Systems Approach to Investigate the Role of Fruit and Vegetable Types on Vascular Function in Pre-Hypertensive Participants: Protocol and Baseline Characteristics of a Randomised Crossover Dietary Intervention
Abstract
:1. Introduction
2. Materials and Methods
2.1. Objectives
2.2. Trial Design and Ethical Approvals
2.3. Participant Eligibility
2.4. Participant Recruitment
2.5. Dietary Intervention
2.6. Dietary Adherence
2.7. Intervention Randomisation and Allocation
2.8. Study Measures
2.8.1. Vascular Function Measurements
2.8.2. Anthropometry and Body Composition Assessment
2.8.3. Cognitive Function Test
2.8.4. Questionnaire Data
2.8.5. Assessment of Habitual Dietary Intake
2.8.6. Sample Collection
2.9. Laboratory Analysis
2.10. Monitoring
2.11. Sample Size Calculation
2.12. Statistical Analyses
3. Results
3.1. Recruitment Response Rates
3.2. Baseline Characteristics of Enrolled Participants
4. Discussion
Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Global Burden of Disease Diet Collaborators. Health effects of dietary risks in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef]
- Aune, D.; Giovannucci, E.; Boffetta, P.; Fadnes, L.T.; Keum, N.; Norat, T.; Greenwood, D.C.; Riboli, E.; Vatten, L.J.; Tonstad, S. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose-response meta-analysis of prospective studies. Int. J. Epidemiol. 2017, 46, 1029–1056. [Google Scholar] [CrossRef]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- John, J.H.; Ziebland, S.; Yudkin, P.; Roe, L.S.; Neil, H.A. Effects of fruit and vegetable consumption on plasma antioxidant concentrations and blood pressure: A randomised controlled trial. Lancet 2002, 359, 1969–1974. [Google Scholar] [CrossRef]
- Madsen, H.; Sen, A.; Aune, D. Fruit and vegetable consumption and the risk of hypertension: A systematic review and meta-analysis of prospective studies. Eur. J. Nutr. 2023, 62, 1941–1955. [Google Scholar] [CrossRef] [PubMed]
- Al-Solaiman, Y.; Jesri, A.; Mountford, W.K.; Lackland, D.T.; Zhao, Y.; Egan, B.M. DASH lowers blood pressure in obese hypertensives beyond potassium, magnesium and fibre. J. Hum. Hypertens. 2010, 24, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Dragsted, L.O.; Krath, B.; Ravn-Haren, G.; Vogel, U.B.; Vinggaard, A.M.; Bo Jensen, P.; Loft, S.; Rasmussen, S.E.; Sandstrom, T.; Pedersen, A. Biological effects of fruit and vegetables. Proc. Nutr. Soc. 2006, 65, 61–67. [Google Scholar] [CrossRef]
- George, T.W.; Niwat, C.; Waroonphan, S.; Gordon, M.H.; Lovegrove, J.A. Effects of chronic and acute consumption of fruit- and vegetable-puree-based drinks on vasodilation, risk factors for CVD and the response as a result of the eNOS G298T polymorphism. Proc. Nutr. Soc. 2009, 68, 148–161. [Google Scholar] [CrossRef]
- George, T.W.; Paterson, E.; Waroonphan, S.; Gordon, M.H.; Lovegrove, J.A. Effects of chronic consumption of fruit and vegetable puree-based drinks on vasodilation, plasma oxidative stability and antioxidant status. J. Hum. Nutr. Diet. 2012, 25, 477–487. [Google Scholar] [CrossRef]
- McCall, D.O.; McGartland, C.P.; McKinley, M.C.; Patterson, C.C.; Sharpe, P.; McCance, D.R.; Young, I.S.; Woodside, J.V. Dietary intake of fruits and vegetables improves microvascular function in hypertensive subjects in a dose-dependent manner. Circulation 2009, 119, 2153–2160. [Google Scholar] [CrossRef]
