Sex and Age Differences in the Effects of Food Frequency on Metabolic Parameters in Japanese Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Food Frequency Questionnaire on Food Groups
2.3. Physical Examination
2.4. Statistical Analysis
3. Results
3.1. Background of the Study Sample
3.2. Effects of Sex and Age on Food Frequency
3.3. Effect of Age on the Frequency of Consuming Snacks, Soft Drinks, and Alcoholic Beverages
3.4. Effects of Food Intake and Sugar-Sweetened Drink, Snack, and Alcohol Consumption on BMI, Waist Circumference, and Grip Strength
3.5. Effects of Food Intake Frequency and Sugar-Sweetened Drink, Sweet Drink, and Alcohol Consumption on HbA1c, eGFR and UA
3.6. Effects of Food Intake Frequency and Sugar-Sweetened Drink, Sweet Drink, and Alcohol Consumption on Serum Lipid Levels
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feraco, A.; Armani, A.; Amoah, I.; Guseva, E.; Camajani, E.; Gorini, S.; Strollo, R.; Padua, E.; Caprio, M.; Lombardo, M. Assessing gender differences in food preferences and physical activity: A population-based survey. Front. Nutr. 2024, 11, 1348456. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, M.; Amoah, I.; Feraco, A.; Guseva, E.; Gorini, S.; Camajani, E.; Armani, A.; Padua, E.; Caprio, M. Gender Differences in Taste and Food Habits: Implications for Personalized Nutrition. Biol. Life Sci. Forum 2023, 29, 1. [Google Scholar] [CrossRef]
- Kuo, C.T.; Chen, D.R.; Chan, C.C.; Yeh, Y.P.; Chen, H.H. Sex differences in the association between sugar-sweetened beverages consumption and metabolic risks among the working-age population in Taiwan. Public Health Nutr. 2022, 26, 653–660. [Google Scholar] [CrossRef]
- Westenhoefer, J. Age and gender dependent profile of food choice. Forum Nutr. 2005, 57, 44–51. [Google Scholar] [CrossRef]
- Chao, A.M.; Loughead, J.; Bakizada, Z.M.; Hopkins, C.M.; Geliebter, A.; Gur, R.C.; Wadden, T.A. Sex/gender differences in neural correlates of food stimuli: A systematic review of functional neuroimaging studies. Obes. Rev. 2017, 18, 687–699. [Google Scholar] [CrossRef] [PubMed]
- Manippa, V.; Padulo, C.; van der Laan, L.N.; Brancucci, A. Gender differences in food choice: Effects of superior temporal sulcus stimulation. Front. Hum. Neurosci. 2017, 11, 597. [Google Scholar] [CrossRef]
- Castronuovo, L.; Guarnieri, L.; Tiscornia, M.V.; Allemandi, L. Food marketing and gender among children and adolescents: A scoping review. Nutr. J. 2021, 20, 52. [Google Scholar] [CrossRef]
- Grzymisławska, M.; Puch, E.A.; Zawada, A.; Grzymisławski, M. Do nutritional behaviors depend on biological sex and cultural gender? Adv. Clin. Exp. Med. 2020, 29, 165–172. [Google Scholar] [CrossRef]
- Yeung, A.W.K. Sex differences in brain responses to food stimuli: A meta-analysis on neuroimaging studies. Obes. Rev. 2018, 19, 1110–1115. [Google Scholar] [CrossRef]
- Diószegi, J.; Llanaj, E.; Ádány, R. Genetic background of taste perception, taste preferences, and its nutritional implications: A systematic review. Front. Genet. 2019, 10, 1272. [Google Scholar] [CrossRef]
- Wardle, J.; Grilo, C.M.; De Castro, J.M. Gender differences in food choice: The contribution of health beliefs and dieting. Ann. Behav. Med. 2004, 28, 108–117. [Google Scholar] [CrossRef]
- Yaguchi-Tanaka, Y.; Tabuchi, T. Skipping Breakfast and Subsequent Overweight/Obesity in Children: A Nationwide Prospective Study of 2.5- to 13-year-old Children in Japan. J. Epidemiol. 2021, 31, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Kojima, Y.; Murayama, N.; Suga, H. Dietary diversity score correlates with nutrient intake and monetary diet cost among Japanese adults. Asia Pac. J. Clin. Nutr. 2020, 29, 382–394. [Google Scholar] [CrossRef] [PubMed]
- Otsuka, R.; Tange, C.; Nishita, Y.; Kato, Y.; Tomida, M.; Imai, T.; Ando, F.; Shimokata, H. Dietary Diversity and All-Cause and Cause-Specific Mortality in Japanese Community-Dwelling Older Adults. Nutrients 2020, 12, 1052. [Google Scholar] [CrossRef] [PubMed]
- Alhusseini, N.; Ramadan, M.; Aljarayhi, S.; Arnous, W.; Abdelaal, M.; Dababo, H.; Dalati, B.; Doumani, O.A.; AlNasser, S.; Saleem, R. Added sugar intake among the saudi population. PLoS ONE 2023, 18, e0291136. [Google Scholar] [CrossRef] [PubMed]
- Panda, A.; Booth, S.L. Nutritional Aspects of Healthy Aging. Med. Clin. N. Am. 2022, 106, 853–863. [Google Scholar] [CrossRef] [PubMed]
- Virtanen, J.; Penttinen, M.A.; Laaksonen, M.; Erkkola, M.; Vepsäläinen, H.; Kautiainen, H.; Korhonen, P. The Relationship between Dietary Habits and Work Engagement among Female Finnish Municipal Employees. Nutrients 2022, 14, 1267. [Google Scholar] [CrossRef]
