids (MUFAs) through the intake of extra-virgin olive oil, nuts, and seeds.
- IV.
- Limit consumption of highly processed food, soft drinks, and added fructose and salt to avoid and mitigate fatty liver accumulation.
- V.
- Avoid alcohol or keep its consumption below the risk threshold (30 g/day for men, 20 g/day for women).
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
List of Abbreviations
Acly | ATP citrate lyase |
AHA | American Heart Association |
ALP | Alkaline phosphatase |
BMI | Body mass index |
BW | Body weight |
CH3 | methyl group |
CR | Caloric restriction |
CVD | Cardiovascular disease |
DASH | Dietary Approaches to Stop Hypertension |
DHA | Docosaneic acid |
DNL | De-novo lipogenesis |
DNMTs | DNA methyltransferases |
DR | Dietary restriction |
ELCD | Exercise plus low carbohydrate diet |
EPA | Eicosapentaenoic acid |
EVOO | Extra virgin olive oil |
Ex | Exercise |
FA | Fatty acids |
GCKR | Glucokinase regulator |
HATs | Histone acetyltransferases |
HCC | Hepatocellular carcinoma |
HDACs | Hystone deacetylases |
HEI | Healthy Eating Index |
HSD17B13 | Hydroxysteroid 17-beta dehydrogenase 13 |
H3 | Histone 3 |
IF | Intermittent fasting |
Igfbp2 | Insulin-like growth factor binding protein 2 |
Igf1 | Insulin-like growth factor 1 |
IHF | Intrahepatic fat |
IR | Insulin resistance |
K | Lysine |
KD | Ketogenic diet |
K4 | Lysine 4 |
K9 | Lysine 9 |
K27 | Lysine 27 |
LCD | Low-carbohydrate diet |
LDs | Lipid droplets |
LF | Low fat |
MBOAT7 | Membrane-bound O-acyltransferase domain-containing 7 |
MedDiet | Mediterranean diet |
MED/LC | Mediterranean/Low carbohydrate diet |
MetS | Metabolic syndrome |
MUFA | Monounsaturated fatty acid |
miRNAs | Micro-RNAs |
NAFL | Non-alcoholic fatty liver |
NAFLD | Non-alcoholic fatty liver disease |
NASH | Non-alcoholic steatohepatitis |
PA | Physical activity |
PBMCs | Peripheral blood mononuclear cells |
PC | Pyruvate carboxylase |
PF | Periodic fasting |
PNPLA3 | Patatin-like phospholipase domain-containing 3 |
PUFA | Polyunsaturated fatty acid |
RESMENA | Restriction Mediterranean-based dietary intervention |
SAM | S-adenosylmethionine |
SDGs | Sustainable Development Goals |
SDGs | Sustainable Development Goals |
SIRTs | Sirtuins |
SIRT1 | Sirtuin 1 |
TG | Triglycerides |
TM6SF2 | Transmembrane 6 superfamily member 2 |
TRM | δ-tocotrienol and resveratrol mixture |
T2DM | Type 2 diabetes mellitus |
VLDL | Very low-density lipoproteins |
WBC | White blood cells |
WC | Waist circumference |
5mC | 5-methylcytosine |
References
- Zaiou, M.; Amrani, R.; Rihn, B.; Hajri, T. Dietary Patterns Influence Target Gene Expression through Emerging Epigenetic Mechanisms in Nonalcoholic Fatty Liver Disease. Biomedicines 2021, 9, 1256. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Matos, A.F.; Silva Júnior, W.S.; Valerio, C.M. NAFLD as a continuum: From obesity to metabolic syndrome and diabetes. Diabetol. Metab. Syndr. 2020, 12, 60. [Google Scholar] [CrossRef]
- Cholongitas, E. Epidemiology of nonalcoholic fatty liver disease in Europe: A systematic review and meta-analysis. Ann. Gastroenterol. 2021, 34, 404–414. [Google Scholar] [CrossRef]
- Aller, R.; Fernández-Rodríguez, C.; lo Iacono, O.; Banares, R.; Abad, J.; Carrión, J.A.; García-Monzón, C.; Caballería, J.; Berenguer, M.; Rodríguez-Perálvarez, M.; et al. Documento de consenso. Manejo de la enfermedad hepática grasa no alcohólica (EHGNA). Guía de práctica clínica. Gastroenterol. Y Hepatol. 2018, 41, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Teng, M.L.; Ng, C.H.; Huang, D.Q.; Chan, K.E.; Tan, D.J.; Lim, W.H.; Yang, J.D.; Tan, E.; Muthiah, M.D. Global incidence and prevalence of nonalcoholic fatty liver disease. Clin. Mol. Hepatol. 2023, 29, S32–S42. [Google Scholar] [CrossRef]
