Efficacy of the Mediterranean Diet Containing Different Macronutrients on Non-Alcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Dietary Intervention and Monitoring
- TMD: 40–45% carbohydrate, 15–20% protein, and 35–40% fat;
- LCMD: ≤35% carbohydrate, 15–20% protein, and >45% fat;
- LFMD: ≥55% carbohydrate, 15–20% protein, and 20–25% fat.
2.3. Anthropometric and General Characteristics
2.4. Physical Activity Assessment
2.5. Diagnosis, Biochemical Parameters, and Calculated Indexes
- FIB-4 score: (age × AST)/platelet value × (ALT)1/2 [41].
- FIB-4 score ≤ 1.3: advanced fibrosis is unlikely.
- FIB-4 score > 1.3–<2.67: uncertain.
2.6. Statistical Analyses
3. Results
3.1. Participant Food Intake
3.2. Participants’ Anthropometric Measurements
3.3. Participants’ Biochemical Parameters and Indexes
3.4. Effects of Macronutrient Changes on the Alterations in Biochemical Parameters
4. Discussion
5. Conclusions
5.1. Strengths and Limitations of the Study
5.2. Importance and Contribution of the Study
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Association for the Study of The Liver (EASL); European Association for the Study of Diabetes (EASD); European Association for the Study of Obesity (EASO). EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease. J. Hepatol. 2016, 64, 1388–1402. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.M.; Koenig, A.B.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Friedman, S.L.; Neuschwander-Tetri, B.A.; Rinella, M.; Sanyal, A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat. Med. 2018, 24, 908–922. [Google Scholar] [CrossRef] [PubMed]
- Della Pepa, G.; Vetrani, C.; Lombardi, G.; Bozzetto, L.; Annuzzi, G.; Rivellese, A.A. Isocaloric dietary changes and non-alcoholic fatty liver disease in high cardiometabolic risk individuals. Nutrients 2017, 9, 1065. [Google Scholar] [CrossRef] [PubMed]
- Maurice, J.; Manousou, P. Non-alcoholic fatty liver disease. Clin. Med. 2018, 18, 245–250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Ji, X.; Wang, Q.; Li, J.Z. New insight into inter-organ crosstalk contributing to the pathogenesis of non-alcoholic fatty liver disease (NAFLD). Protein Cell 2018, 9, 164–177. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.R.; Mohanty, S.R. Nonalcoholic fatty liver disease: A review and update. Dig. Dis. Sci. 2010, 55, 560–578. [Google Scholar] [CrossRef]
- Eslam, M.; Newsome, P.N.; Sarin, S.K.; Anstee, Q.M.; Targher, G.; Gomez, M.R.; Zelber-Sagi, S.; Wong, V.W.; Dufour, J.F.; Schattenberg, J.M.; et al. A new definition for metabolic associated fatty liver disease: An international expert con- sensus statement. J. Hepatol. 2020, 73, 202–209. [Google Scholar] [CrossRef]
- Papatheodoridi, M.; Cholongitas, E. Diagnosis of non-alcoholic fatty liver disease (NAFLD): Current concepts. Curr. Pharm. Des. 2018, 24, 4574–4586. [Google Scholar] [CrossRef]
- Kupčová, V.; Fedelešová, M.; Bulas, J.; Kozmonová, P.; Turecký, L. Overview of the pathogenesis, genetic, and non-invasive clinical, biochemical, and scoring methods in the assessment of NAFLD. Int. J. Environ. Res. Public Health 2019, 16, 3570. [Google Scholar] [CrossRef]