- Kuwahara, K.; Imai, T.; Miyamoto, T.; Kochi, T.; Eguchi, M.; Nishihara, A.; Nakagawa, T.; Yamamoto, S.; Honda, T.; Kabe, I.; et al. Sleep Duration Modifies the Association of Overtime Work with Risk of Developing Type 2 Diabetes: Japan Epidemiology Collaboration on Occupational Health Study. J. Epidemiol. 2018, 28, 336–340. [Google Scholar] [CrossRef]
- Fox, E.C.; Wang, K.; Aquino, M.; Grandner, M.A.; Xie, D.; Branas, C.C.; Gooneratne, N.S. Sleep debt at the community level: Impact of age, sex, race/ethnicity and health. Sleep Health 2018, 4, 317–324. [Google Scholar] [CrossRef]
- Spiegel, K.; Leproult, R.; Van Cauter, E. Impact of sleep debt on metabolic and endocrine function. Lancet 1999, 354, 1435–1439. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K. Food Frequency Questionnaire Based on Food Groups for Estimating Individual Nutrient Intake. Jpn. J. Nutr. Diet. 2003, 61, 161–169. [Google Scholar] [CrossRef]
- Maruyama, S.; Morita, I.; Nakagaki, H. Survey on the food intake in community-dwelling elderly women. J. Integr. Study Diet. Habits. 2007, 17, 348. [Google Scholar] [CrossRef]
- Okada, E.; Saito, A.; Takimoto, H. Association between the Portion Sizes of Traditional Japanese Seasonings—Soy Sauce and Miso—And Blood Pressure: Cross-Sectional Study Using National Health and Nutrition Survey, 2012–2016 Data. Nutrients 2018, 10, 1865. [Google Scholar] [CrossRef]
- Oono, F.; Sakamoto, Y.; Tachi, Y.; Mabashi-Asazuma, H.; Iida, K. Effect of Cdx2 Polymorphism on the Relationship between Dietary Calcium Intake and Peak Bone Mass in Young Japanese Women. Nutrients 2020, 12, 191. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, K.; Deguchi, K.; Ushiroda, C.; Yanagi, K.; Seino, Y.; Suzuki, A.; Yabe, D.; Sasaki, H.; Sasaki, S.; Saitoh, E.; et al. A Study on the Compatibility of a Food-Recording Application with Questionnaire-Based Methods in Healthy Japanese Individuals. Nutrients 2024, 16, 1742. [Google Scholar] [CrossRef] [PubMed]
- Dietary Reference Intakes for Japanese. Ministry of Health, Labor and Welfare. 2020. Available online: https://www.mhlw.go.jp/content/10900000/001150922.pdf (accessed on 30 June 2024).
- Robb, C.; Carr, P.R.; Ball, J.; Owen, A.; Beilin, L.J.; Newman, A.B.; Nelson, M.R.; Reid, C.M.; Orchard, S.G.; Neumann, J.T.; et al. Association of a healthy lifestyle with mortality in older people. BMC Geriatr. 2023, 23, 646. [Google Scholar] [CrossRef]
- Hu, F.B. Diet strategies for promoting healthy aging and longevity: An epidemiological perspective. J. Intern. Med. 2024, 295, 508–531. [Google Scholar] [CrossRef]
- Tan, X.; Benedict, C. Sleep characteristics and HbA1c in patients with type 2 diabetes on glucose-lowering medication. BMJ Open Diabetes Res. Care 2020, 8, e001702. [Google Scholar] [CrossRef] [PubMed]
- Sperry, S.D.; Scully, I.D.; Gramzow, R.H.; Jorgensen, R.S. Sleep Duration and Waist Circumference in Adults: A Meta-Analysis. Sleep 2015, 38, 1269–1276. [Google Scholar] [CrossRef]
- Mena-Sánchez, G.; Babio, N.; Becerra-Tomás, N.; Martínez-González, M.Á.; Díaz-López, A.; Corella, D.; Zomeño, M.D.; Romaguera, D.; Vioque, J.; Alonso-Gómez, Á.M.; et al. Association between dairy product consumption and hyperuricemia in an elderly population with metabolic syndrome. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 214–222. [Google Scholar] [CrossRef]
- Herber-Gast, G.M.; Biesbroek, S.; Verschuren, W.M.; DA Stehouwer, C.; Gansevoort, R.T.; Bakker, S.J.; Spijkerman, A.M. Association of dietary protein and dairy intake and change in renal function: Results from the population-based longitudinal Doetinchem cohort study. Am. J. Clin. Nutr. 2016, 104, 1712–1719. [Google Scholar] [CrossRef] [PubMed]
- Lu, T.Y.; Zhang, W.S.; Zhu, T.; Jiang, C.Q.; Zhu, F.; Jin, Y.L.; Lam, T.H.; Cheng, K.K.; Xu, L. Associations of meat, fish, and seafood consumption with kidney function in middle-aged to older Chinese: A cross-sectional study based on the Guangzhou Biobank Cohort Study. BMJ Open 2023, 13, e073738. [Google Scholar] [CrossRef] [PubMed]
- Zhong, V.W.; Van Horn, L.; Cornelis, M.C.; Wilkins, J.T.; Ning, H.; Carnethon, M.R.; Greenland, P.; Mentz, R.J.; Tucker, K.L.; Zhao, L.; et al. Association of dietary cholesterol or egg consumption with incident Cardiovascular Disease and mortality. JAMA 2019, 321, 1081–1095. [Google Scholar] [CrossRef] [PubMed]
- Sugano, M.; Matsuoka, R. Nutritional Viewpoints on Eggs and Cholesterol. Foods 2021, 10, 494. [Google Scholar] [CrossRef] [PubMed]