- Riazi, K.; Azhari, H.; Charette, J.H.; Underwood, F.E.; King, J.A.; Afshar, E.E.; Swain, M.G.; Congly, S.E.; Kaplan, G.G.; Shaheen, A.A. The prevalence and incidence of NAFLD worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2022, 7, 851–861. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E. Nonalcoholic Fatty Liver Disease: A Systematic Review. JAMA 2015, 313, 2263. [Google Scholar] [CrossRef]
- Yang, K.C.; Hung, H.F.; Lu, C.W.; Chang, H.H.; Lee, L.T.; Huang, K.C. Association of Non-alcoholic Fatty Liver Disease with Metabolic Syndrome Independently of Central Obesity and Insulin Resistance. Sci. Rep. 2016, 6, 27034. [Google Scholar] [CrossRef]
- Kasper, P.; Martin, A.; Lang, S.; Kütting, F.; Goeser, T.; Demir, M.; Steffen, H.-M. NAFLD and cardiovascular diseases: A clinical review. Clin. Res. Cardiol. 2021, 110, 921–937. [Google Scholar] [CrossRef]
- Targher, G.; Byrne, C.D.; Lonardo, A.; Zoppini, G.; Barbui, C. Non-alcoholic fatty liver disease and risk of incident cardiovascular disease: A meta-analysis. J. Hepatol. 2016, 65, 589–600. [Google Scholar] [CrossRef]
- Vancells Lujan, P.; Viñas Esmel, E.; Sacanella Meseguer, E. Overview of Non-Alcoholic Fatty Liver Disease (NAFLD) and the Role of Sugary Food Consumption and Other Dietary Components in Its Development. Nutrients 2021, 13, 1442. [Google Scholar] [CrossRef] [PubMed]
- Nassir, F.; Rector, R.S.; Hammoud, G.M.; Ibdah, J.A. Pathogenesis and Prevention of Hepatic Steatosis. Gastroenterol. Hepatol. 2015, 11, 167–175. [Google Scholar]
- Bashir, A.; Duseja, A.; De, A.; Mehta, M.; Tiwari, P. Non-alcoholic fatty liver disease development: A multifactorial pathogenic phenomena. Liver Res. 2022, 6, 72–83. [Google Scholar] [CrossRef]
- Trépo, E.; Valenti, L. Update on NAFLD genetics: From new variants to the clinic. J. Hepatol. 2020, 72, 1196–1209. [Google Scholar] [CrossRef] [PubMed]
- Asif, S.; Morrow, N.M.; Mulvihill, E.E.; Kim, K.H. Understanding Dietary Intervention-Mediated Epigenetic Modifications in Metabolic Diseases. Front. Genet. 2020, 11, 590369. [Google Scholar] [CrossRef]
- Donnelly, K.L.; Smith, C.I.; Schwarzenberg, S.J.; Jessurun, J.; Boldt, M.D.; Parks, E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J. Clin. Investig. 2005, 115, 1343–1351. [Google Scholar] [CrossRef] [PubMed]
- Sodum, N.; Kumar, G.; Bojja, S.L.; Kumar, N.; Rao, C.M. Epigenetics in NAFLD/NASH: Targets and therapy. Pharmacol. Res. 2021, 167, 105484. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Sanabria, J.S.; Escutia-Gutiérrez, R.; Rosas-Campos, R.; Armendáriz-Borunda, J.S.; Sandoval-Rodríguez, A. An Update in Epigenetics in Metabolic-Associated Fatty Liver Disease. Front. Med. 2022, 8, 770504. [Google Scholar] [CrossRef]
- Zhang, Y.; Kutateladze, T.G. Diet and the epigenome. Nat. Commun. 2018, 9, 3375. [Google Scholar] [CrossRef]
- Zeybel, M.; Hardy, T.; Robinson, S.M.; Fox, C.; Anstee, Q.M.; Ness, T.; Masson, S.; Mathers, J.C.; French, J.; White, S.; et al. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin. Epigenetics 2015, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, M.; Ammerpohl, O.; von Schönfels, W.; Kolarova, J.; Bens, S.; Itzel, T.; Teufel, A.; Herrmann, A.; Brosch, M.; Hinrichsen, H.; et al. DNA Methylation Analysis in Nonalcoholic Fatty Liver Disease Suggests Distinct Disease-Specific and Remodeling Signatures after Bariatric Surgery. Cell Metab. 2013, 18, 296–302. [Google Scholar] [CrossRef]