- McEvoy, C.T.; Wallace, I.R.; Hamill, L.L.; Hunter, S.J.; Neville, C.E.; Patterson, C.C.; Woodside, J.V.; Young, I.S.; McKinley, M.C. Increasing Fruit and Vegetable Intake Has No Dose-Response Effect on Conventional Cardiovascular Risk Factors in Overweight Adults at High Risk of Developing Cardiovascular Disease. J. Nutr. 2015, 145, 1464–1471. [Google Scholar] [CrossRef]
- Nadeem, N.; Woodside, J.V.; Neville, C.E.; McCall, D.O.; McCance, D.; Edgar, D.; Young, I.S.; McEneny, J. Serum amyloid A-related inflammation is lowered by increased fruit and vegetable intake, while high-sensitive C-reactive protein, IL-6 and E-selectin remain unresponsive. Br. J. Nutr. 2014, 112, 1129–1136. [Google Scholar] [CrossRef] [PubMed]
- Wallace, I.R.; McEvoy, C.T.; Hunter, S.J.; Hamill, L.L.; Ennis, C.N.; Bell, P.M.; Patterson, C.C.; Woodside, J.V.; Young, I.S.; McKinley, M.C. Dose-response effect of fruit and vegetables on insulin resistance in people at high risk of cardiovascular disease: A randomized controlled trial. Diabetes Care 2013, 36, 3888–3896. [Google Scholar] [CrossRef] [PubMed]
- Morand, C.; Dubray, C.; Milenkovic, D.; Lioger, D.; Martin, J.F.; Scalbert, A.; Mazur, A. Hesperidin contributes to the vascular protective effects of orange juice: A randomized crossover study in healthy volunteers. Am. J. Clin. Nutr. 2011, 93, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Rizza, S.; Muniyappa, R.; Iantorno, M.; Kim, J.A.; Chen, H.; Pullikotil, P.; Senese, N.; Tesauro, M.; Lauro, D.; Cardillo, C.; et al. Citrus polyphenol hesperidin stimulates production of nitric oxide in endothelial cells while improving endothelial function and reducing inflammatory markers in patients with metabolic syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E782–E792. [Google Scholar] [CrossRef] [PubMed]
- Schar, M.Y.; Curtis, P.J.; Hazim, S.; Ostertag, L.M.; Kay, C.D.; Potter, J.F.; Cassidy, A. Orange juice-derived flavanone and phenolic metabolites do not acutely affect cardiovascular risk biomarkers: A randomized, placebo-controlled, crossover trial in men at moderate risk of cardiovascular disease. Am. J. Clin. Nutr. 2015, 101, 931–938. [Google Scholar] [CrossRef]
- Cornelis, M.C.; El-Sohemy, A.; Campos, H. GSTT1 genotype modifies the association between cruciferous vegetable intake and the risk of myocardial infarction. Am. J. Clin. Nutr. 2007, 86, 752–758. [Google Scholar] [CrossRef]
- Armah, C.N.; Traka, M.H.; Dainty, J.R.; Defernez, M.; Janssens, A.; Leung, W.; Doleman, J.F.; Potter, J.F.; Mithen, R.F. A diet rich in high-glucoraphanin broccoli interacts with genotype to reduce discordance in plasma metabolite profiles by modulating mitochondrial function. Am. J. Clin. Nutr. 2013, 98, 712–722. [Google Scholar] [CrossRef]
- Amoutzopoulos, B.; Page, P.; Roberts, C.; Roe, M.; Cade, J.; Steer, T.; Baker, R.; Hawes, T.; Galloway, C.; Yu, D.; et al. Portion size estimation in dietary assessment: A systematic review of existing tools, their strengths and limitations. Nutr. Rev. 2020, 78, 885–900. [Google Scholar] [CrossRef]