- Iizuka, K.; Kobae, K.; Yanagi, K.; Yamada, Y.; Deguchi, K.; Ushiroda, C.; Seino, Y.; Suzuki, A.; Saitoh, E.; Naruse, H. Differing Effects of Body Size on Circulating Lipid Concentrations and Hemoglobin A1c Levels in Young and Middle-Aged Japanese Women. Healthcare 2024, 12, 465. [Google Scholar] [CrossRef]
- Maskarinec, G.; Aylward, A.G.; Erber, E.; Takata, Y.; Kolonel, L.N. Soy intake is related to a lower body mass index in adult women. Eur. J. Nutr. 2008, 47, 138–144. [Google Scholar] [CrossRef]
- Zhu, J.; Zhao, Q.; Qiu, Y.; Zhang, Y.; Cui, S.; Yu, Y.; Chen, B.; Zhu, M.; Wang, N.; Liu, X.; et al. Soy isoflavone intake and obesity in Chinese adults: A cross-sectional study in Shanghai, China. Nutrients 2021, 13, 2715. [Google Scholar] [CrossRef]
- A Baum, J.; Teng, H.; Erdman, J.W., Jr.; Weigel, R.M.; Klein, B.P.; Persky, V.W.; Freels, S.; Surya, P.; Bakhit, R.M.; Ramos, E.; et al. Long-term soy protein intake improves blood lipid profiles and increases mononuclear cell low-density lipoprotein receptor messenger RNA levels in hypercholesterolemic postmenopausal women. Am. J. Clin. Nutr. 1998, 68, 545–551. [Google Scholar] [CrossRef]
- Nagata, C.; Takatsuka, N.; Shimizu, H. Soy and Fish Oil Intake and Mortality in a Japanese Community. Am. J. Epidemiol. 2002, 156, 824–831. [Google Scholar] [CrossRef]
- Katagiri, R.; Sawada, N.; Goto, A.; Yamaji, T.; Iwasaki, M.; Noda, M.; Iso, H.; Tsugane, S. Association of soy and fermented soy product intake with total and cause-specific mortality: A prospective cohort study. BMJ 2020, 368, m34. [Google Scholar] [CrossRef]
- Chen, Z.; Qian, F.; Hu, Y.; Voortman, T.; Li, Y.; Rimm, E.B.; Sun, Q. Dietary phytoestrogens and total and cause-specific mortality: Results from two prospective cohort studies. Am. J. Clin. Nutr. 2023, 117, 130–140. [Google Scholar] [CrossRef] [PubMed]
- Gholi, Z.; Rs, G.; Azadbakht, L.; Ghalaeh, R.; Bank, S.; Ss, B. Fruit and vegetable intake, body mass index, and waist circumference of young female students in Isfahan. J. Educ. Health Promot. 2012, 1, 29. [Google Scholar] [CrossRef]
- Rautiainen, S.; Wang, L.; Lee, I.-M.; Manson, J.E.; Buring, J.E.; Sesso, H.D. Higher Intake of Fruit, but Not Vegetables or Fiber, at Baseline Is Associated with Lower Risk of Becoming Overweight or Obese in Middle-Aged and Older Women of Normal BMI at Baseline. J. Nutr. 2015, 145, 960–968. [Google Scholar] [CrossRef]
- Guideline: Sugars Intake for Adults and Children. World Health Organization. 2015. Available online: https://www.who.int/publications/i/item/9789241549028 (accessed on 30 June 2024).
- Nieradko-Iwanicka, B. Role of alcohol consumption in gout pathogenesis. Crit. Rev. Food Sci. Nutr. 2022, 62, 7129–7137. [Google Scholar] [CrossRef]
- Kunutsor, S.K.; Bhattacharjee, A.; Connelly, M.A.; Bakker, S.J.L.; Dullaart, R.P.F. Alcohol Consumption, High-Density Lipoprotein Particles and Subspecies, and Risk of Cardiovascular Disease: Findings from the PREVEND Prospective Study. Int. J. Mol. Sci. 2024, 25, 2290. [Google Scholar] [CrossRef]
- Tverdal, A.; Høiseth, G.; Magnus, P.; Næss, Ø.; Selmer, R.; Knudsen, G.P.; Mørland, J. Alcohol Consumption, HDL-Cholesterol and Incidence of Colon and Rectal Cancer: A Prospective Cohort Study Including 250,010 Participants. Alcohol Alcohol. 2021, 56, 718–725. [Google Scholar] [CrossRef] [PubMed]
- Cho, K.H.; Nam, H.S.; Kang, D.J.; Park, M.H.; Kim, J.H. Long-term alcohol consumption causes a significant decrease in serum high-density lipoprotein (HDL)cholesterol and apolipoprotein A-I levels in middle-aged Korean women. Int. J. Mol. Sci. 2022, 23, 8623. [Google Scholar] [CrossRef] [PubMed]
- Pownall, H.J.; Ballantyne, C.M.; Kimball, K.T.; Simpson, S.L.; Yeshurun, D.; Gotto, A.M. Effect of Moderate Alcohol Consumption on Hypertriglyceridemia: A Study in the Fasting State. Arch. Intern. Med. 1999, 159, 981–987. [Google Scholar] [CrossRef]
- Kawamoto, R.; Ninomiya, D.; Senzaki, K.; Kumagi, T. Alcohol consumption is positively associated with handgrip strength among Japanese community-dwelling middle-aged and elderly individuals. Int. J. Gerontol. 2018, 12, 294–298. [Google Scholar] [CrossRef]
- Hong, J.W.; Noh, J.H.; Kim, D.J. Association between Alcohol Intake and Hemoglobin A1c in the Korean Adults: The 2011–2013 Korea National Health and Nutrition Examination Survey. PLoS ONE 2016, 11, e0167210. [Google Scholar] [CrossRef]
- Ministry of Health, Labor, and Welfare. National Health and Nutrition Survey. 2020. Available online: https://www.mhlw.go.jp/content/000711008.pdf (accessed on 9 May 2024).