- Murphy, S.K.; Yang, H.; Moylan, C.A.; Pang, H.; Dellinger, A.; Abdelmalek, M.F.; Garrett, M.E.; Ashley–Koch, A.; Suzuki, A.; Tillmann, H.L.; et al. Relationship Between Methylome and Transcriptome in Patients With Nonalcoholic Fatty Liver Disease. Gastroenterology 2013, 145, 1076–1087. [Google Scholar] [CrossRef] [PubMed]
- Nishida, N.; Yada, N.; Hagiwara, S.; Sakurai, T.; Kitano, M.; Kudo, M. Unique features associated with hepatic oxidative DNA damage and DNA methylation in non-alcoholic fatty liver disease. J. Gastroenterol. Hepatol. 2016, 31, 1646–1653. [Google Scholar] [CrossRef]
- Wegermann, K.; Henao, R.; Diehl, A.M.; Murphy, S.K.; Abdelmalek, M.F.; Moylan, C.A. Branched chain amino acid transaminase 1 (BCAT1) is overexpressed and hypomethylated in patients with non-alcoholic fatty liver disease who experience adverse clinical events: A pilot study. PLoS ONE 2018, 13, e0204308. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, M.D.; Zeisel, S.H. Diet, Methyl Donors and DNA Methylation: Interactions between Dietary Folate, Methionine and Choline. J. Nutr. 2002, 132, 2333S–2335S. [Google Scholar] [CrossRef]
- Burton, M.A.; Lillycrop, K.A. Nutritional modulation of the epigenome and its implication for future health. Proc. Nutr. Soc. 2019, 78, 305–312. [Google Scholar] [CrossRef] [PubMed]
- Ding, R.B.; Bao, J.; Deng, C.X. Emerging roles of SIRT1 in fatty liver diseases. Int. J. Biol. Sci. 2017, 13, 852–867. [Google Scholar] [CrossRef]
- Ramis, M.R.; Esteban, S.; Miralles, A.; Tan, D.X.; Reiter, R.J. Caloric restriction, resveratrol and melatonin: Role of SIRT1 and implications for aging and related-diseases. Mech. Ageing Dev. 2015, 146–148, 28–41. [Google Scholar] [CrossRef]
- He, L.; Hannon, G.J. MicroRNAs: Small RNAs with a big role in gene regulation. Nat. Rev. Genet. 2004, 5, 522–531. [Google Scholar] [CrossRef]
- Szabo, G.; Csak, T. Role of MicroRNAs in NAFLD/NASH. Dig. Dis. Sci. 2016, 61, 1314–1324. [Google Scholar] [CrossRef]
- Landrier, J.F.; Derghal, A.; Mounien, L. MicroRNAs in Obesity and Related Metabolic Disorders. Cells 2019, 8, 859. [Google Scholar] [CrossRef]
- Long, J.K.; Dai, W.; Zheng, Y.W.; Zhao, S.P. miR-122 promotes hepatic lipogenesis via inhibiting the LKB1/AMPK pathway by targeting Sirt1 in non-alcoholic fatty liver disease. Mol. Med. 2019, 25, 26. [Google Scholar] [CrossRef]
- Pirola, C.J.; Fernandez Gianotti, T.; Castano, G.O.; Mallardi, P.; San Martino, J.; Mora Gonzalez Lopez Ledesma, M.; Flichman, D.; Mirshahi, F.; Sanyal, A.J.; Sookoian, S. Circulating microRNA signature in non-alcoholic fatty liver disease: From serum non-coding RNAs to liver histology and disease pathogenesis. Gut 2015, 64, 800–812. [Google Scholar] [CrossRef]
- MacDonald-Ramos, K.; Martínez-Ibarra, A.; Monroy, A.; Miranda-Ríos, J.; Cerbón, M. Effect of Dietary Fatty Acids on MicroRNA Expression Related to Metabolic Disorders and Inflammation in Human and Animal Trials. Nutrients 2021, 13, 1830. [Google Scholar] [CrossRef]
- Kura, B.; Parikh, M.; Slezak, J.; Pierce, G.N. The Influence of Diet on MicroRNAs that Impact Cardiovascular Disease. Molecules 2019, 24, 1509. [Google Scholar] [CrossRef]