- Freedman, L.S.; Tasevska, N.; Kipnis, V.; Schatzkin, A.; Mares, J.; Tinker, L.; Potischman, N. Gains in Statistical Power From Using a Dietary Biomarker in Combination With Self-reported Intake to Strengthen the Analysis of a Diet-Disease Association: An Example From CAREDS. Am. J. Epidemiol. 2010, 172, 836–842. [Google Scholar] [CrossRef]
- Woodside, J.V.; Draper, J.; Lloyd, A.; McKinley, M.C. Use of biomarkers to assess fruit and vegetable intake. Proc. Nutr. Soc. 2017, 76, 308–315. [Google Scholar] [CrossRef]
- Heinzmann, S.S.; Brown, I.J.; Chan, Q.; Bictash, M.; Dumas, M.E.; Kochhar, S.; Stamler, J.; Holmes, E.; Elliott, P.; Nicholson, J.K. Metabolic profiling strategy for discovery of nutritional biomarkers: Proline betaine as a marker of citrus consumption. Am. J. Clin. Nutr. 2010, 92, 436–443. [Google Scholar] [CrossRef]
- Edmands, W.M.; Beckonert, O.P.; Stella, C.; Campbell, A.; Lake, B.G.; Lindon, J.C.; Holmes, E.; Gooderham, N.J. Identification of human urinary biomarkers of cruciferous vegetable consumption by metabonomic profiling. J. Proteome Res. 2011, 10, 4513–4521. [Google Scholar] [CrossRef] [PubMed]
- Elliott, P.; Vergnaud, A.C.; Singh, D.; Neasham, D.; Spear, J.; Heard, A. The Airwave Health Monitoring Study of police officers and staff in Great Britain: Rationale, design and methods. Env. Environ. Res. 2014, 134, 280–285. [Google Scholar] [CrossRef]
- Public Health England. In National Diet and Nutrition Survey, Results from Years 1,2,3, and 4 (Combined) Rolling Programme for 2008 and 2009 to 2011 and 2012; Public Health England: London, UK, 2014.
- Schofield, W.N. Predicting basal metabolic rate, new standards and review of previous work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. S1), 5–41. [Google Scholar]
- Rose, P.; Whiteman, M.; Moore, P.K.; Zhu, Y.Z. Bioactive S-alk(en)yl cysteine sulfoxide metabolites in the genus Allium: The chemistry of potential therapeutic agents. Nat. Prod. Rep. 2005, 22, 351–368. [Google Scholar] [CrossRef] [PubMed]
- Rosenberger, W.F.; Sverdlov, O. Handling Covariates in the Design of Clinical Trials. Stat. Sci. 2008, 3, 404–419. [Google Scholar] [CrossRef]
- Dalile, B.; Kim, C.; Challinor, A.; Geurts, L.; Gibney, E.R.; Galdos, M.V.; La Fata, G.; Laye, S.; Mathers, J.C.; Vauzour, D.; et al. The EAT-Lancet reference diet and cognitive function across the life course. Lancet Planet. Health 2022, 6, e749–e759. [Google Scholar] [CrossRef]
- Mottaghi, T.; Amirabdollahian, F.; Haghighatdoost, F. Fruit and vegetable intake and cognitive impairment: A systematic review and meta-analysis of observational studies. Eur. J. Clin. Nutr. 2018, 72, 1336–1344. [Google Scholar] [CrossRef]
- Group, I. Guidelines for Data Processing and Analysis of the International Physical Activity Questionnaire (IPAQ)—Short and Long Forms. 2005. Available online: http://www.ipaq.ki.se/ (accessed on 21 July 2022).
- Buysse, D.J.; Reynolds, C.F., 3rd; Monk, T.H.; Berman, S.R.; Kupfer, D.J. The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Res. 1989, 28, 193–213. [Google Scholar] [CrossRef] [PubMed]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, power and validity of visual analogue scales in assessment of appetite sensations in single test meal studies. Int. J. Obes. Relat. Metab. Disord. 2000, 24, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Richardson, J.; Iezzi, A.; Khan, M.A.; Maxwell, A. Validity and reliability of the Assessment of Quality of Life (AQoL)-8D multi-attribute utility instrument. Patient 2014, 7, 85–96. [Google Scholar] [CrossRef]