- Chalasani, N.; Younossi, Z.; Lavine, J.E.; Charlton, M.; Cusi, K.; Rinella, M.; Sanyal, A.J. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American Association for the Study of Liver Diseases. Hepatology 2018, 67, 328–357. [Google Scholar] [CrossRef] [PubMed]
- Konerman, M.A.; Jones, J.C.; Harrison, S.A. Pharmacotherapy for NASH: Current and emerging. J. Hepatol. 2018, 68, 362–375. [Google Scholar] [CrossRef] [PubMed]
- Leoni, S.; Tovoli, F.; Napoli, L.; Serio, I.; Ferri, S.; Bolondi, L. Current guidelines for the management of non-alcoholic fatty liver disease: A systematic review with comparative analysis. World J. Gastroenterol. 2018, 24, 3361. [Google Scholar] [CrossRef]
- Associazione Italiana per lo Studio del Fegato (AISF); Società Italiana di Diabetologia (SID); Società Italiana dell’Obesità (SIO). Non-alcoholic fatty liver disease in adults 2021: A clinical practice guideline of the Italian Association for the Study of the Liver (AISF), the Italian Society of Diabetology (SID) and the Italian Society of Obesity (SIO). Dig. Eat. Weight. Disord.—Stud. Anorex. Bulim. Obes. 2022, 27, 1603–1619. [Google Scholar] [CrossRef]
- Aller, R.; Fernández-Rodríguez, C.; Lo Iacono, O.; Bañares, R.; Abad, J.; Carrión, J.A.; Romero-Gómez, M. Consensus document. Management of non-alcoholic fatty liver disease (NAFLD). Clinical practice guideline. Gastroenterol. Hepatol. (Engl. Ed.) 2018, 41, 328–349. [Google Scholar] [CrossRef] [PubMed]
- Serra Majem, L.; Medina, F.X. The Mediterranean diet as an intangible and sustainable food culture. In The Mediterranean Diet: An Evidence-Based Approach; Academic Press: London, UK, 2015; pp. 37–46. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Ortiz-Andrellucchi, A.; Sánchez-Villegas, A. Mediterranean Diet. Encycl. Food Secur. Sustain. 2018, 2, 292–301. [Google Scholar] [CrossRef]
- Plaz Torres, M.C.; Aghemo, A.; Lleo, A.; Bodini, G.; Furnari, M.; Marabotto, E.; Giannini, E.G. Mediterranean diet and NAFLD: What we know and questions that still need to be answered. Nutrients 2019, 11, 2971. [Google Scholar] [CrossRef]
- Assy, N.; Nassar, F.; Nasser, G.; Grosovski, M. Olive oil consumption and non-alcoholic fatty liver disease. World J. Gastroenterol. 2009, 15, 1809. [Google Scholar] [CrossRef]
- Worm, N. Beyond body weight-loss: Dietary strategies targeting intrahepatic fat in NAFLD. Nutrients 2020, 12, 1316. [Google Scholar] [CrossRef]
- Romero-Gómez, M.; Zelber-Sagi, S.; Trenell, M. Treatment of NAFLD with diet, physical activity and exercise. J. Hepatol. 2017, 67, 829–846. [Google Scholar] [CrossRef]
- Zelber-Sagi, S.; Salomone, F.; Mlynarsky, L. The Mediterranean dietary pattern as the diet of choice for non-alcoholic fatty liver disease: Evidence and plausible mechanisms. Liver Int. 2017, 37, 936–949. [Google Scholar] [CrossRef] [PubMed]
- Hussein, O.; Grosovski, M.; Lasri, E.; Svalb, S.; Ravid, U.; Assy, N. Monounsaturated fat decreases hepatic lipid content in non-alcoholic fatty liver disease in rats. World J. Gastroenterol. 2007, 13, 361–368. [Google Scholar] [CrossRef] [PubMed]
