Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants and Ethics
2.2. Study Design
2.3. Anthropometry and Body Composition
2.4. Cardiorespiratory Fitness
2.5. Vertical Jump Performance
2.6. Upper Body Strength
2.7. Muscle Endurance
2.8. Biochemical Parameters
2.9. HIFT Protocol
2.10. Supplementation
2.11. Statistical Analysis
3. Results
3.1. Anthropometry and Body Composition
3.2. Cardiorespiratory Parameters (Table 2)
Variables | SG (n = 10) | Change (%) | PG (n = 9) | Change (%) | Main Effects and Interactions (p-Value) | ||
---|---|---|---|---|---|---|---|
Time | Group | Time × Group | |||||
VO2 max (mL·kg−1·min−1) | |||||||
Before | 46.95 ± 5.24 | 42.84 ± 9.48 * | 0.073 | ||||
After | 50.29 ± 4.83 | 7.1% | 45.18 ± 9.30 * | 5.5% | <0.001 | 0.241 | 0.342 |
HRmax (beats·min−1) | |||||||
Before | 187 ± 10 | 188 ± 7 | 0.270 | ||||
After | 186 ± 6 | −0.5% | 189 ± 7 | 0.5% | 0.716 | 0.475 | 0.464 |
SJ (cm) | |||||||
Before | 28.3 ± 5.8 | 26.5 ± 7.7 * | 0.319 | ||||
After | 32.7 ± 8.1 | 15.5% | 29.5 ± 7.5 * | 11.3% | <0.001 | 0.562 | 0.506 |
CMJ (cm) | |||||||
Before | 33.8 ± 7.7 | 31.5 ± 9.5 * | 0.438 | ||||
After | 38.1 ± 9.0 | 12.7% | 34.2 ± 9.75 * | 8.6% | <0.001 | 0.577 | 0.204 |
Bench Press 1 RM (kg) | |||||||
Before | 59 ± 21 | 43 ± 23 * | 0.977 | ||||
After | 62 ± 23 | 5.1% | 48 ± 22 * | 11.6% | <0.001 | 0.264 | 0.065 |
Bench press endurance, 65% 1 RM (reps) | |||||||
Before | 21 ± 5 | 19 ± 5 * | 0.697 | ||||
After | 23 ± 2 | 9.5% | 22 ± 4 * | 15.8% | 0.024 | 0.748 | 0.911 |
Sit-ups in 1 min (reps) | |||||||
Before | 43 ± 5.2 | 37 ± 8.8 * | 0.094 | ||||
After | 49 ± 7.4 | 22.5% | 44 ± 8.1 * | 18.9% | <0.001 | 0.137 | 0.853 |
3.3. Strength and Muscle Endurance Parameters (Table 2)
3.4. Biochemical Parameters
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Feito, Y.; Heinrich, K.M.; Butcher, S.J.; Poston, W.S.C. High-Intensity Functional Training (HIFT): Definition and Research Implications for Improved Fitness. Sports 2018, 6, 76. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.; Knapp, K.; Lackie, A.; Lewry, C.; Horvey, K.; Benko, C.; Trinh, J.; Butcher, S. Multimodal high-intensity interval training increases muscle function and metabolic performance in females. Appl. Physiol. Nutr. Metab. 2015, 40, 1157–1162. [Google Scholar] [CrossRef] [PubMed]
- Posnakidis, G.; Aphamis, G.; Giannaki, C.D.; Mougios, V.; Aristotelous, P.; Samoutis, G.; Bogdanis, G.C. High-Intensity Functional Training Improves Cardiorespiratory Fitness and Neuromuscular Performance Without Inflammation or Muscle Damage. J. Strength Cond. Res. 2022, 36, 615–623. [Google Scholar] [CrossRef] [PubMed]
- Newsome, A.M.; Reed, R.; Sansone, J.; Batrakoulis, A.; McAvoy, C.; Parrott, M.W. 2024 ACSM Worldwide Fitness Trends: Future Directions of the Health and Fitness Industry. ACSM’S Health Fit. J. 2024, 28, 14–26. [Google Scholar] [CrossRef]
- Wang, X.; Soh, K.G.; Samsudin, S.; Deng, N.; Liu, X.; Zhao, Y.; Akbar, S. Effects of high-intensity functional training on physical fitness and sport-specific performance among the athletes: A systematic review with meta-analysis. PLoS ONE 2023, 18, e0295531. [Google Scholar] [CrossRef]
- Neto, J.H.F.; Kennedy, M.D. The Multimodal Nature of High-Intensity Functional Training: Potential Applications to Improve Sport Performance. Sports 2019, 7, 33. [Google Scholar] [CrossRef]