- Hendy, O.M.; Rabie, H.; El Fouly, A.; Abdel-Samiee, M.; Abdelmotelb, N.; Elshormilisy, A.A.; Allam, M.; Ali, S.T.; Bahaa EL-Deen, N.M.; Abdelsattar, S.; et al. The Circulating Micro-RNAs (−122, −34a and −99a) as Predictive Biomarkers for Non-Alcoholic Fatty Liver Diseases. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 2715–2723. [Google Scholar] [CrossRef]
- He, K.; Li, Y.; Guo, X.; Zhong, L.; Tang, S. Food groups and the likelihood of non-alcoholic fatty liver disease: A systematic review and meta-analysis. Br. J. Nutr. 2020, 124, 1–13. [Google Scholar] [CrossRef]
- Park, S.Y.; Noureddin, M.; Boushey, C.; Wilkens, L.R.; Setiawan, V.W. Diet Quality Association with Nonalcoholic Fatty Liver Disease by Cirrhosis Status: The Multiethnic Cohort. Curr. Dev. Nutr. 2020, 4, nzaa024. [Google Scholar] [CrossRef]
- Bullón-Vela, V.; Abete, I.; Tur, J.A.; Pintó, X.; Corbella, E.; Martínez-González, M.A.; Toledo, E.; Corella, D.; Macías, M.; Tinahones, F.; et al. Influence of lifestyle factors and staple foods from the Mediterranean diet on non-alcoholic fatty liver disease among older individuals with metabolic syndrome features. Nutrition 2020, 71, 110620. [Google Scholar] [CrossRef]
- Sato, K.; Gosho, M.; Yamamoto, T.; Kobayashi, Y.; Ishii, N.; Ohashi, T.; Nakade, Y.; Ito, K.; Fukuzawa, Y.; Yoneda, M. Vitamin E has a beneficial effect on nonalcoholic fatty liver disease: A meta-analysis of randomized controlled trials. Nutrition 2015, 31, 923–930. [Google Scholar] [CrossRef]
- Berman, A.Y.; Motechin, R.A.; Wiesenfeld, M.Y.; Holz, M.K. The therapeutic potential of resveratrol: A review of clinical trials. NPJ Precis. Oncol. 2017, 1, 35. [Google Scholar] [CrossRef]
- Hassani Zadeh, S.; Mansoori, A.; Hosseinzadeh, M. Relationship between dietary patterns and non-alcoholic fatty liver disease: A systematic review and meta-analysis. J. Gastroenterol. Hepatol. 2021, 36, 1470–1478. [Google Scholar] [CrossRef]
- Meir, A.Y.; Keller, M.; Müller, L.; Bernhart, S.H.; Tsaban, G.; Zelicha, H.; Rinott, E.; Kaplan, A.; Gepner, Y.; Shelef, I.; et al. Effects of lifestyle interventions on epigenetic signatures of liver fat: Central randomized controlled trial. Liver Int. 2021, 41, 2101–2111. [Google Scholar] [CrossRef]
- Sokolowska, K.E.; Maciejewska-Markiewicz, D.; Bińkowski, J.; Palma, J.; Taryma-Leśniak, O.; Kozlowska-Petriczko, K.; Borowski, K.; Baśkiewicz-Hałasa, M.; Hawryłkowicz, V.; Załęcka, P.; et al. Identified in blood diet-related methylation changes stratify liver biopsies of NAFLD patients according to fibrosis grade. Clin. Epigenetics 2022, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Yuan, F.; Yue, S.; Jiang, F.; Ren, D.; Liu, L.; Bi, Y.; Guo, Z.; Ji, L.; Han, K.; et al. Effect of exercise and diet intervention in NAFLD and NASH via GAB2 methylation. Cell Biosci. 2021, 11, 189. [Google Scholar] [CrossRef]
- Marques-Rocha, J.L.; Milagro, F.I.; Mansego, M.L.; Zulet, M.A.; Bressan, J.; Martínez, J.A. Expression of inflammation-related miRNAs in white blood cells from subjects with metabolic syndrome after 8 wk of following a Mediterranean diet–based weight loss program. Nutrition 2016, 32, 48–55. [Google Scholar] [CrossRef]
- Marsetti, P.S.; Milagro, F.I.; Zulet, M.Á.; Martínez, J.A.; Lorente-Cebrián, S. Changes in miRNA expression with two weight-loss dietary strategies in a population with metabolic syndrome. Nutrition 2021, 83, 111085. [Google Scholar] [CrossRef]
- Lai, Z.; Chen, J.; Ding, C.; Wong, K.; Chen, X.; Pu, L.; Huang, Q.; Chen, X.; Cheng, Z.; Liu, Y.; et al. Association of Hepatic Global DNA Methylation and Serum One-Carbon Metabolites with Histological Severity in Patients with NAFLD. Obesity 2020, 28, 197–205. [Google Scholar] [CrossRef]