- Tennant, R.; Hiller, L.; Fishwick, R.; Platt, S.; Joseph, S.; Weich, S.; Parkinson, J.; Secker, J.; Stewart-Brown, S. The Warwick-Edinburgh Mental Well-being Scale (WEMWBS): Development and UK validation. Health Qual. Life Outcomes 2007, 5, 63. [Google Scholar] [CrossRef] [PubMed]
- Watson, D.; Clark, L.A.; Tellegen, A. Development and validation of brief measures of positive and negative affect: The PANAS scales. J. Personal. Soc. Psychol. 1988, 54, 1063–1070. [Google Scholar] [CrossRef]
- Fitt, E.; Cole, D.; Ziauddeen, N.; Pell, D.; Stickley, E.; Harvey, A.; Stephen, A.M. DINO (Diet In Nutrients Out)—An integrated dietary assessment system. Public Health Nutr. 2015, 18, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, A.J.; Wilson, T.; Willis, N.D.; Lyons, L.; Phillips, H.; Janssen, H.G.; Stiegler, M.; Xie, L.; Tailliart, K.; Beckmann, M.; et al. Developing community-based urine sampling methods to deploy biomarker technology for the assessment of dietary exposure. Public Health Nutr. 2020, 23, 3081–3092. [Google Scholar] [CrossRef]
- Gratton, J.; Phetcharaburanin, J.; Mullish, B.H.; Williams, H.R.; Thursz, M.; Nicholson, J.K.; Holmes, E.; Marchesi, J.R.; Li, J.V. Optimized Sample Handling Strategy for Metabolic Profiling of Human Feces. Anal. Chem. 2016, 88, 4661–4668. [Google Scholar] [CrossRef]
- Roux, A.; Thevenot, E.A.; Seguin, F.; Olivier, M.F.; Junot, C. Impact of collection conditions on the metabolite content of human urine samples as analyzed by liquid chromatography coupled to mass spectrometry and nuclear magnetic resonance spectroscopy. Metabolomics 2015, 11, 1095–1105. [Google Scholar] [CrossRef]
- Whitehead, A.L.; Julious, S.A.; Cooper, C.L.; Campbell, M.J. Estimating the sample size for a pilot randomised trial to minimise the overall trial sample size for the external pilot and main trial for a continuous outcome variable. Stat. Methods Med. Res. 2016, 25, 1057–1073. [Google Scholar] [CrossRef]
- Dwan, K.; Li, T.; Altman, D.G.; Elbourne, D. CONSORT 2010 statement: Extension to randomised crossover trials. BMJ 2019, 366, l4378. [Google Scholar] [CrossRef]
- Fleiss, J.L.; Wallenstein, S.; Rosenfeld, R. Adjusting for baseline measurements in the two-period crossover study: A cautionary note. Control. Clin. Trials 1985, 6, 192–197. [Google Scholar] [CrossRef] [PubMed]
- Mancia, G.; Kreutz, R.; Brunstrom, M.; Burnier, M.; Grassi, G.; Januszewicz, A.; Muiesan, M.L.; Tsioufis, K.; Agabiti-Rosei, E.; Algharably, E.A.E.; et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the International Society of Hypertension (ISH) and the European Renal Association (ERA). J Hypertens. 2023, 41, 1874–2071. [Google Scholar] [CrossRef] [PubMed]
- Ramsey, T.M.; Snyder, J.K.; Lovato, L.C.; Roumie, C.L.; Glasser, S.P.; Cosgrove, N.M.; Olney, C.M.; Tang, R.H.; Johnson, K.C.; Still, C.H.; et al. Recruitment strategies and challenges in a large intervention trial: Systolic Blood Pressure Intervention Trial. Clin. Trials 2016, 13, 319–330. [Google Scholar] [CrossRef]