- Helén, J.; Kyröläinen, H.; Ojanen, T.; Pihlainen, K.; Santtila, M.; Heikkinen, R.; Vaara, J.P. High-Intensity Functional Training Induces Superior Training Adaptations Compared with Traditional Military Physical Training. J. Strength Cond. Res. 2023, 37, 2477–2483. [Google Scholar] [CrossRef]
- Kapsis, D.P.; Tsoukos, A.; Psarraki, M.P.; Douda, H.T.; Smilios, I.; Bogdanis, G.C. Changes in Body Composition and Strength after 12 Weeks of High-Intensity Functional Training with Two Different Loads in Physically Active Men and Women: A Randomized Controlled Study. Sports 2022, 10, 7. [Google Scholar] [CrossRef]
- Martland, R.; Mondelli, V.; Gaughran, F.; Stubbs, B. Can high-intensity interval training improve physical and mental health outcomes? A meta-review of 33 systematic reviews across the lifespan. J. Sports Sci. 2020, 38, 430–469. [Google Scholar] [CrossRef]
- Coates, A.M.; Joyner, M.J.; Little, J.P.; Jones, A.M.; Gibala, M.J. A Perspective on High-Intensity Interval Training for Performance and Health. Sports Med. 2023, 53, 85–96. [Google Scholar] [CrossRef]
- Herbst, E.A.F.; Paglialunga, S.; Gerling, C.; Whitfield, J.; Mukai, K.; Chabowski, A.; Heigenhauser, G.J.F.; Spriet, L.L.; Holloway, G.P. Omega-3 supplementation alters mitochondrial membrane composition and respiration kinetics in human skeletal muscle. J. Physiol. 2014, 592, 1341–1352. [Google Scholar] [CrossRef]
- Hingley, L.; Macartney, M.J.; Brown, M.A.; McLennan, P.L.; Peoples, G.E. DHA-rich Fish Oil Increases the Omega-3 Index and Lowers the Oxygen Cost of Physiologically Stressful Cycling in Trained Individuals. Int. J. Sport Nutr. Exerc. Metab. 2017, 27, 335–343. [Google Scholar] [CrossRef]
- Żebrowska, A.; Mizia-Stec, K.; Mizia, M.; Gąsior, Z.; Poprzęcki, S. Omega-3 fatty acids supplementation improves endothelial function and maximal oxygen uptake in endurance-trained athletes. Eur. J. Sport Sci. 2015, 15, 305–314. [Google Scholar] [CrossRef]
- Philpott, J.D.; Witard, O.C.; Galloway, S.D. Applications of omega-3 polyunsaturated fatty acid supplementation for sport performance. Res. Sports Med. 2019, 27, 219–237. [Google Scholar] [CrossRef]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults: A randomized controlled trial. Am. J. Clin. Nutr. 2011, 93, 402–412. [Google Scholar] [CrossRef]
- Da Boit, M.; Sibson, R.; Sivasubramaniam, S.; Meakin, J.R.; Greig, C.A.; Aspden, R.M.; Thies, F.; Jeromson, S.; Hamilton, D.L.; Speakman, J.R.; et al. Sex differences in the effect of fish-oil supplementation on the adaptive response to resistance exercise training in older people: A randomized controlled trial. Am. J. Clin. Nutr. 2017, 105, 151–158. [Google Scholar] [CrossRef]
- Bertoni, C.; Abodi, M.; D’oria, V.; Milani, G.P.; Agostoni, C.; Mazzocchi, A. Alpha-Linolenic Acid and Cardiovascular Events: A Narrative Review. Int. J. Mol. Sci. 2023, 24, 14319. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, Y.; Yu, Q.; Song, S.; Brenna, J.T.; Shen, Y.; Ye, K. Higher ratio of plasma omega-6/omega-3 fatty acids is associated with greater risk of all-cause, cancer, and cardiovascular mortality: A population-based cohort study in UK Biobank. medRxiv 2024. [Google Scholar] [CrossRef]
- Greupner, T.; Kutzner, L.; Pagenkopf, S.; Kohrs, H.; Hahn, A.; Schebb, N.H.; Schuchardt, J.P. Effects of a low and a high dietary LA/ALA ratio on long-chain PUFA concentrations in red blood cells. Food Funct. 2018, 9, 4742–4754. [Google Scholar] [CrossRef]