- Nilsson, E.; Matte, A.; Perfilyev, A.; de Mello, V.D.; Käkelä, P.; Pihlajamäki, J.; Ling, C. Epigenetic Alterations in Human Liver From Subjects With Type 2 Diabetes in Parallel With Reduced Folate Levels. J. Clin. Endocrinol. Metab. 2015, 100, E1491–E1501. [Google Scholar] [CrossRef] [PubMed]
- Cansanção, K.; Citelli, M.; Leite, N.C.; Hazas, M.-C.L.d.L.; Dávalos, A.; Carmo, M.d.G.T.D.; Peres, W.A.F. Impact of Long-Term Supplementation with Fish Oil in Individuals with Non-Alcoholic Fatty Liver Disease: A Double Blind Randomized Placebo Controlled Clinical Trial. Nutrients 2020, 12, 3372. [Google Scholar] [CrossRef] [PubMed]
- Barroso, L.N.; Salarini, J.; Leite, N.C.; Villela-Nogueira, C.A.; Dávalos, A.; Carmo, M.d.G.T.; Peres, W.A.F. Effect of fish oil supplementation on the concentration of miRNA-122, FGF-21 and liver fibrosis in patients with NAFLD: Study protocol for a randomized, double-blind and placebo-controlled clinical trial. Clin. Nutr. ESPEN 2023, 57, 117–125. [Google Scholar] [CrossRef]
- D’Amore, S.; Vacca, M.; Cariello, M.; Graziano, G.; D’Orazio, A.; Salvia, R.; Sasso, R.C.; Sabbà, C.; Palasciano, G.; Moschetta, A. Genes and miRNA expression signatures in peripheral blood mononuclear cells in healthy subjects and patients with metabolic syndrome after acute intake of extra virgin olive oil. Biochim. Biophys. Acta BBA Mol. Cell Biol. Lipids 2016, 1861, 1671–1680. [Google Scholar] [CrossRef]
- Fatima, S.; Khan, D.A.; Fatima, F.; Aamir, M.; Ijaz, A.; Hafeez, A. Role of δ-tocotrienol and resveratrol supplementation in the regulation of micro RNAs in patients with metabolic syndrome: A randomized controlled trial. Complement. Ther. Med. 2023, 74, 102950. [Google Scholar] [CrossRef]
- Rottiers, V.; Näär, A.M. MicroRNAs in metabolism and metabolic disorders. Nat. Rev. Mol. Cell Biol. 2012, 13, 239–250. [Google Scholar] [CrossRef]
- Lichtenstein, A.H.; Appel, L.J.; Vadiveloo, M.; Hu, F.B.; Kris-Etherton, P.M.; Rebholz, C.M.; Sacks, F.M.; Thorndike, A.N.; Van Horn, L.; Wylie-Rosett, J.; et al. 2021 Dietary Guidance to Improve Cardiovascular Health: A Scientific Statement from the American Heart Association. Circulation 2021, 144, e472–e487. [Google Scholar] [CrossRef]
- Radziejewska, A.; Muzsik, A.; Milagro, F.I.; Martínez, J.A.; Chmurzynska, A. One-Carbon Metabolism and Nonalcoholic Fatty Liver Disease: The Crosstalk between Nutrients, Microbiota, and Genetics. Lifestyle Genom. 2020, 13, 53–63. [Google Scholar] [CrossRef]
- Nazki, F.H.; Sameer, A.S.; Ganaie, B.A. Folate: Metabolism, genes, polymorphisms and the associated diseases. Gene 2014, 533, 11–20. [Google Scholar] [CrossRef]
- Tedesco, C.C.; Bonfiglio, C.; Notarnicola, M.; Rendina, M.; Castellaneta, A.; Di Leo, A.; Giannelli GFontana, L. High Extra Virgin Olive Oil Consumption Is Linked to a Lower Prevalence of NAFLD with a Prominent Effect in Obese Subjects: Results from the MICOL Study. Nutrients 2023, 15, 4673. [Google Scholar] [CrossRef]
- Valenzuela, R.; Videla, L.A. Impact of the Co-Administration of N-3 Fatty Acids and Olive Oil Components in Preclinical Nonalcoholic Fatty Liver Disease Models: A Mechanistic View. Nutrients 2020, 12, 499. [Google Scholar] [CrossRef]
- Tobin, D.; Brevik-Andersen, M.; Qin, Y.; Innes, J.K.; Calder, P.C. Evaluation of a High Concentrate Omega-3 for Correcting the Omega-3 Fatty Acid Nutritional Deficiency in Non-Alcoholic Fatty Liver Disease (CONDIN). Nutrients 2018, 10, 1126. [Google Scholar] [CrossRef]