- Ross, A.B.; Godin, J.P.; Minehira, K.; Kirwan, J.P. Increasing whole grain intake as part of prevention and treatment of nonalcoholic Fatty liver disease. Int. J. Endocrinol. 2013, 2013, 585876. [Google Scholar] [CrossRef] [PubMed]
- Vallianou, N.; Christodoulatos, G.S.; Karampela, I.; Tsilingiris, D.; Magkos, F.; Stratigou, T.; Dalamaga, M. Understanding the role of the gut microbiome and microbial metabolites in non-alcoholic fatty liver disease: Current evidence and perspectives. Biomolecules 2021, 12, 56. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Backhed, F.; Fulton, L.; Gordon, J.I. Marked alterations in the distal gut microbiome linked to diet-induced obesity. Cell Host Microbe 2008, 3, 213. [Google Scholar] [CrossRef] [PubMed]
- Paolella, G.; Mandato, C.; Pierri, L.; Poeta, M.; Di Stasi, M.; Vajro, P. Gut-liver axis and probiotics: Their role in non-alcoholic fatty liver disease. World J. Gastroenterol. 2014, 20, 15518. [Google Scholar] [CrossRef] [PubMed]
- Potter, J.J.; Liu, X.; Koteish, A.; Mezey, E. 1, 25-dihydroxyvitamin D3 and its nuclear receptor repress humanα1 (I) collagen expression and type I collagen formation. Liver Int. 2013, 33, 677–686. [Google Scholar] [CrossRef] [PubMed]
- Eliades, M.; Spyrou, E. Vitamin D: A new player in non-alcoholic fatty liver disease? World J. Gastroenterol. 2015, 21, 1718–1727. [Google Scholar] [CrossRef]
- Parker, H.M.; Johnson, N.A.; Burdon, C.A.; Cohn, J.S.; O’Connor, H.T.; George, J. Omega-3 supplementation and non-alcoholic fatty liver disease: A systematic review and meta- analysis. J. Hepatol. 2012, 56, 944–951. [Google Scholar] [CrossRef]
- Available online: https://www.mdcalc.com/calc/2200/fibrosis-4-fib-4-index-liver-fibrosis (accessed on 6 July 2024).
- Keskinkılınç, B.; Yardım, N. Patient Follow-Up Guide For Dietitians, Weight Management Manual, 1st ed.; Elsevier: Ankara, Türkiye, 2017; pp. 93–101. Available online: https://hsgm.saglik.gov.tr/depo/Yayinlarimiz/Rehberler/Diyetisyenler_icin_hasta_izleme_rehberi.pdf (accessed on 6 July 2024).
- Pehlivanoğlu, E.F.Ö.; Balcıoğlu, H.; Ünlüoğlu, İ. Validity and reliability of adapting the Mediterranean Diet Adherence Scale into Turkish. Osman. Med. J. 2020, 42, 160–164. [Google Scholar] [CrossRef]
- Mahan, L.K.; Raymond, J.L. Krause. Food & Nutrition Care Process, 14th ed.; Akbulut, G., Ed.; Part I: Nutrition Assessment; Elsevier: Ankara, Türkiye, 2019; pp. 17–26. [Google Scholar]
- Tortu, E.; Deliceoğlu, G.; Kocahan, T.; Hasanoğlu, A. Comparison of resting metabolic rate values measured by indirect calorimetry with some estimation formulas. J. Sports Sci. 2017, 28, 103–114. [Google Scholar] [CrossRef]
- Dernini, S.; Berry, E.M. Mediterranean diet: From a healthy diet to a sustainable dietary pattern. Front. Nutr. 2015, 2, 15. [Google Scholar] [CrossRef] [PubMed]
- Beslenme Bilgi Sistemi (BeBİS 9). Nutrition Information System-BeBIS, version 8.2; Elsevier: İstanbul, Türkiye, 2019. [Google Scholar]