Total (n = 3147) | Male (n = 968) | Female (n = 2179) | p | |
---|---|---|---|---|
Age | 35.1 (11.3) | 37.9 (10.9) | 33.9 (11.2) | <0.001 * |
BMI | 21.9 (3.4) | 23.3 (3.4) | 21.3 (3.3) | <0.001 |
Waist circumference | 74.0 (10.3) | 81.2 (9.1) | 70.8 (9.1) | <0.001 |
Handgrip strength | 29.6 (10.9) | 41.1 (9.1) | 24.5 (7.1) | <0.001 |
HbA1c | 5.42 (0.38) | 5.46 (0.42) | 5.40 (0.35) | <0.001 |
Triglyceride | 101.3 (73.3) | 131.5 (95.6) | 87.8 (55.8) | <0.001 * |
HDL-C | 62.1 (14.4) | 53.7 (12.4) | 65.8 (13.6) | <0.001 |
Non-HDL-C | 128.9 (31.9) | 139.2 (33.8) | 124.4 (29.9) | <0.001 |
eGFR | 90.3 (17.6) | 84.7 (15.8) | 92.8 (17.7) | <0.001 |
Uric acid | 4.8 (1.3) | 6.0 (1.2) | 4.2 (0.9) | <0.001 |
Hours of sleep | 6.4 (1.0) | 6.3 (1.0) | 6.4 (1.0) | 0.001 |
Meat (/week) | 8.2 (4.2) | 8.8 (4.5) | 7.8 (4.1) | <0.001 * |
Fish (/week) | 3.5 (2.7) | 3.8 (3.0) | 3.3 (2.6) | 0.001 * |
Egg (/week) | 4.2 (2.7) | 4.2 (3.0) | 4.2 (2.5) | 0.58 * |
Soybeans(/week) | 5.8 (4.3) | 5.5 (4.3) | 5.9 (4.3) | 0.002 * |
Dairy products (/week) | 3.2 (2.8) | 2.9 (2.8) | 3.3 (2.8) | <0.001 * |
Seaweed (/week) | 2.0 (2.1) | 1.9 (2.2) | 2.0 (2.0) | 0.72 * |
Vegetables (/week) | 9.2 (4.7) | 8.9 (4.8) | 9.3 (4.7) | 0.029 * |
Fruits (/week) | 2.9 (2.6) | 2.7 (2.7) | 3.1 (2.5) | <0.001 * |
Potatoes (/week) | 2.1 (1.7) | 2.0 (1.8) | 2.1 (1.7) | 0.24 * |
Oils and fats (/week) | 10.0 (5.5) | 10.1 (5.5) | 9.9 (5.6) | 0.11 * |
Snacks (/week) | 11.0 (12.0) | 9.4 (11.9) | 11.7 (12.0) | <0.001 * |
Coffee/tea with sugar (/week) | 0.9 (2.7) | 0.9 (2.8) | 0.9 (2.7) | 0.057 * |
Soft drinks (/week) | 1.3 (2.6) | 1.9 (3.0) | 1.0 (2.3) | <0.001 * |
Alcohol (/week) | 1.3 (2.1) | 1.7 (2.4) | 1.1 (1.9) | <0.001 * |
Male | Female | |||||
---|---|---|---|---|---|---|
Foods | Age | Mean (SD) | p | Age | Mean (SD) | p |
Meat | 20 yo (n = 303) | 8.7(4.0) | 0.76 | 20 yo (n = 1091) | 7.7(0.1) | 0.02 |
30 yo (n = 253) | 8.6(4.4) | 30 yo (n = 399) | 8.2(0.2) | |||
40 yo (n = 222) | 9.1(4.8) | 40 yo (n = 383) | 8.3(0.2) | |||
50 yo (n = 190) | 8.9(4.8) | 50 yo (n = 306) | 7.5(0.2) | |||
Fish | 20 yo (n = 303) | 3.3(3.0) | <0.001 | 20 yo (n = 1091) | 3.0(0.1) | <0.001 |
30 yo (n = 253) | 3.7(2.9) | 30 yo (n = 399) | 3.4(0.1) *** | |||
40 yo (n = 221) | 3.7(2.9) * | 40 yo (n = 383) | 3.6(0.1) *** | |||
50 yo (n = 189) | 4.7(3.3) *** | 50 yo (n = 306) | 4.0(0.1) *** | |||
Egg | 20 yo (n = 303) | 4.3(2.8) | 0.4 | 20 yo (n = 1091) | 4.1(0.1) | 0.9 |
30 yo (n = 253) | 4.1(2.8) | 30 yo (n = 399) | 4.2(0.1) | |||
40 yo (n = 221) | 4.3(3.7) | 40 yo (n = 383) | 4.3(0.1) | |||
50 yo (n = 189) | 4.2(2.9) | 50 yo (n = 306) | 4.2(0.1) | |||
Soybean | 20 yo (n = 303) | 4.8(4.2) | <0.001 | 20 yo (n = 1091) | 5.2(0.1) | <0.001 |
30 yo (n = 253) | 5.4(4.3) | 30 yo (n = 399) | 6.0(0.2) ** | |||
40 yo (n = 221) | 6.0(4.4) ** | 40 yo (n = 383) | 6.8(0.2) *** | |||
50 yo (n = 189) | 5.9(4.1) ** | 50 yo (n = 306) | 7.3(0.3) *** | |||
Dairy product | 20 yo (n = 303) | 2.5(2.4) | <0.001 | 20 yo (n = 1091) | 2.9(0.1) | <0.001 |
30 yo (n = 253) | 2.7(3.1) | 30 yo (n = 399) | 3.4(0.1) ** | |||
40 yo (n = 221) | 3.2(2.9) * | 40 yo (n = 383) | 3.5(0.1) *** | |||
50 yo (n = 189) | 3.4(2.8) ** | 50 yo (n = 306) | 4.0(0.2) *** | |||