- Therdyothin, A.; Prokopidis, K.; Galli, F.; Witard, O.C.; Isanejad, M. The effects of omega-3 polyunsaturated fatty acids on muscle and whole-body protein synthesis: A systematic review and meta-analysis. Nutr. Rev. 2024. [Google Scholar] [CrossRef]
- Bird, J.K.; Troesch, B.; Warnke, I.; Calder, P.C. The effect of long chain omega-3 polyunsaturated fatty acids on muscle mass and function in sarcopenia: A scoping systematic review and meta-analysis. Clin. Nutr. ESPEN 2021, 46, 73–86. [Google Scholar] [CrossRef]
- Baygutalp, F.; Buzdağlı, Y.; Ozan, M.; Koz, M.; Baygutalp, N.K.; Atasever, G. Impacts of different intensities of exercise on inflammation and hypoxia markers in low altitude. BMC Sports Sci. Med. Rehabil. 2021, 13, 145. [Google Scholar] [CrossRef]
- Cerqueira, É.; Marinho, D.A.; Neiva, H.P.; Lourenço, O. Inflammatory Effects of High and Moderate Intensity Exercise—A Systematic Review. Front. Physiol. 2019, 10, 1550. [Google Scholar] [CrossRef]
- Oishi, Y.; Manabe, I. Macrophages in inflammation, repair and regeneration. Int. Immunol. 2018, 30, 511–528. [Google Scholar] [CrossRef]
- Deane, C.S.; Wilkinson, D.J.; Phillips, B.E.; Smith, K.; Etheridge, T.; Atherton, P.J. “Nutraceuticals” in relation to human skeletal muscle and exercise. Am. J. Physiol. Endocrinol. Metab. 2017, 312, E282–E299. [Google Scholar] [CrossRef]
- Tomczyk, M.; Heileson, J.L.; Babiarz, M.; Calder, P.C. Athletes Can Benefit from Increased Intake of EPA and DHA—Evaluating the Evidence. Nutrients 2023, 15, 4925. [Google Scholar] [CrossRef]
- Bogdanis, G.; Stavrinou, P.; Fatouros, I.; Philippou, A.; Chatzinikolaou, A.; Draganidis, D.; Ermidis, G.; Maridaki, M. Short-term high-intensity interval exercise training attenuates oxidative stress responses and improves antioxidant status in healthy humans. Food Chem. Toxicol. 2013, 61, 171–177. [Google Scholar] [CrossRef]
- Jamurtas, A.Z.; Fatouros, I.G.; Deli, C.K.; Georgakouli, K.; Poulios, A.; Draganidis, D.; Papanikolaou, K.; Tsimeas, P.; Chatzinikolaou, A.; Avloniti, A.; et al. The Effects of Acute Low-Volume HIIT and Aerobic Exercise on Leukocyte Count and Redox Status. J. Sports Sci. Med. 2018, 17, 501–508. [Google Scholar]
- Bjørnsen, T.; Salvesen, S.; Berntsen, S.; Hetlelid, K.J.; Stea, T.H.; Lohne-Seiler, H.; Rohde, G.; Haraldstad, K.; Raastad, T.; Køpp, U.; et al. Vitamin C and E supplementation blunts increases in total lean body mass in elderly men after strength training. Scand. J. Med. Sci. Sports 2016, 26, 755–763. [Google Scholar] [CrossRef]
- Paulsen, G.; Cumming, K.T.; Holden, G.; Hallén, J.; Rønnestad, B.R.; Sveen, O.; Skaug, A.; Paur, I.; Bastani, N.E.; Østgaard, H.N.; et al. Vitamin C and E supplementation hampers cellular adaptation to endurance training in humans: A double-blind, randomised, controlled trial. J. Physiol. 2014, 592, 1887–1901. [Google Scholar] [CrossRef] [PubMed]
- Clifford, T.; Jeffries, O.; Stevenson, E.J.; Davies, K.A.B. The effects of vitamin C and E on exercise-induced physiological adaptations: A systematic review and Meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2020, 60, 3669–3679. [Google Scholar] [CrossRef]
- Ferguson, B. ACSM’s Guidelines for Exercise Testing and Prescription 9th Ed. J. Can. Chiropr. Assoc. 2014, 58, 328. [Google Scholar]