- Castera, L.; Friedrich-Rust, M.; Loomba, R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology 2019, 156, 1264–1281. [Google Scholar] [CrossRef] [PubMed]
- Khang, A.R.; Lee, H.W.; Yi, D.; Kang, Y.H.; Son, S.M. The fatty liver index, a simple and useful predictor of metabolic syndrome: Analysis of the Korea National Health and Nutrition Examination Survey 2010–2011. Diabetes Metab. Syndr. Obes. Targets Ther. 2019, 12, 181. [Google Scholar] [CrossRef]
- Bedogni, G.; Bellentani, S.; Miglioli, L.; Masutti, F.; Passalacqua, M.; Castiglione, A.; Tiribelli, C. The Fatty Liver Index: A simple and accurate predictor of hepatic steatosis in the general population. BioMedCentral Gastroenterol. 2006, 6, 33. [Google Scholar] [CrossRef]
- Francque, S.M.; Marchesini, G.; Kautz, A.; Walmsley, M.; Dorner, R.; Lazarus, J.V.; Zelber-Sagi, S.; Hallsworth, K.; Busetto, L.; Frühbeck, G.; et al. Non-alcoholic fatty liver disease: A patient guideline. J. High Energy Phys. Rep. 2021, 3, 100322. [Google Scholar] [CrossRef] [PubMed]
- Younossi, Z.; Anstee, Q.M.; Marietti, M.; Hardy, T.; Henry, L.; Eslam, M.; George, J.; Bugianesi, E. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2018, 15, 11–20. [Google Scholar] [CrossRef] [PubMed]
- García-Conesa, M.T.; Philippou, E.; Pafilas, C.; Massaro, M.; Quarta, S.; Andrade, V.; Jorge, R.; Chervenkov, M.; Ivanova, T.; Dimitrova, D.; et al. Exploring the validity of the 14-item mediterranean diet adherence screener (MEDAS): A cross-national study in seven European countries around the mediterranean region. Nutrients 2020, 12, 2960. [Google Scholar] [CrossRef] [PubMed]
- Suárez, M.; Boqué, N.; Del Bas, J.M.; Mayneris-Perxachs, J.; Arola, L.; Caimari, A. Mediterranean diet and multi-ingredient-based interventions for the management of non-alcoholic fatty liver disease. Nutrients 2017, 9, 1052. [Google Scholar] [CrossRef]
- George, E.S.; Forsyth, A.; Itsiopoulos, C.; Nicoll, A.J.; Ryan, M.; Sood, S.; Roberts, S.K.; Tierney, A.C. Practical dietary recommendations for the prevention and management of nonalcoholic fatty liver disease in adults. Adv. Nutr. 2018, 9, 30–40. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes—2022. Diabetes Care 2022, 45 (Suppl. S1), S60–S82. [Google Scholar] [CrossRef]
- Zhao, H.; Yang, A.; Mao, L.; Quan, Y.; Cui, J.; Sun, Y. Association between dietary fiber intake and non-alcoholic fatty liver disease in adults. Front. Nutr. 2020, 7, 593735. [Google Scholar] [CrossRef] [PubMed]
- Chakravarthy, M.V.; Waddell, T.; Banerjee, R.; Guess, N. Nutrition and nonalcoholic fatty liver disease: Current perspectives. Gastroenterol. Clin. N. Am. 2020, 49, 63–94. [Google Scholar] [CrossRef] [PubMed]
- Rinella, M.E.; Sanyal, A.J. Management of NAFLD: A stage-based approach. Nat. Rev. Gastroenterol. Hepatol. 2016, 13, 196–205. [Google Scholar] [CrossRef]
- Lonardo, A.; Nascimbeni, F.; Targher, G.; Bernardi, M.; Bonino, F.; Bugianesi, E.; Bellentani, S. AISF position paper on nonalcoholic fatty liver disease (NAFLD): Updates and future directions. Dig. Liver Dis. 2017, 49, 471–483. [Google Scholar] [CrossRef] [PubMed]