Seaweed | 20 yo (n = 303) | 1.4(1.5) | <0.001 | 20 yo (n = 1091) | 1.6(0.06) | <0.001 |
30 yo (n = 253) | 1.9(2.5) * | 30 yo (n = 399) | 1.9(0.09) ** | |||
40 yo (n = 221) | 2.2(2.5) *** | 40 yo (n = 383) | 2.5(0.1) *** | |||
50 yo (n = 189) | 2.6(2.0) *** | 50 yo (n = 306) | 2.6(0.1) *** | |||
Vegetable | 20 yo (n = 303) | 8.0(4.4) | <0.001 | 20 yo (n = 1091) | 8.8(0.1) | <0.001 |
30 yo (n = 253) | 8.6(4.6) * | 30 yo (n = 399) | 9.3(0.2) | |||
40 yo (n = 221) | 9.4(4.8) *** | 40 yo (n = 383) | 9.4(0.2) | |||
50 yo (n = 189) | 10.1(5.2) *** | 50 yo (n = 306) | 10.7(0.3) *** | |||
Fruit | 20 yo (n = 303) | 1.9(2.2) | <0.001 | 20 yo (n = 1091) | 2.6(0.07) | <0.001 |
30 yo(n = 253) | 2.6(3.0) ** | 30 yo (n = 399) | 3.4(0.1) *** | |||
40 yo(n = 221) | 2.7(2.4) *** | 40 yo (n = 383) | 3.4(0.1) *** | |||
50 yo(n = 189) | 3.9(2.9) *** | 50 yo (n = 306) | 3.9(0.1) *** | |||
Potatoes | 20 yo (n = 303) | 1.8(1.6) | 0.022 | 20 yo (n = 1091) | 1.9(0.1) | <0.001 |
30 yo (n = 253) | 2.1(2.4) | 30 yo (n = 399) | 2.3(0.1) ** | |||
40 yo (n = 221) | 2.2(1.7)* | 40 yo (n = 383) | 2.3(0.1) *** | |||
50 yo (n = 189) | 2.1(1.6) * | 50 yo (n = 306) | 2.2(0.1) *** | |||
Oils and fats | 20 yo (n = 303) | 8.8(4.7) | <0.001 | 20 yo (n = 1091) | 8.3(0.1) | <0.001 |
30 yo (n = 253) | 9.7(5.4) | 30 yo (n = 399) | 10.6(0.3) *** | |||
40 yo (n = 221) | 11.1(5.5) *** | 40 yo (n = 383) | 11.5(0.3) *** | |||
50 yo (n = 189) | 11.7(6.1) *** | 50 yo (n = 306) | 12.8(0.3) *** |
Male | Female | |||||
---|---|---|---|---|---|---|
Foods | Age | Mean (SE) | p | Age | Mean (SE) | p |
Snacks | 20 yo (n = 303) | 8.0 (10.0) | <0.001 | 20 yo (n = 1091) | 10.5 (10.3) | <0.001 |
30 yo (n = 253) | 9.1 (16.1) | 30 yo (n = 399) | 10.9 (0.8) | |||
40 yo (n = 221) | 10.9 (10.5) ** | 40 yo (n = 383) | 13.5 (14.7) ** | |||
50 yo (n = 189) | 10.2 (9.0) ** | 50 yo (n = 306) | 14.8 (14.6) ** | |||
Coffee/Tea with sugars | 20 yo (n = 303) | 0.5 (1.4) | 0.42 | 20 yo (n = 1091) | 0.7 (1.9) | 0.15 |
30 yo (n = 253) | 1.0 (3.5) | 30 yo (n = 399) | 1.3 (3.8) | |||
40 yo (n = 221) | 1.3 (3.2) | 40 yo (n = 383) | 1.0 (2.7) | |||
50 yo (n = 189) | 0.9 (2.8) | 50 yo (n = 306) | 0.9 (3.0) | |||
Soft Drink | 20 yo (n = 303) | 2.0 (3.1) | 0.32 | 20 yo (n = 1091) | 1.0 (2.3) | 0.09 |
30 yo (n = 253) | 2.0 (3.5) | 30 yo (n = 399) | 1.1 (2.0) | |||
40 yo (n = 221) | 1.7 (2.5) | 40 yo (n = 383) | 1.0 (2.9) | |||
50 yo (n = 189) | 1.7 (2.5) | 50 yo (n = 306) | 0.8 (1.7) | |||
Alcohol | 20 yo (n = 303) | 1.3 (2.4) | <0.001 | 20 yo (n = 1091) | 0.8 (1.2) | <0.001 |
30 yo (n = 253) | 1.5 (2.0) | 30 yo (n = 399) | 1.1 (2.0) | |||
40 yo (n = 221) | 2.3 (2.6) *** | 40 yo (n = 383) | 1.6 (2.3) ** | |||
50 yo (n = 189) | 2.2 (2.5) *** | 50 yo (n = 306) | 1.9 2.6) *** |
Waist Circumference | Handgrip Strength | |||||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||
B | p | B | p | B | p | B | p | |
Meat | 0.05 (−0.04,0.13) | 0.27 | 0.09 (0.02, 0.16) | 0.01 | −0.04 (−0.18, 0.10) | 0.56 | −0.01 (−0.09, 0.07) | 0.74 |
Fish | −0.09 (−0.21, 0.04) | 0.16 | −0.11(−0.23,0.003) | 0.06 | -0.05 (−0.26, 0.17) | 0.67 | -0.07 (−0.2, 0.06) | 0.31 |
Egg | −0.004 (−0.12, 0.11) | 0.95 | 0.19 (0.07, 0.30) | 0.001 | 0.07 (−0.13, 0.27) | 0.5 | 0.12 (−0.004, 0.25) | 0.058 |
