Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters—Implications for Obesity-Related Sympathoexcitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatments
2.2. Preparation of BSA-Conjugated Palmitic Acid (PA)
2.3. PA Treatment
2.4. Oil Red O Staining
2.5. Dihydroethidium Staining
2.6. RNA Extraction and Real-Time PCR Analysis
2.7. Immunofluorescence Staining
2.8. Statistical Analysis
3. Results
3.1. Validation of Palmitic Acid (PA) Treatment in the HBAs
3.2. PA Induces Oxidative Stress in the HBAs
3.3. PA Induces DNA Damage in the HBAs
3.4. PA Causes Cellular Senescence and SASP in the HBAs
3.5. PA Downregulates Glutamate Reuptake Transporter Expression in the HBAs
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Han, T.S.; Lean, M.E. A clinical perspective of obesity, metabolic syndrome and cardiovascular disease. JRSM Cardiovasc. Dis. 2016, 5, 2048004016633371. [Google Scholar] [CrossRef]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef]
- Boden, G.; She, P.; Mozzoli, M.; Cheung, P.; Gumireddy, K.; Reddy, P.; Xiang, X.; Luo, Z.; Ruderman, N. Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 2005, 54, 3458–3465. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Barnes, G.T.; Yang, Q.; Tan, G.; Yang, D.; Chou, C.J.; Sole, J.; Nichols, A.; Ross, J.S.; Tartaglia, L.A.; et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Investig. 2003, 112, 1821–1830. [Google Scholar] [CrossRef]
- Hildebrandt, X.; Ibrahim, M.; Peltzer, N. Cell death and inflammation during obesity: “Know my methods, WAT(son)”. Cell Death Differ. 2023, 30, 279–292. [Google Scholar] [CrossRef]
- Castanon, N.; Luheshi, G.; Laye, S. Role of neuroinflammation in the emotional and cognitive alterations displayed by animal models of obesity. Front. Neurosci. 2015, 9, 229. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, P.; Asirvatham-Jeyaraj, N.; Monteiro, R.; Sivasubramanian, M.K.; Hall, D.; Subramanian, M. Obesity-induced sympathoexcitation is associated with Nrf2 dysfunction in the rostral ventrolateral medulla. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2020, 318, R435–R444. [Google Scholar] [CrossRef]
- Balasubramanian, P.; Branen, L.; Sivasubramanian, M.K.; Monteiro, R.; Subramanian, M. Aging is associated with glial senescence in the brainstem–Implications for age-related sympathetic overactivity. Aging 2021, 13, 13460–13473. [Google Scholar] [CrossRef] [PubMed]
- Balasubramanian, P.; Hall, D.; Subramanian, M. Sympathetic nervous system as a target for aging and obesity-related cardiovascular diseases. Geroscience 2019, 41, 13–24. [Google Scholar] [CrossRef]
- Birch, J.; Gil, J. Senescence and the SASP: Many therapeutic avenues. Genes Dev. 2020, 34, 1565–1576. [Google Scholar] [CrossRef]
- Pajarillo, E.; Rizor, A.; Lee, J.; Aschner, M.; Lee, E. The role of astrocytic glutamate transporters GLT-1 and GLAST in neurological disorders: Potential targets for neurotherapeutics. Neuropharmacology 2019, 161, 107559. [Google Scholar] [CrossRef]
- Rose, C.R.; Felix, L.; Zeug, A.; Dietrich, D.; Reiner, A.; Henneberger, C. Astroglial Glutamate Signaling and Uptake in the Hippocampus. Front. Mol. Neurosci. 2017, 10, 451. [Google Scholar] [CrossRef]