- Miller, T.A. NSCA’s Guide to Tests and Assessments; Human Kinetics: Champaign, IL, USA, 2012. [Google Scholar]
- Pantzaris, M.C.; Loukaides, G.N.; E Ntzani, E.; Patrikios, I.S. A novel oral nutraceutical formula of omega-3 and omega-6 fatty acids with vitamins (PLP10) in relapsing remitting multiple sclerosis: A randomised, double-blind, placebo-controlled proof-of-concept clinical trial. BMJ Open 2013, 3, e002170. [Google Scholar] [CrossRef]
- Logan, S.L.; Spriet, L.L. Omega-3 Fatty Acid Supplementation for 12 Weeks Increases Resting and Exercise Metabolic Rate in Healthy Community-Dwelling Older Females. PLoS ONE 2015, 10, e0144828. [Google Scholar] [CrossRef]
- Blaauw, R.; Calder, P.C.; Martindale, R.G.; Berger, M.M. Combining proteins with n-3 PUFAs (EPA + DHA) and their inflammation pro-resolution mediators for preservation of skeletal muscle mass. Crit. Care 2024, 28, 38. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.I.; Atherton, P.; Reeds, D.N.; Mohammed, B.S.; Rankin, D.; Rennie, M.J.; Mittendorfer, B. Omega-3 polyunsaturated fatty acids augment the muscle protein anabolic response to hyperinsulinaemia–hyperaminoacidaemia in healthy young and middle-aged men and women. Clin. Sci. 2011, 121, 267–278. [Google Scholar] [CrossRef] [PubMed]
- Brook, M.; Din, U.; Tarum, J.; Selby, A.; Quinlan, J.; Bass, J.; Gharahdaghi, N.; Boereboom, C.; Abdulla, H.; Franchi, M.; et al. Omega-3 supplementation during unilateral resistance exercise training in older women: A within subject and double-blind placebo-controlled trial. Clin. Nutr. ESPEN 2021, 46, 394–404. [Google Scholar] [CrossRef]
- Heileson, J.L.; Machek, S.B.; Harris, D.R.; Tomek, S.; de Souza, L.C.; Kieffer, A.J.; Barringer, N.D.; Gallucci, A.; Forsse, J.S.; Funderburk, L.K. The effect of fish oil supplementation on resistance training-induced adaptations. J. Int. Soc. Sports Nutr. 2023, 20, 2174704. [Google Scholar] [CrossRef]
- López-Seoane, J.; Martinez-Ferran, M.; Romero-Morales, C.; Pareja-Galeano, H. N-3 PUFA as an ergogenic supplement modulating muscle hypertrophy and strength: A systematic review. Crit. Rev. Food Sci. Nutr. 2022, 62, 9000–9020. [Google Scholar] [CrossRef]
- Bourre, J.; Bonneil, M.; Clément, M.; Dumont, O.; Durand, G.; Lafont, H.; Nalbone, G.; Piciotti, M. Function of dietary polyunsaturated fatty acids in the nervous system. Prostaglandins Leukot. Essent. Fat. Acids 1993, 48, 5–15. [Google Scholar] [CrossRef]
- Salem, N., Jr.; Litman, B.; Kim, H.-Y.; Gawrisch, K. Mechanisms of action of docosahexaenoic acid in the nervous system. Lipids 2001, 36, 945–959. [Google Scholar] [CrossRef]
- Lewis, E.J.H.; Radonic, P.W.; Wolever, T.M.S.; Wells, G.D. 21 days of mammalian omega-3 fatty acid supplementation improves aspects of neuromuscular function and performance in male athletes compared to olive oil placebo. J. Int. Soc. Sports Nutr. 2015, 12, 28. [Google Scholar] [CrossRef]
- Thielecke, F.; Blannin, A. Omega-3 Fatty Acids for Sport Performance—Are They Equally Beneficial for Athletes and Amateurs? A Narrative Review. Nutrients 2020, 12, 3712. [Google Scholar] [CrossRef]
- Jost, Z.; Tomczyk, M.; Chroboczek, M.; Calder, P.C.; Laskowski, R. Improved Oxygen Uptake Efficiency Parameters Are Not Correlated with VO2peak or Running Economy and Are Not Affected by Omega-3 Fatty Acid Supplementation in Endurance Runners. Int. J. Environ. Res. Public Health 2022, 19, 14043. [Google Scholar] [CrossRef]