- Wang, H.; Shao, Y.; Yuan, F.; Feng, H.; Li, N.; Zhang, H.; Wu, C.; Liu, Z. Fish Oil Feeding Modulates the Expression of Hepatic MicroRNAs in a Western-Style Diet-Induced Nonalcoholic Fatty Liver Disease Rat Model. BioMed Res. Int. 2017, 2017, 2503847. [Google Scholar] [CrossRef]
- De Castro, G.S.; Calder, P.C. Non-alcoholic fatty liver disease and its treatment with n-3 polyunsaturated fatty acids. Clin. Nutr. 2018, 37, 37–55. [Google Scholar] [CrossRef]
- Hernández-Rodas, M.C.; Valenzuela, R.; Echeverría, F.; Rincón-Cervera, M.; Espinosa, A.; Illesca, P.; Muñoz, P.; Corbari, A.; Romero, N.; Gonzalez-Mañan, D.; et al. Supplementation with Docosahexaenoic Acid and Extra Virgin Olive Oil Prevents Liver Steatosis Induced by a High-Fat Diet in Mice through PPAR-α and Nrf2 Upregulation with Concomitant SREBP-1c and NF-kB Downregulation. Mol. Nutr. Food Res. 2017, 61, 1700479. [Google Scholar] [CrossRef]
- Pervez, M.A.; Khan, D.A.; Slehria, A.U.R.; Ijaz, A. Delta-tocotrienol supplementation improves biochemical markers of hepatocellular injury and steatosis in patients with nonalcoholic fatty liver disease: A randomized, placebo-controlled trial. Complement. Ther. Med. 2020, 52, 102494. [Google Scholar] [CrossRef]
- Izzo, C.; Annunziata, M.; Melara, G.; Sciorio, R.; Dallio, M.; Masarone, M.; Federico, A.; Persico, M. The Role of Resveratrol in Liver Disease: A Comprehensive Review from In Vitro to Clinical Trials. Nutrients 2021, 13, 933. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Nano, J.; Ding, J.; Zheng, Y.; Hennein, R.; Liu, C.; Speliotes, E.K.; Huan, T.; Song, C.; Mendelson, M.M.; et al. A Peripheral Blood DNA Methylation Signature of Hepatic Fat Reveals a Potential Causal Pathway for Nonalcoholic Fatty Liver Disease. Diabetes 2019, 68, 1073–1083. [Google Scholar] [CrossRef]
- Sberna, A.L.; Bouillet, B.; Rouland, A.; Brindisi, M.C.; Nguyen, A.; Mouillot, T.; Duvillard, L.; Denimal, D.; Loffroy, R.; Vergès, B.; et al. European Association for the Study of the Liver (EASL), European Association for the Study of Diabetes (EASD), European Association for the Study of Obesity (EASO). EASL–EASD–EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. Diabetologia 2016, 59, 1121–1140. [Google Scholar]
- Ziolkowska, S.; Binienda, A.; Jabłkowski, M.; Szemraj, J.; Czarny, P. The Interplay between Insulin Resistance, Inflammation, Oxidative Stress, Base Excision Repair and Metabolic Syndrome in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2021, 22, 11128. [Google Scholar] [CrossRef]
- Kouvari, M.; Sergi, D.; Zec, M.; Naumovski, N. Editorial: Nutrition in prevention and management of non-alcoholic fatty liver disease. Front. Nutr. 2023, 10, 1212363. [Google Scholar] [CrossRef] [PubMed]
- George, E.S.; Forsyth, A.; Itsiopoulos, C.; Nicoll, A.J.; Ryan, M.; Sood, S.; Roberts, S.K.; Tierney, A.C. Practical Dietary Recommendations for the Prevention and Management of Nonalcoholic Fatty Liver Disease in Adults. Adv. Nutr. 2018, 9, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Amenyah, S.D.; Hughes, C.F.; Ward, M.; Rosborough, S.; Deane, J.; Thursby, S.-J.; Walsh, C.P.; E Kok, D.; Strain, J.J.; McNulty, H.; et al. Influence of nutrients involved in one-carbon metabolism on DNA methylation in adults—A systematic review and meta-analysis. Nutr. Rev. 2020, 78, 647–666. [Google Scholar] [CrossRef]
Diet Intervention | |||||||
---|---|---|---|---|---|---|---|