- Alsabeeh, N.; Chausse, B.; Kakimoto, P.A.; Kowaltowski, A.J.; Shirihai, O. Cell culture models of fatty acid overload: Problems and solutions. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2018, 1863, 143–151. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, H.J.; Lee, S.J.; Jung, Y.H.; Yoo, D.Y.; Hwang, I.K.; Seong, J.K.; Ryu, J.M.; Han, H.J. Palmitic Acid-BSA enhances Amyloid-beta production through GPR40-mediated dual pathways in neuronal cells: Involvement of the Akt/mTOR/HIF-1alpha and Akt/NF-kappaB pathways. Sci. Rep. 2017, 7, 4335. [Google Scholar] [CrossRef]
- Schelbert, S.; Schindeldecker, M.; Drebber, U.; Witzel, H.R.; Weinmann, A.; Dries, V.; Schirmacher, P.; Roth, W.; Straub, B.K. Lipid Droplet-Associated Proteins Perilipin 1 and 2: Molecular Markers of Steatosis and Microvesicular Steatotic Foci in Chronic Hepatitis C. Int. J. Mol. Sci. 2022, 23, 15456. [Google Scholar] [CrossRef] [PubMed]
- Feringa, F.M.; Raaijmakers, J.A.; Hadders, M.A.; Vaarting, C.; Macurek, L.; Heitink, L.; Krenning, L.; Medema, R.H. Persistent repair intermediates induce senescence. Nat. Commun. 2018, 9, 3923. [Google Scholar] [CrossRef]
- Ishida, T.; Ishida, M.; Tashiro, S.; Takeishi, Y. DNA Damage and Senescence-Associated Inflammation in Cardiovascular Disease. Biol. Pharm. Bull. 2019, 42, 531–537. [Google Scholar] [CrossRef]
- Rodier, F.; Campisi, J. Four faces of cellular senescence. J. Cell Biol. 2011, 192, 547–556. [Google Scholar] [CrossRef]
- Ogrodnik, M.; Zhu, Y.; Langhi, L.G.P.; Tchkonia, T.; Kruger, P.; Fielder, E.; Victorelli, S.; Ruswhandi, R.A.; Giorgadze, N.; Pirtskhalava, T.; et al. Obesity-Induced Cellular Senescence Drives Anxiety and Impairs Neurogenesis. Cell Metab. 2019, 29, 1061–1077.e8. [Google Scholar] [CrossRef]
- Wiley, C.D.; Campisi, J. The metabolic roots of senescence: Mechanisms and opportunities for intervention. Nat. Metab. 2021, 3, 1290–1301. [Google Scholar] [CrossRef]
- Ohtani, N. The roles and mechanisms of senescence-associated secretory phenotype (SASP): Can it be controlled by senolysis? Inflamm. Regen. 2022, 42, 11. [Google Scholar] [CrossRef]
- Nelson, G.; Wordsworth, J.; Wang, C.; Jurk, D.; Lawless, C.; Martin-Ruiz, C.; von Zglinicki, T. A senescent cell bystander effect: Senescence-induced senescence. Aging Cell 2012, 11, 345–349. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, S.M.; Sullivan, C.R.; McCullumsmith, R.E. The role of glutamate transporters in the pathophysiology of neuropsychiatric disorders. NPJ Schizophr. 2017, 3, 32. [Google Scholar] [CrossRef] [PubMed]
- Hotz, A.L.; Jamali, A.; Rieser, N.N.; Niklaus, S.; Aydin, E.; Myren-Svelstad, S.; Lalla, L.; Jurisch-Yaksi, N.; Yaksi, E.; Neuhauss, S.C.F. Loss of glutamate transporter eaat2a leads to aberrant neuronal excitability, recurrent epileptic seizures, and basal hypoactivity. Glia 2022, 70, 196–214. [Google Scholar] [CrossRef] [PubMed]
- Hertz, L.; Rodrigues, T.B. Astrocytic-Neuronal-Astrocytic Pathway Selection for Formation and Degradation of Glutamate/GABA. Front. Endocrinol. 2014, 5, 42. [Google Scholar] [CrossRef]