Soybeans | 0.02 (-0.07, 0.10) | 0.74 | −0.17 (−0.17, −0.03) | 0.007 | 0.08 (−0.07, 0.23) | 0.3 | −0.001 (−0.08, 0.08) | 0.98 |
Dairy products | −0.17 (−0.3, −0.04) | 0.01 | 0.05 (−0.06, 0.15) | 0.37 | 0.06 (−0.07, 0.29) | 0.61 | 0.11 (−0.004, 0.22) | 0.058 |
Seaweed | −0.03 (−0.22, 0.15) | 0.72 | 0.14 (−0.003,0.39) | 0.055 | 0.07 (−0.25, 0.38) | 0.69 | 0.23 (0.07, 0.4) | 0.005 |
Vegetables | −0.02 (−0.1, 0.1) | 0.67 | −0.02 (−0.09, 0.04) | 0.49 | 0.004 (−0.14, 0.15) | 0.96 | −0.05 (−0.13, 0.02) | 0.17 |
Fruits | 0.1 (−0.1, 0.2) | 0.52 | −0.03 (−0.15, 0.09) | 0.67 | 0.21 (−0.5, 0.46) | 0.11 | −0.085 (−0.22, 0.05) | 0.21 |
Potatoes | 0.02 (−0.2, 0.3) | 0.85 | 0.13 (−0.05, 0.3) | 0.15 | −0.39 (−0.79, 0.01) | 0.054 | −0.1 (−0.3, 0.1) | 0.32 |
Oils and fats | 0.08 (0.01, 0.15) | 0.02 | 0.05 (−0.002,0.11) | 0.057 | 0.05 (−0.07, 0.17) | 0.41 | 0.03 (−0.03, 0.09) | 0.37 |
Snacks | 0.002 (−0.03, 0.04) | 0.92 | −0.01 (−0.03, 0.02) | 0.51 | −0.03 (−0.09, 0.03) | 0.33 | 0.011 (−0.01, 0.04) | 0.39 |
Coffee/tea with sugar | 0.05 (−0.08, 0.18) | 0.42 | 0.04 (−0.07, 0.14) | 0.49 | −0.13 (−0.35, 0.09) | 0.23 | 0.01 (−0.11, 0.12) | 0.89 |
Soft drinks | 0.03 (−0.1, 0.15) | 0.68 | 0.12 (−0.001, 0.23) | 0.052 | −0.05 (−0.26, 0.15) | 0.61 | 0.05 (−0.09, 0.18) | 0.5 |
Alcohol | -0.05 (−0.19, 0.09) | 0.48 | −0.05 (−0.19, 0.10) | 0.54 | 0.22 (−0.02, 0.46) | 0.07 | 0.23 (0.06, 0.39) | 0.007 |
Age | 0.09 (0.05, 0.12) | <0.001 | 0.24 (0.21, 0.26) | <0.001 | −0.1 (−0.15, −0.04) | <0.001 | 0.01 (−0.02, 0.04) | 0.48 |
BMI | 2.1 (2.0, 2.2) | <0.001 | 1.66 (1.58, 1.75) | <0.001 | 0.7 (0.5, 0.8) | <0.001 | 0.14 (0.05, 0.23) | 0.003 |
Hours of sleep | 0.3 (−0.1, 0.6) | 0.13 | 0.29 (0.03, 0.54) | 0.03 | −0.2 (−0.8, 0.4) | 0.5 | −0.2 (−0.5, 0.1) | 0.27 |
HbA1c | eGFR | |||||||
---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | |||||
B | p | B | p | B | p | B | p | |
Meat | 0.007 (0.001, 0.013) | 0.03 | 0.003 (0, 0.007) | 0.09 | −0.3 (−0.5, −0.1) | 0.01 | −0.09 (−0.25, 0.08) | 0.32 |
Fish | 0.004 (−0.005, 0.013) | 0.35 | −0.001 (−0.006, 0.005) | 0.83 | −0.01 (−0.3, 0.3) | 0.97 | 0.4 (0.1, 0.7) | 0.005 |
Egg | −0.007 (−0.016, 0.001) | 0.097 | 0 (−0.005, 0.006) | 0.87 | 0.2 (−0.1, 0.5) | 0.15 | 0.1 (−0.1, 0.4) | 0.31 |
Soybeans | −0.006 (−0.012, 0.001) | 0.08 | 0.001 (−0.003, 0.004) | 0.76 | 0.1 (−0.1, 0.3) | 0.29 | −0.08 (−0.25, 0.09) | 0.37 |
Dairy products | 0.007 (−0.003, 0.016) | 0.18 | 0.003 (−0.002, 0.008) | 0.21 | 0.2 (−0.1, 0.6) | 0.15 | −0.3 (−0.5, −0.02) | 0.03 |
Seaweed | −0.005 (−0.019, 0.009) | 0.49 | −0.005 (−0.012, 0.002) | 0.19 | 0.8 (0.3, 1.2) | 0.001 | −0.07 (−0.4, 0.3) | 0.69 |
Vegetables | 0.004 (−0.002, 0.01) | 0.19 | −0.001 (−0.005, 0.002) | 0.45 | −0.1 (−0.3, 0.2) | 0.63 | −0.01 (−0.17, 0.15) | 0.9 |
Fruits | −0.004 (−0.015, 0.007) | 0.47 | 0.004 (−0.002, 0.010) | 0.22 | −0.04 (−0.4, 0.3) | 0.82 | −0.05 (−0.3, 0.2) | 0.73 |
Potatoes | 0.014 (−0.003, 0.031) | 0.11 | 0.005 (−0.004, 0.014) | 0.26 | −0.9 (−1.4, −0.3) | 0.004 | 0.1 (−0.3, 0.5) | 0.64 |
Oils and fats | −0.002 (−0.008, 0.003) | 0.34 | 0 (−0.003, 0.014) | 0.85 | −0.02 (−0.2, 0.2) | 0.84 | −0.02 (−0.15, 0.12) | 0.82 |