Low fat/low carb–MED diets | Study reference | Type of study | Intervention | Source of biological sample | Epigenetic mechanism | Epigenetic signature | Outcomes |
[43] | Sub-study of the CENTRAL randomized controlled trial | 120 participants from the CENTRAL trial were conducted to an 18-month regimen of either LF or MED/LC diets with 28 g/day of provided walnuts, with or without PA (PA+/PA−) | Blood cells | DNA methylation | 2095 different CpGs located among 41 genes were analyzed. Significant correlations for 5 CpG methylation in steatosis-related genes predicted NAFLD:
| After 18 months, significant reductions of IHF%, weight, and WC were observed, with no differences between diet groups LF and MED/LC | |
MED diet | [44] | Clinical trial | 18 participants with medium-to-high-grade steatosis trained to follow the Mediterranean diet, including fiber supplements | Blood cells | DNA methylation and Histone modification | Histone modifications: Reduced levels of H3 acetylation in monocytes and lymphocytes. DNA methylation: 11485 CpG sites hypermethylated; 142 hypomethylated | Improvement of the anthropometric, biochemical, and liver steatosis status. Genome-wide methylation patterns changed towards the pattern for healthy blood. Methylation changes in blood-separated liver biopsies from NAFLD patients according to the fibrosis grade |
Low-carb diet | [45] | Randomized controlled trial | 50–65-year-old participants with NAFLD and NASH were randomly assigned to four groups: Ex, LCD, exercise, ELCD, and No groups. 6-month intervention | Blood cells | DNA methylation | Differentially methylated CpGs before and after intervention: 100118 (Ex), 268582 (LCD), 270663 (ELCD) and 259249 (No) CpG After exclusion of No group: 430 (Ex), 2807 (LCD), and 1648 (ELCD) CpGs; 404 (Ex), 2661 (LCD), and 1575 (ELCD) genes | Lower methylation levels pre-intervention than post-intervention LCD and ELCD intervention on human NAFLD can induce DNA methylation alterations at critical genes in blood, e.g., GAB2 (validated in liver and adipose of NASH mice model) |
RESMENA hypocaloric-MED diet | [46] | Sub-study of the Randomized-prospective RESMENA study | 40 participants with MetS from the RESMENA study were evaluated before and after an 8 wk hypocaloric-MED diet | Blood cells | miRNA | Expression of miR-155-3p was decreased in WBC; Let-7b was upregulated after treatment. | RESMENA diet improved most anthropometric and biochemical features. Low consumption of lipids and saturated fat was associated with higher expression of let-7b after the nutritional intervention |
RESMENA hypocaloric-MED diet and AHA diet | [47] | Sub-study of the Randomized-prospective RESMENA study | 24 patients with MetS features from the RESMENA study were selected from two dietary groups: RESMENA or AHA diets. | Blood cells | miRNA | 49 miRNAs differentially expressed (35 from AHA and 14 from MD diet) miR-410, miR637, miR-214, and miR-190 with the most significant expression changes | After 8w intervention: Significant changes in anthropometric parameters (BW, BMI, WS, and waist/hip ratio) Improvement of metabolic profile |
Nutrient Intake | |||||||
---|---|---|---|---|---|---|---|
Study Reference | Type of Study | Participants | Nutrient Evaluation | Source of Biological Sample | Epigenetic Mechanism | Epigenetic Signature | Outcomes |