- Coppell, K.J.; Miller, J.C.; Gray, A.R.; Schultz, M.; Mann, J.I.; Parnell, W.R. Obesity and the extent of liver damage among adult New Zealanders: Findings from a national survey. Obes. Sci. Pract. 2015, 1, 67–77. [Google Scholar] [CrossRef]
- Mansour-Ghanaei, R.; Mansour-Ghanaei, F.; Naghipour, M.; Joukar, F.; Atrkar-Roushan, Z.; Tabatabaii, M.; Ghorani, N. The role of anthropometric indices in the prediction of non-alcoholic fatty liver disease in the PERSIAN Guilan Cohort study (PGCS). J. Med. Life 2018, 11, 194. [Google Scholar] [CrossRef] [PubMed]
- Leone, A.; Bertoli, S.; Bedogni, G.; Vignati, L.; Pellizzari, M.; Battezzati, A. Association between Mediterranean Diet and fatty liver in women with overweight and obesity. Nutrients 2022, 14, 3771. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.J.; Kim, W.; Kim, D.; Yoon, J.H.; Lee, K.; Kim, J.H.; Cho, E.J.; Lee, J.-H.; Kim, H.Y.; Kim, Y.J.; et al. Visceral obesity predicts significant fibrosis in patients with nonalcoholic fatty liver disease. Medicine 2015, 94, 2159. [Google Scholar] [CrossRef] [PubMed]
- Ristic-Medic, D.; Kovacic, M.; Takic, M.; Arsic, A.; Petrovic, S.; Paunovic, M.; Jovicic, M.; Vucic, V. Calorie-restricted Mediterranean and low-fat diets affect fatty acid status in individuals with nonalcoholic fatty liver disease. Nutrients 2020, 13, 15. [Google Scholar] [CrossRef]
- Tosti, V.; Bertozzi, B.; Fontana, L. Health benefits of the Mediterranean diet: Metabolic and molecular mechanisms. J. Gerontol. Biol. Sci. 2018, 73, 318–326. [Google Scholar] [CrossRef]
- Kouvari, M.; Boutari, C.; Chrysohoou, C.; Fragkopoulou, E.; Antonopoulou, S.; Tousoulis, D.; ATTICA Study Investigators. Mediterranean diet is inversely associated with steatosis and fibrosis and decreases ten-year diabetes and cardiovascular risk in NAFLD subjects: Results from the ATTICA prospective cohort study. Clin. Nutr. 2021, 40, 3314–3324. [Google Scholar] [CrossRef] [PubMed]
- Monserrat-Mesquida, M.; Quetglas-Llabrés, M.; Bouzas, C.; Montemayor, S.; Mascaró, C.M.; Casares, M.; Llompart, I.; Ugarriza, L.; Martínez, J.A.; Tur, J.A.; et al. Increased adherence to the Mediterranean diet after lifestyle intervention improves oxidative and inflammatory status in patients with non-alcoholic fatty liver disease. Antioxidants 2022, 11, 1440. [Google Scholar] [CrossRef] [PubMed]
- Fraser, A.; Abel, R.; Lawlor, D.A.; Fraser, D.; Elhayany, A. A modified Mediterranean diet is associated with the greatest reduction in alanine aminotransferase levels in obese type 2 diabetes patients: Results of a quasi-randomised controlled trial. Diabetologia 2008, 51, 1616–1622. [Google Scholar] [CrossRef] [PubMed]
- Houttu, V.; Csader, S.; Nieuwdorp, M.; Holleboom, A.G.; Schwab, U. Dietary interventions in patients with non-alcoholic fatty liver disease: A systematic review and meta-analysis. Front. Nutr. 2021, 8, 437. [Google Scholar] [CrossRef] [PubMed]