- Armada-Moreira, A.; Gomes, J.I.; Pina, C.C.; Savchak, O.K.; Goncalves-Ribeiro, J.; Rei, N.; Pinto, S.; Morais, T.P.; Martins, R.S.; Ribeiro, F.F.; et al. Going the Extra (Synaptic) Mile: Excitotoxicity as the Road Toward Neurodegenerative Diseases. Front. Cell Neurosci. 2020, 14, 90. [Google Scholar] [CrossRef]
- Dong, X.X.; Wang, Y.; Qin, Z.H. Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacol. Sin. 2009, 30, 379–387. [Google Scholar] [CrossRef]
Human Gene | Forward Primer | Reverse Primer | Gene Accession No. |
---|---|---|---|
p16 | GATCCAGGTGGGTAGAGGGTC | CCCCTGCAAACTTCGTCCT | NM_058197.5 |
p21 | TGTCCGTCAGAACCCATGC | AAAGTCGAAGTTCCATCGCTC | NM_001374511.1 |
p53 | CAGCACATGACGGAGGTTGT | TCATCCAAATACTCCACACGC | NM_001407269.1 |
IL1α | CGCCAATGACTCAGAGGAAGA | AGGGCGTCATTCAGGATGAA | NM_000575.5 |
IL1β | AATCTGTACCTGTCCTGCGTGTT | TGGGTAATTTTTGGGATCTACACTCT | NM_000576.3 |
IL6 | CCGGGAACGAAAGAGAAGCT | GCGCTTGTGGAGAAGGAGTT | NM_000600.5 |
IL8 | CTTGGCAGCCTTCCTGATTT | TTCTTTAGCACTCCTTGGCAAAA | NM_001354840.3 |
TNF-α | CCCAGGGACCTCTCTCTAATCA | AGCTGCCCCTCAGCTTGAG | NM_000594.4 |
MMP3 | GACACCAGCATGAACCTTGTT | GGAACCGAGTCAGGTCTGTG | NM_002422.5 |
MMP13 | GGCTCCGAGAAATGCAGTCTTTCTT | ATCAAATGGGTAGAAGTCGCCATGC | NM_002427.4 |
MCP-1 | AATCAATGCCCCAGTCACCT | CTTCTTTGGGACACTTGCTGC | NM_002982.4 |
CXCL1 | GAAAGCTTGCCTCAATCCTG | CACCAGTGAGCTTCCTCCTC | NM_001511.4 |
CXCL10 | AACCTCCAGTCTCAGCACCATGAA | AGGTACAGCGTAAGGTTCTAGAGAG | NM_001565.4 |
NQO1 | ACTGATCGTACTGGCTCACTC | AGTTCATGGCATAGAGGTCCG | NM_001025434.2 |
SOD2 | GTTGGGGTTGGCTTGGTTTC | GTTCCTTGCAGTGGATCCTGA | NM_001322819.2 |
CAT | CTTTCTGTTGAAGATGCGGCG | AGTCCAGGAGGGGTACTTTCC | NM_001752.4 |
EAAT1 | TGCCCTGGGTCTAGTTGTCT | CCAGTCTCATGATGGCTTCGT | NM_004172.5 |
EAAT2 | CTTGGCATCTCCCATCCACC | GCTGGAGATGATTAGAGGGAGAA | NM_001252652.2 |
Lamin B1 | AAGGCGAAGAAGAGAGGTTGAAG | GCGGAATGAGAGATGCTAACACT | NM_001198557.2 |
Plin1 | CAGAAACAGCATCAGCGTTCC | CAGCAAATTCCGCAGTGTCTC | NM_001145311.2 |
Plin2 | TCACAGGGGTGATGGACAAG | TTTCTACGCCACTGCTCACG | NM_001122.4 |
GAPDH | GCCGTCTAGAAAAACCTGCC | ACCACCTGGTGCTCAGTGTA | NM_001357943.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sivasubramanian, M.K.; Monteiro, R.; Jagadeesh, M.; Balasubramanian, P.; Subramanian, M. Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters—Implications for Obesity-Related Sympathoexcitation. Nutrients 2024, 16, 2852. https://doi.org/10.3390/nu16172852
Sivasubramanian MK, Monteiro R, Jagadeesh M, Balasubramanian P, Subramanian M. Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters—Implications for Obesity-Related Sympathoexcitation. Nutrients. 2024; 16(17):2852. https://doi.org/10.3390/nu16172852
Chicago/Turabian StyleSivasubramanian, Mahesh Kumar, Raisa Monteiro, Manoj Jagadeesh, Priya Balasubramanian, and Madhan Subramanian. 2024. "Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters—Implications for Obesity-Related Sympathoexcitation" Nutrients 16, no. 17: 2852. https://doi.org/10.3390/nu16172852
APA StyleSivasubramanian, M. K., Monteiro, R., Jagadeesh, M., Balasubramanian, P., & Subramanian, M. (2024). Palmitic Acid Induces Oxidative Stress and Senescence in Human Brainstem Astrocytes, Downregulating Glutamate Reuptake Transporters—Implications for Obesity-Related Sympathoexcitation. Nutrients, 16(17), 2852. https://doi.org/10.3390/nu16172852