- Oostenbrug, G.S.; Mensink, R.P.; Hardeman, M.R.; De Vries, T.; Brouns, F.; Hornstra, G. Exercise performance, red blood cell deformability, and lipid peroxidation: Effects of fish oil and vitamin E. J. Appl. Physiol. 1997, 83, 746–752. [Google Scholar] [CrossRef] [PubMed]
- Bailey, S.J.; Vanhatalo, A.; Winyard, P.G.; Jones, A.M. The nitrate-nitrite-nitric oxide pathway: Its role in human exercise physiology. Eur. J. Sport Sci. 2012, 12, 309–320. [Google Scholar] [CrossRef]
- Borkman, M.; Storlien, L.H.; Pan, D.A.; Jenkins, A.B.; Chisholm, D.J.; Campbell, L.V. The relation between insulin sensitivity and the fatty-acid composition of skeletal-muscle phospholipids. N. Engl. J. Med. 1993, 328, 238–244. [Google Scholar] [CrossRef] [PubMed]
- Rustan, A.; Hustvedt, B.; Drevon, C. Dietary supplementation of very long-chain n-3 fatty acids decreases whole body lipid utilization in the rat. J. Lipid Res. 1993, 34, 1299–1309. [Google Scholar] [CrossRef] [PubMed]
- Peoples, G.E.; McLennan, P.L.; Howe, P.R.C.; Groeller, H. Fish oil reduces heart rate and oxygen consumption during exercise. J. Cardiovasc. Pharmacol. 2008, 52, 540–547. [Google Scholar] [CrossRef]
- Ristow, M.; Zarse, K.; Oberbach, A.; Klöting, N.; Birringer, M.; Kiehntopf, M.; Stumvoll, M.; Kahn, C.R.; Blüher, M. Antioxidants prevent health-promoting effects of physical exercise in humans. Proc. Natl. Acad. Sci. USA 2009, 106, 8665–8670. [Google Scholar] [CrossRef]
- Braakhuis, A.J.; Hopkins, W.G. Impact of Dietary Antioxidants on Sport Performance: A Review. Sports Med. 2015, 45, 939–955. [Google Scholar] [CrossRef] [PubMed]
- Nikolaidis, M.G.; Kerksick, C.M.; Lamprecht, M.; McAnulty, S.R. Does vitamin C and E supplementation impair the favorable adaptations of regular exercise? Oxidative Med. Cell. Longev. 2012, 2012, 707941. [Google Scholar] [CrossRef]
- Margaritelis, N.V.; Paschalis, V.; Theodorou, A.A.; Kyparos, A.; Nikolaidis, M.G. Antioxidant supplementation, redox deficiencies and exercise performance: A falsification design. Free Radic. Biol. Med. 2020, 158, 44–52. [Google Scholar] [CrossRef]
- Brisebois, M.F.; Rigby, B.R.; Nichols, D.L. Physiological and Fitness Adaptations after Eight Weeks of High-Intensity Functional Training in Physically Inactive Adults. Sports 2018, 6, 146. [Google Scholar] [CrossRef] [PubMed]
- Banfi, G.; Colombini, A.; Lombardi, G.; Lubkowska, A. Metabolic markers in sports medicine. Adv. Clin. Chem. 2012, 56, 1–54. [Google Scholar] [CrossRef] [PubMed]
- Brancaccio, P.; Maffulli, N.; Limongelli, F.M. Creatine kinase monitoring in sport medicine. Br. Med. Bull. 2007, 81–82, 209–230. [Google Scholar] [CrossRef] [PubMed]
- Saraslanidis, P.J.; Manetzis, C.G.; A Tsalis, G.; Zafeiridis, A.S.; Mougios, V.G.; Kellis, S.E. Biochemical evaluation of running workouts used in training for the 400-m sprint. J. Strength Cond. Res. 2009, 23, 2266–2271. [Google Scholar] [CrossRef]
- Kyriakidou, Y.; Wood, C.; Ferrier, C.; Dolci, A.; Elliott, B. The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J. Int. Soc. Sports Nutr. 2021, 18, 9. [Google Scholar] [CrossRef]
- DiLorenzo, F.M.; Drager, C.J.; Rankin, J.W. Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise. J. Strength Cond. Res. 2014, 28, 2768–2774. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, Y.; Yanagimoto, K.; Ueda, H.; Ochi, E. Supplementation of eicosapentaenoic acid-rich fish oil attenuates muscle stiffness after eccentric contractions of human elbow flexors. J. Int. Soc. Sports Nutr. 2019, 16, 19. [Google Scholar] [CrossRef]