- Sangouni, A.A.; Zadeh, S.H.; Mozaffari-Khosravi, H.; Hosseinzadeh, M. Effect of Mediterranean diet on liver enzymes: A systematic review and meta-analysis of randomized controlled trials. Br. J. Nutr. 2022, 128, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Lonardo, A.; Ballestri, S.; Bedogni, G.; Bellentani, S.; Tiribelli, C. The Fatty liver Index (FLI) 15 years later: A reappraisal. Metab. Target Organ Damage 2021, 1, 10. [Google Scholar] [CrossRef]
- Haigh, L.; Kirk, C.; El Gendy, K.; Gallacher, J.; Errington, L.; Mathers, J.C.; Anstee, Q.M. The effectiveness and acceptability of Mediterranean diet and calorie restriction in non-alcoholic fatty liver disease (NAFLD): A systematic review and meta-analysis. Clin. Nutr. 2022, 41, 1913–1931. [Google Scholar] [CrossRef] [PubMed]
- Rosqvist, F.; Rydell, A.; Iggman, D. The effects of foods on blood lipids in Non-alcoholic Fatty Liver Disease (NAFLD)—A systematic review and meta-analysis. Front. Nutr. 2020, 7, 613221. [Google Scholar] [CrossRef]
- Kontogianni, M.D.; Tileli, N.; Margariti, A.; Georgoulis, M.; Deutsch, M.; Tiniakos, D.; Papatheodoridis, G. Adherence to the Mediterranean diet is associated with the severity of non-alcoholic fatty liver disease. Clin. Nutr. 2014, 33, 678–683. [Google Scholar] [CrossRef]
FLI | Risk | Diagnosis |
---|---|---|
<30 | Low | Fatty liver is excluded |
30–<60 | Uncertain | Fatty liver can neither be ignored nor excluded |
≥60 | High | Fatty liver |
TMD (n = 21) | LCMD (n = 21) | LFMD (n = 21) | |||||
---|---|---|---|---|---|---|---|
n | % | n | % | n | % | p | |
Sex | |||||||
Females | 14 | 66.67 | 13 | 61.90 | 11 | 52.38 | 0.82 |
Males | 7 | 33.33 | 8 | 38.10 | 10 | 47.62 | |
Marital status | |||||||
Married | 14 | 66.67 | 17 | 80.95 | 12 | 57.14 | 0.31 |
Single | 7 | 33.33 | 4 | 19.05 | 9 | 42.86 | |
Age (years) | |||||||
± SD | 39.48 ± 9.17 | 39.71 ± 10.34 | 38.62 ± 9.39 | 0.43 | |||
NAFLD grade | |||||||
Grade 1 | 14 | 66.67 | 14 | 66.67 | 14 | 66.67 | 1.00 |
Grade 2 | 7 | 33.33 | 7 | 33.33 | 7 | 33.33 | |
Physical activity duration (min/week) | |||||||
± SD | 168.13 ± 17.72 | 171.25 ± 44.22 | 163.33 ± 20.46 | 0.96 | |||
PAL | |||||||
± SD | 1.38 ± 0.05 | 1.41 ± 0.07 | 1.38 ± 0.05 | 0.18 | |||
F = 1.75 | |||||||
MEDAS score | |||||||
± SD | 5.52 ± 1.81 | 5.48 ± 1.75 | 4.52 ± 1.36 | 0.83 | |||
F = 0.19 |
Macronutrient | Intervention Status | 1 TMD (n = 21) ± SD | 2 LCMD (n = 21) ± SD | 3 LFMD (n = 21) ± SD | Between-Group Comparison ± SD | Difference |
---|---|---|---|---|---|---|
Energy (kcal) | Pre-intervention | 3248.45 ± 459.96 | 3209.79 ± 525.43 | 3366.13 ± 575.26 | F = 0.51; p = 0.60 | |
Post-intervention | 1718.68 ± 260.12 | 1803.20 ± 324.59 | 1785.72 ± 319.72 | F = 0.46; p = 0.64 | ||
Intra-group comparison | t = 19.25; p = 0.00 | t = 19.00; p = 0.00 | t = 17.28; p = 0.00 | |||
Carbohydrate (g) | Pre-intervention | 345.78 ± 58.20 | 358.31 ± 62.54 | 362.89 ± 53.26 | F = 0.49; p = 0.62 | |
Post-intervention | 174.95 ± 25.70 | 148.54 ± 27.01 | 241.81 ± 42.73 | F = 45.28; p = 0.00 | 2 < 1, 3 and 1 < 3 | |
Intra-group comparison | t = 13.94; p = 0.00 | t = 20.54; p = 0.00 | t = 12.08; p = 0.00 | |||
Carbohydrate (%) | Pre-intervention | 43.55 ± 4.37 | 45.67 ± 3.35 | 44.38 ± 2.95 | F = 1.84; p = 0.17 | |