Snacks | −0.001 (−0.003, 0.002) | 0.48 | 0.001 (−0.001, 0.002) | 0.3 | −0.06 (−0.15, 0.02) | 0.15 | 0.002 (−0.05, 0.06) | 0.94 |
Coffee/tea with sugar | −0.001 (−0.011, 0.008) | 0.82 | −0.002 (−0.007, 0.003) | 0.47 | −0.1 (−0.5, 0.2) | 0.37 | −0.16 (−0.4, 0.08) | 0.2 |
Soft drinks | 0.005 (−0.004, 0.014) | 0.27 | 0.002 (−0.004, 0.008) | 0.51 | 0.3 (−0.1, 0.5) | 0.14 | 0.1 (−0.2, 0.4) | 0.58 |
Alcohol | −0.01 (−0.02, 0.002) | 0.11 | −0.018 (−0.025, −0.01) | <0.001 | 0.2 (−0.2, 0.5) | 0.29 | −0.04 (−0.39, 0.32) | 0.84 |
Age | 0.011 (0.009, 0.014) | <0.001 | 0.01 (0.009, 0.012) | <0.001 | −0.8 (−0.9, −0.7) | <0.001 | −0.83 (−0.89, −0.76) | <0.001 |
BMI | 0.031 (0.024, 0.038) | <0.001 | 0.02 (0.016, 0.024) | <0.001 | −0.1 (−0.4, 0.1) | 0.3 | −0.1 (−0.3, 0.1) | 0.33 |
Hours of sleep | −0.04 (−0.064, −0.016) | 0.001 | −0.03 (−0.04, −0.01) | <0.001 | −0.4 (−1.2, 0.4) | 0.35 | 0.3 (−0.3, 0.9) | 0.32 |
Uric Acid | ||||||||
Male | Female | |||||||
B | p | B | p | |||||
Meat | 0.013 (−0.005, 0.03) | 0.14 | 0.003 (−0.006, 0.013) | 0.48 | ||||
Fish | −0.01 (−0.04, 0.02) | 0.49 | −0.002 (−0.018, 0.014) | 0.82 | ||||
Egg | −0.004 (−0.03, 0.02) | 0.77 | −0.012 (−0.027, 0.003) | 0.12 | ||||
Soybeans | 0.01 (−0.01, 0.03) | 0.4 | 0.013 (0.003, 0.023) | 0.009 | ||||
Dairy products | −0.01 (−0.04, 0.02) | 0.71 | −0.01 (−0.03, 0) | 0.048 | ||||
Seaweed | −0.04 (−0.08, 0.01) | 0.09 | 0.01 (−0.01, 0.03) | 0.41 | ||||
Vegetables | 0.01 (−0.01, 0.03) | 0.43 | 0.005 (−0.004, 0.015) | 0.25 | ||||
Fruits | −0.03 (−0.06, 0.01) | 0.14 | −0.012 (−0.028, 0.004) | 0.15 | ||||
Potatoes | 0.03 (−0.02, 0.08) | 0.29 | 0.023 (−0.001, 0.047) | 0.07 | ||||
Oils and fats | −0.002 (−0.02, 0.01) | 0.8 | −0.01 (−0.02, −0.002) | 0.01 | ||||
Snacks | 0 (−0.008, 0.007) | 0.92 | −0.002 (−0.005, 0.001) | 0.17 | ||||
Coffee/tea with sugar | 0.02 (−0.01, 0.05) | 0.26 | −0.002 (−0.016, 0.012) | 0.79 | ||||
Soft drinks | 0.01 (−0.02, 0.04) | 0.37 | 0.005 (−0.011, 0.021) | 0.51 | ||||
Alcohol | 0.06 (0.03, 0.09) | <0.001 | 0.06 (0.04, 0.08) | <0.001 | ||||
Age | −0.002 (−0.009, 0.005) | 0.6 | 0.002 (−0.002, 0.006) | 0.31 | ||||
BMI | 0.11 (0.09, 0.13) | <0.001 | 0.084 (0.073, 0.096) | <0.001 | ||||
Hours of sleep | −0.02 (−0.09, 0.05) | 0.58 | −0.01 (−0.05,0.02) | 0.42 |
TG | HDLc | non-HDLc | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Male | Female | Male | Female | Male | Female | |||||||
B | p | B | p | B | p | B | p | B | p | B | p | |
Meat | 0.3 (−1.1, 1.7) | 0.7 | 0.6 (0.04, 1.2) | 0.04 | 0.2 (−0.01, 0.4) | 0.06 | −0.1 (−0.2, 0.1) | 0.35 | −0.1 (−0.6, 0.4) | 0.65 | −0.4 (−0.6, −0.1) | 0.02 |
Fish | −1.3 (−3.5, 0.9) | 0.25 | 0.4 (−0.5,1.4) | 0.38 | −0.1 (−0.4, 0.1) | 0.33 | 0.1 (−0.2, 0.3) | 0.63 | −0.2 (−1.0, 0.6) | 0.6 | 0.1 (−0.4, 0.5) | 0.84 |
Egg | −0.3 (−2.3, 1.8) | 0.8 | 0.8 (−0.1,1.8) | 0.07 | 0.2 (−0.1,0.5) | 0.12 | 0.3 (0.1, 0.5) | 0.02 | −0.2 (−0.9, 0.5) | 0.62 | 0.6 (0.1, 1.0) | 0.02 |
Soybeans | −0.7 (−2.3, 0.8) | 0.36 | −0.4 (−1.0, 0.2) | 0.2 | 0.2 (−0.04, 0.4) | 0.12 | 0.12 (−0.03, 0.26) | 0.12 | −0.4 (−1.0, 0.1) | 0.11 | −0.3 (−0.6, −0.03) | 0.03 |
Dairy products | 2.2 (−0.1, 4.5) | 0.07 | −0.5 (−1.3, 0.3) | 0.24 | 0.004 (−0.3, 0.3) | 0.98 | −0.01 (−0.21, 0.2) | 0.94 | 0.9 (0.1, 1.7) | 0.03 | 0.06 (−0.4, 0.5) | 0.78 |