[48] | Case-control | 18 control participants and 47 patients with NAFLD | Methyl-donor nutrients | Liver biopsies | DNA methylation | Global DNA hypomethylation in patients with NAFLD | Significantly lower levels of global DNA methylation in patients with NAFLD than control participants; Global DNA methylation level decreased with the aggravation of hepatic inflammation grade and disease progression. Severity of NAFLD correlated positively with the serum homocysteine level |
[49] | Case-control | 35 diabetic and 60 nondiabetic obese subjects | Vitamin 12 and folate levels | Liver biopsies with or without signs of NAFLD | DNA methylation | 236 CpG sites (94%) hypomethylated and 15 sites (6%) hypermethylated in subjects with T2D | Significant sites in diabetic subjects were hypomethylated Significantly reduced circulating folate levels in the T2D compared with the nondiabetic subjects were observed |
[50] | Double Blind Randomized Placebo Controlled Clinical Trial (pilot) | 24 patients with NAFLD | n-3 PUFA capsules contained fish oil (503 mg of DHA + 102 mg of EPA) or placebo capsules (750 mg of oleic acid) | Blood | miR-122 | No changes in miR-122 circulating levels | n-3 PUFAs were incorporated in erythrocytes after six months of fish oil supplementary intake. n-3 PUFAs were effective in reducing ALP and liver fibrosis without altering the expression of circulating miR-122 in individuals with NAFLD |
[51] | Randomized, double-blind, placebo-controlled clinical trial | 52 patients with NAFLD | 4 g/day supplementation of fish oil (2100 mg EPA and 924 mg DHA) or placebo (oleic acid) over a 6-month period | Blood | miRNA-122 | Ongoing research: https://www.backuptrials.com/bt/default/index?keywords=RBR-8dp876 (accessed on 25 July 2024). | |
[52] | Controlled intervention trial | 12 healthy subjects and 12 patients with MetS | Acute high- and low-polyphenols EVOO intake (55 mL after 12 h of fasting)–single dose | Blood | miRNAs | Supressed miRNAs: miR-146b-5p; miR-19a-3p; miR-181b-5p; miR-107; miR-769-5p; miR-192-5p Upregulated miRNAs: miR-23b-3p; miR-519b-3p | Acute EVOO intake led to significant changes in gene and miRNA expression in PBMCs of both healthy subjects and patients with MetS (more significant in healthy) High-polyphenols EVOO led to more significant changes in gene and miRNA expression compared to low-polyphenols EVOO |
[53] | Randomized placebo-controlled trial | 82 patients with MetS | TRM group received 400 mg capsules (δ-tocotrienol 250 mg; Resveratrol 150 mg) and placebo received (cellulose 400 mg capsule) twice daily for 24 weeks | Blood | miRNAs | TRM supplementation resulted in a significant upregulation of miR-130b and miR-221, as well as downregulation of miR-122 | TRM supplementation improved MetS parameters, including central obesity, impaired fasting glucose, dyslipidemia, and hypertension |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martín Barraza, J.I.; Bars-Cortina, D. Dietary Pattern’s Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD. Nutrients 2024, 16, 2956. https://doi.org/10.3390/nu16172956
Martín Barraza JI, Bars-Cortina D. Dietary Pattern’s Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD. Nutrients. 2024; 16(17):2956. https://doi.org/10.3390/nu16172956
Chicago/Turabian StyleMartín Barraza, Josefina I., and David Bars-Cortina. 2024. "Dietary Pattern’s Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD" Nutrients 16, no. 17: 2956. https://doi.org/10.3390/nu16172956
APA StyleMartín Barraza, J. I., & Bars-Cortina, D. (2024). Dietary Pattern’s Role in Hepatic Epigenetic and Dietary Recommendations for the Prevention of NAFLD. Nutrients, 16(17), 2956. https://doi.org/10.3390/nu16172956