- McGrath, A.J.; Hamill, L.L.; Cardwell, C.R.; Draffin, C.R.; Neville, C.E.; Appleton, K.M.; McEneny, J.; McKinley, M.C.; Young, I.S.; Woodside, J.V. Combining vitamin C and carotenoid biomarkers better predicts fruit and vegetable intake than individual biomarkers in dietary intervention studies. Eur. J. Nutr. 2015, 55, 1377–1388. [Google Scholar] [CrossRef] [PubMed]
- van Breda, S.G.J.; de Kok, T. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol. Nutr. Food Res. 2018, 62, 1700597. [Google Scholar] [CrossRef]
- Stergiou, G.S.; Baibas, N.M.; Gantzarou, A.P.; Skeva, I.I.; Kalkana, C.B.; Roussias, L.G.; Mountokalakis, T.D. Reproducibility of home, ambulatory, and clinic blood pressure: Implications for the design of trials for the assessment of antihypertensive drug efficacy. Am. J. Hypertens. 2002, 15, 101–104. [Google Scholar] [CrossRef]
Positive Responses, n (%) | Response Rate 1, % | Screening Visits, n | Screening Visit Completion Rate 2, % | Eligible Participants, n | Enrolled Participants, n | Enrolment Rate 2, % | |
---|---|---|---|---|---|---|---|
Re-contact pre-selected participants cohort studies | 244 (73.9) | 14.1 | 95 | 38.9 | 53 | 36 | 14.8 |
Airwave study | 125 (37.9) | 9.2 | 33 | 26.4 | 25 | 19 | 15.2 |
Fenland study | 119 (36.1) | 32.2 | 62 | 52.1 | 28 | 17 | 14.3 |
Advertisement | 86 (26.1) | NA | 14 | 16.3 | 5 | 3 | 3.5 |
CRF volunteer database | 68 (20.6) | 10 | 14.7 | 4 | 2 | 2.9 | |
Poster/advertisement | 18 (5.5) | 4 | 22.2 | 1 | 1 | 5.6 | |
Total | 330 | 109 | 33.0 | 58 | 39 | 11.8 |
Total (n = 39) | Males (n = 26) | Females (n = 13) | |
---|---|---|---|
Age, y | 54.4 ± 6.1 | 53.0 ± 5.3 | 57.2 ± 7.0 |
Age range, y | 41–65 | 42–61 | 41–65 |
Male, n (%) | 26 (67) | 26 (100) | 13 (0) |
Ethnicity, n (%) | |||
White | 34 (87) | 22 (85) | 12 (92) |
Black Caribbean | 3 (8) | 3 (11) | 0 (0) |
Other | 2 (5) | 1 (4) | 1 (8) |
Blood pressure, mmHg | |||
Systolic | 135.1 ± 6.8 | 135.9 ± 7.1 | 133.6 ± 6.2 |
Diastolic | 81.0 ± 6.8 | 80.9 ± 7.0 | 81.0 ± 6.8 |
Heart rate, bpm | 69.6 ± 12.6 | 67.7 ± 12.3 | 73.2 ± 13.0 |
Blood pressure category 2, n (%) | |||
Normal | 11 (28) | 7 (27) | 4 (31) |
High-normal | 16 (41) | 10 (38) | 6 (46) |
Stage 1 hypertension | 12 (31) | 9 (34) | 3 (23) |
Anthropometrics | |||
BMI 3, kg/m−2 | 27.9 ± 3.2 | 28.0 ± 3.3 | 27.7 ± 3.2 |
Waist circumference, cm | 96.9 ± 9.5 | 99.7 ± 9.2 | 91.3 ± 7.5 |
Hip circumference, cm | 107.0 ± 6.0 | 106.6 ± 6.0 | 107.6 ± 6.3 |
Waist-to-hip ratio | 0.91 ± 0.07 | 0.93 ± 0.06 | 0.85 ± 0.05 |
Body fat, % | 27.4 ± 6.8 | 24.3 ± 5.2 | 33.6 ± 5.3 |
Basic Metabolic Rate, kcal | 1803 ± 304 | 1965 ± 212 | 1481 ± 172 |
BMI categories 4, n (%) | |||
Healthy weight | 7 (18) | 5 (19) | 2 (15) |
Overweight | 21 (54) | 13 (50) | 8 (62) |
Obese | 11 (28) | 8 (31) | 3 (23) |
Central obesity 5, n (%) | 19 (49) | 9 (35) | 10 (77) |
Physical activity, median (IQR) | |||
Total activity, MET-min/week 6 | 3546 (1308–7148) | 4167 (1661–7289) | 3210 (981–4320) |
Sitting time, hrs/day | 5.4 (4.4–9.7) | 5.0 (4.2–9.6) | 7.6 (5.0–10.0) |
Physical activity level 6, n (%) | |||
High | 21 (60) | 15 (63) | 6 (55) |
Moderate | 12 (34) | 8 (33) | 4 (36) |