Seaweed | 0.2 (−3.0, 3.4) | 0.9 | 0.3 (−0.9, 1.5) | 0.67 | -0.1 (−0.5,0.3) | 0.65 | −0.2 (−0.5, 0.1) | 0.16 | 0.2 (−0.9, 1.3) | 0.76 | −0.5 (−1.1, 0.1) | 0.13 |
Vegetables | 0.3 (−1.2, 1.7) | 0.73 | 0.1 (−0.5,0.6) | 0.8 | -0.2 (−0.4, 0) | 0.09 | 0.1 (−0.04, 0.2) | 0.16 | 0.3 (−0.3, 0.8) | 0.34 | 0.1 (−0.2, 0.4) | 0.58 |
Fruits | −2.2 (−4.8, 0.4) | 0.1 | 0.6 (−0.4, 1.5) | 0.27 | −0.1 (−0.4, 0.3) | 0.7 | −0.2 (−0.5, 0.03) | 0.09 | −0.4 (−1.3, 0.5) | 0.36 | 0.1 (−0.4, 0.7) | 0.57 |
Potatoes | 5.0 (0.9, 9.0) | 0.02 | 1.8 (0.3, 3.2) | 0.02 | −0.1 (−0.6, 0.4) | 0.71 | −0.4 (−0.8, −0.04) | 0.03 | 0.3 (−1.1, 1.7) | 0.7 | 0.3 (−0.4, 1.0) | 0.42 |
Oils and fats | −0.8 (−2, 0.4) | 0.2 | −0.7 (−1.2, −0.3) | 0.002 | −0.02 (−0.2, 0.1) | 0.8 | 0.1 (−0.1, 0.2) | 0.25 | −0.3 (−0.7, 0.1) | 0.11 | 0.01 (−0.2, 0.2) | 0.95 |
Snacks | −0.2 (−0.8, 0.5) | 0.63 | −0.02 (−0.2, 0.2) | 0.87 | 0.01 (−0.1, 0.1) | 0.78 | 0.06 (0.01, 0.1) | 0.02 | 0.1 (−0.1, 0.3) | 0.27 | 0.06 (−0.03, 0.16) | 0.21 |
Coffee/tea with sugar | 2.2 (−0.04, 4.4) | 0.054 | 0.3 (−0.5, 1.2) | 0.43 | −0.1 (−0.4, 0.1) | 0.32 | −0.2 (−0.4, 0.1) | 0.17 | 0.4 (−0.4, 1.2) | 0.32 | −0.1 (−0.5, 0.4) | 0.72 |
Soft drinks | 1.3 (−0.8, 3.4) | 0.23 | 0.4 (−0.6, 1.4) | 0.41 | −0.2 (−0.4, 0.1) | 0.24 | −0.04 (−0.13, 0.2) | 0.78 | −0.5 (−1.2, 0.3) | 0.21 | −0.4 (−0.9, 0.1) | 0.09 |
Alcohol | 3 (0.5, 5.4) | 0.02 | −0.9 (−2.1, 0.3) | 0.15 | 1.0 (0.7, 1.3) | <0.001 | 1.3 (1.0, 1.6) | <0.001 | −0.7 (−1.5, 0.2) | 0.12 | −1.3 (−1.9, −0.7) | <0.001 |
Age | 1.1 (0.5, 1.7) | <0.001 | 1.2 (1.0, 1.4) | <0.001 | 0.09 (0.02, 0.17) | 0.014 | 0.12 (0.06, 0.17) | <0.001 | 0.8 (0.6, 1.0) | <0.001 | 1 (0.9) | <0.001 |
BMI | 7.6 (5.9, 9.4) | <0.001 | 4.4 (3.7, 5.0) | <0.001 | −1.3 (−1.5, −1.1) | <0.001 | −1.2 (−1.3, −1.0) | <0.001 | 2.8 (2.3, 3.4) | <0.001 | 2.1 (1.7, 2.4) | <0.001 |
Hours of sleep | 1.8 (−3.9, 7.5) | 0.53 | 0.4 (−1.7, 2.5) | 0.7 | −0.1 (−0.8, 0.7) | 0.88 | −0.2 (-0.7, 0.3) | 0.4 | 2.1 (0.2, 4.0) | 0.04 | 0.3 (−0.7, 1.4) | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iizuka, K.; Yanagi, K.; Deguchi, K.; Ushiroda, C.; Yamamoto-Wada, R.; Kobae, K.; Yamada, Y.; Naruse, H. Sex and Age Differences in the Effects of Food Frequency on Metabolic Parameters in Japanese Adults. Nutrients 2024, 16, 2931. https://doi.org/10.3390/nu16172931
Iizuka K, Yanagi K, Deguchi K, Ushiroda C, Yamamoto-Wada R, Kobae K, Yamada Y, Naruse H. Sex and Age Differences in the Effects of Food Frequency on Metabolic Parameters in Japanese Adults. Nutrients. 2024; 16(17):2931. https://doi.org/10.3390/nu16172931
Chicago/Turabian StyleIizuka, Katsumi, Kotone Yanagi, Kanako Deguchi, Chihiro Ushiroda, Risako Yamamoto-Wada, Kazuko Kobae, Yoshiko Yamada, and Hiroyuki Naruse. 2024. "Sex and Age Differences in the Effects of Food Frequency on Metabolic Parameters in Japanese Adults" Nutrients 16, no. 17: 2931. https://doi.org/10.3390/nu16172931
APA StyleIizuka, K., Yanagi, K., Deguchi, K., Ushiroda, C., Yamamoto-Wada, R., Kobae, K., Yamada, Y., & Naruse, H. (2024). Sex and Age Differences in the Effects of Food Frequency on Metabolic Parameters in Japanese Adults. Nutrients, 16(17), 2931. https://doi.org/10.3390/nu16172931