- Lippi, G.; Banfi, G. Distribution of creatine kinase in sedentary and physically active individuals. Am. Heart J. 2008, 155, e51. [Google Scholar] [CrossRef] [PubMed]
- Loss, L.C.; Benini, D.; de Lima-E-Silva, F.X.; Möller, G.B.; Friedrich, L.R.; Meyer, E.; Baroni, B.M.; Schneider, C.D. Effects of omega-3 supplementation on muscle damage after resistance exercise in young women: A randomized placebo-controlled trial. Nutr. Health 2022, 28, 425–432. [Google Scholar] [CrossRef] [PubMed]
Variable | SG (n = 10) | PG (n = 9) | Interaction and Main Effects (p-Value) | ||||
---|---|---|---|---|---|---|---|
Before | After | Before | After | Time × Group | Time | Group | |
Body mass (kg) | 65.7 ± 10.3 | 65.7 ± 9.6 | 64.2 ± 10.3 | 63.6 ± 10.2 | 0.393 | 0.277 | 0.700 |
Body mass index (kg m−2) | 23.0 ± 2.5 | 22.8 ± 2.5 | 23.4 ± 1.9 | 23.1 ± 2.0 | 0.766 | 0.107 | 0.702 |
Βody fat (%) | 21.0 ± 5.3 | 19.1 ± 5.3 * | 24.0 ± 8.1 | 23.7 ± 7.4 | 0.030 | 0.004 | 0.220 |
Muscle mass (kg) | 24.8 ± 5.8 | 25.2 ± 5.6 * | 23.0 ± 6.3 | 22.7 ± 6.3 | 0.007 | 0.591 | 0.443 |
CK (U·L−1) | |||||
---|---|---|---|---|---|
Monday | Tuesday | Wednesday | Thursday | Friday | |
Week 1 | |||||
Supplement group | 185 ± 136 | 257 ± 153 ** | 220 ± 138 | 290 ± 237 ** | 233 ± 163 |
Placebo group | 184 ± 112 | 267 ± 171 ** | 203 ± 134 | 243 ± 155 ** | 188 ± 128 |
Week 8 * | |||||
Supplement group | 176 ± 160 | 201 ± 110 ** | 171 ± 96 | 199 ± 127 ** | 163 ± 82 |
Placebo group | 106 ± 42 | 156 ± 72 ** | 112 ± 53 | 142 ± 66 ** | 113 ± 49 |
CRP (mg·dL−1) | |||||
Week 1 | |||||
Supplement group | 1.0 ± 0.7 | 0.9 ± 0.7 | 0.9 ± 0.8 | 2.7 ± 4.2 | 3.6 ± 1.1 |
Placebo group | 1.8 ± 1.9 | 1.6 ± 1.6 | 1.4 ± 1.5 | 1.2 ± 1.5 | 1.6 ± 2.5 |
Week 8 | |||||
Supplement group | 1.0 ± 1.4 | 1.0 ± 1.5 | 0.9 ± 1.3 | 1.1 ± 1.2 | 1.1 ± 1.3 |
Placebo group | 1.1 ± 2.1 | 0.9 ± 1.5 | 0.9 ± 1.4 | 1.4 ± 2.3 | 1.1 ± 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Posnakidis, G.; Giannaki, C.D.; Mougios, V.; Pantzaris, M.; Patrikios, I.; Calder, P.C.; Sari, D.K.; Bogdanis, G.C.; Aphamis, G. Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2024, 16, 2914. https://doi.org/10.3390/nu16172914
Posnakidis G, Giannaki CD, Mougios V, Pantzaris M, Patrikios I, Calder PC, Sari DK, Bogdanis GC, Aphamis G. Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients. 2024; 16(17):2914. https://doi.org/10.3390/nu16172914
Chicago/Turabian StylePosnakidis, Georgios, Christoforos D. Giannaki, Vassilis Mougios, Marios Pantzaris, Ioannis Patrikios, Philip C. Calder, Dina K. Sari, Gregory C. Bogdanis, and George Aphamis. 2024. "Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial" Nutrients 16, no. 17: 2914. https://doi.org/10.3390/nu16172914
APA StylePosnakidis, G., Giannaki, C. D., Mougios, V., Pantzaris, M., Patrikios, I., Calder, P. C., Sari, D. K., Bogdanis, G. C., & Aphamis, G. (2024). Effects of Supplementation with Omega-3 and Omega-6 Polyunsaturated Fatty Acids and Antioxidant Vitamins, Combined with High-Intensity Functional Training, on Exercise Performance and Body Composition: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients, 16(17), 2914. https://doi.org/10.3390/nu16172914