Low | 2 (6) | 1 (4) | 1 (9) |
Educational level, n (%) | |||
College or university degree | 16 (41) | 9 (35) | 7 (54) |
O levels/GCSEs | 12 (31) | 6 (23) | 0 (0) |
A levels | 6 (15) | 10 (38) | 2 (15) |
Other | 5 (13) | 1 (4) | 4 (31) |
Employment, n (%) | |||
(Self-) employed | 30 (77) | 20 (77) | 10 (77) |
Retired | 9 (23) | 6 (23) | 3 (23) |
Smoking status 7, n (%) | |||
Never smoked | 26 (67) | 17 (65) | 9 (69) |
Past smoker | 11 (28) | 8 (31) | 3 (23) |
Missing | 2 (5) | 1( 4) | 1 (8) |
Alcohol consumer, n (%) | 33 (85) | 24 (92) | 9 (69) |
Special diet, n (%) | 8 (21) | 5 (19) | 3 (23) |
Low fat | 4 (10) | 1 (4) | 3 (23) |
Diary free | 2 (5) | 2 (8) | 0 (0) |
Other | 2 (5) | 2 (8) | 0 (0) |
Total (n = 33) | Males (n = 22) | Females (n = 11) | |
---|---|---|---|
Energy, kcal | 2035 (1762–2462) | 2144 (1937–2669) | 1777 (1350–2060) |
Carbohydrates, en % | 51.0 (47.3–53.6) | 50.3 (44.8–53.6) | 52.5 (48.7–55.3) |
Mono- and disaccharides, en % | 18.7 (14.3–21.6) | 17.7 (14.3–20.4) | 21.5 (14.7–23.2) |
Fibre, g/1000 kcal | 10.9 (9.2–12.4) | 10.7 (8.8–11.7) | 11.6 (9.3–12.9) |
Alcohol, en % | 0 (0–2.8) | 0 (0–5.4) | 0 (0–2.8) |
Protein, en % | 16.4 (13.5–19.5) | 16.5 (13.8–20.0) | 14.4 (13.1–17.9) |
Fat, en % | 34.1 (29.6–38.7) | 34.3 (28.9–38.5) | 33.4 (30.2–39.9) |
Monounsaturated fat | 12.5 (11.1–13.7) | 12.9 (11.1–13.7) | 12.5 (2.8–11.8) |
Polyunsaturated fat | 5.7 (4.4–6.4) | 5.6 (4.4–6.3) | 5.8 (4.4–7.4) |
Saturated fat | 12.1 (10.7–15.2) | 12.2 (11.0–15.0) | 11.6 (10.1–16.0) |
Fruit, g/d | 116 (62–220) | 127 (60–222) | 90 (62–220) |
Vegetables, g/d | 159 (97–179) | 155 (110–179) | 159 (83–179) |
Meat, g/d | 96 (55–158) | 139 (76–167) | 55 (46–106) |
Fish and shellfish, g/d | 1 (0–42) | 13 (0–46) | 0 (0–42) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oude Griep, L.M.; Frost, G.; Holmes, E.; Wareham, N.J.; Elliott, P. Systems Approach to Investigate the Role of Fruit and Vegetable Types on Vascular Function in Pre-Hypertensive Participants: Protocol and Baseline Characteristics of a Randomised Crossover Dietary Intervention. Nutrients 2024, 16, 2923. https://doi.org/10.3390/nu16172923
Oude Griep LM, Frost G, Holmes E, Wareham NJ, Elliott P. Systems Approach to Investigate the Role of Fruit and Vegetable Types on Vascular Function in Pre-Hypertensive Participants: Protocol and Baseline Characteristics of a Randomised Crossover Dietary Intervention. Nutrients. 2024; 16(17):2923. https://doi.org/10.3390/nu16172923
Chicago/Turabian StyleOude Griep, Linda M., Gary Frost, Elaine Holmes, Nicholas J. Wareham, and Paul Elliott. 2024. "Systems Approach to Investigate the Role of Fruit and Vegetable Types on Vascular Function in Pre-Hypertensive Participants: Protocol and Baseline Characteristics of a Randomised Crossover Dietary Intervention" Nutrients 16, no. 17: 2923. https://doi.org/10.3390/nu16172923
APA StyleOude Griep, L. M., Frost, G., Holmes, E., Wareham, N. J., & Elliott, P. (2024). Systems Approach to Investigate the Role of Fruit and Vegetable Types on Vascular Function in Pre-Hypertensive Participants: Protocol and Baseline Characteristics of a Randomised Crossover Dietary Intervention. Nutrients, 16(17), 2923. https://doi.org/10.3390/nu16172923