Post-intervention | 42.10 ± 1.14 | 34.05 ± 0.67 | 55.71 ± 0.56 | F = 3681.93; p = 0.00 | 1, 2 < 3 and 2 < 1 | |
Intra-group comparison | t = 1.44; p = 0.17 | t = 14.37; p = 0.00 | t = −18.62; p = 0.00 | |||
Fiber (gr) | Pre-intervention | 31.25 ± 6.07 | 30.37 ± 5.96 | 30.49 ± 6.69 | F = 0.12; p = 0.88 | |
Post-intervention | 37.89 ± 4.92 | 38.30 ± 6.13 | 56.15 ± 14.41 | F = 25.42; p = 0.00 | 1, 2 < 3 | |
Intra-group comparison | t = −3.47; p = 0.00 | t = −4.46; p = 0.00 | t = −7.57; p = 0.00 | |||
Sucrose (g) | Pre-intervention | 77.90 ± 27.55 | 84.07 ± 28.49 | 78.98 ± 24.77 | F = 0.31; p = 0.73 | |
Post-intervention | 26.96 ± 7.35 | 24.59 ± 6.37 | 28.51 ± 8,20 | F = 1.52; p = 0.23 | ||
Intra-group comparison | t = 8.66; p = 0.00 | t = 9.68; p = 0.00 | t = 9.26; p = 0.00 | |||
Protein (g) | Pre-intervention | 116.67 ± 20.22 | 117.86 ± 21.01 | 123.14 ± 23.15 | F = 0.54; p = 0.59 | |
Post-intervention | 80.08 ± 13.02 | 81.51 ± 14.55 | 83.84 ± 16.04 | F = 0.36; p = 0.70 | ||
Intra-group comparison | t = 10.25; p = 0.00 | t = 13.14; p = 0.00 | t = 8.81; p = 0.00 | |||
Protein (%) | Pre-intervention | 14.74 ± 1.95 | 15.21 ± 1.79 | 14.93 ± 1.32 | F = 0.41; p = 0.66 | |
Post-intervention | 19.14 ± 1.01 | 18.71 ± 0.85 | 19.33 ± 0.66 | F = 2.91; p = 0.06 | ||
Intra-group comparison | t = −8.59; p = 0.00 | t = −8.42; p = 0.00 | t = −12.73; p = 0.00 | |||
Total fat (g) | Pre-intervention | 152.28 ± 27.06 | 142.11 ± 29.78 | 154.88 ± 34.40 | F = 1.02; p = 0.37 | |
Post-intervention | 73.94 ± 11.56 | 94.37 ± 17.43 | 49.78 ± 9.21 | F = 60.06; p = 0.00 | 1, 3 < 2 and 3 < 1 | |
Intra-group comparison | t = 16.20; p = 0.00 | t = 8.52; p = 0.00 | t = 17.21; p = 0.00 | |||
Total fat (%) | Pre-intervention | 41.57 ± 3,84 | 39.21 ± 3.64 | 40.74 ± 3,02 | F = 2.43; p = 0.10 | |
Post-intervention | 38.71 ± 1.06 | 47.14 ± 0.91 | 24.90 ± 0.30 | F = 3905.36; p = 0.00 | 1, 3 < 2 and 3 < 1 | |
Intra-group comparison | t = 3.11; p = 0.01 | t = −8.60; p = 0.00 | t = 24.45; p = 0.00 | |||
Saturated fatty acid (%) | Pre-intervention | 16.57 ± 2.25 | 16.15 ± 2.25 | 16.55 ± 2.52 | F = 0.22; p = 0.81 | |
Post-intervention | 7.93 ± 0.49 | 8.85 ± 0.47 | 4.29 ± 0.45 | F = 545.73; p = 0.00 | 1, 3 < 2 and 3 < 1 | |
Intra-group comparison | t = 18.22; p = 0.00 | t = 14.15; p = 0.00 | t = 21.73; p = 0.00 | |||
Monounsaturated fatty acid (%) | Pre-intervention | 16.20 ± 2.11 | 14.85 ± 1.98 | 15.02 ± 2.18 | F = 2.57; p = 0.09 | |
Post-intervention | 19.46 ± 1.25 | 25.88 ± 0.83 | 14.77 ± 0.53 | F = 773.02; p = 0.00 | 1, 3 < 2 and 3 < 1 | |
Intra-group comparison | t = −6.94; p = 0.00 | t = −24.51; p = 0.00 | t = 0.52; p = 0.61 | |||
Oleic acid (%) | Pre-intervention | 14.64 ± 1.95 | 13.25 ± 1.91 | 13.44 ± 2.07 | F = 3.03; p = 0.06 | |
Post-intervention | 18.40 ± 1.43 | 25.14 ± 0.86 | 14.35 ± 0.65 | F = 582.44; p = 0.00 | 1, 3 < 2 and 3 < 1 | |
Intra-group comparison | t = −7.46; p = 0.00 | t = −27.90; p = 0.00 | t = −1.95; p = 0.06 | |||
Polyunsaturated fatty acid (%) | Pre-intervention | 6.40 ± 1.84 | 5.84 ± 1.41 | 6.71 ± 2.16 | F = 1.22; p = 0.30 | |
Post-intervention | 9.06 ± 0.78 | 9.51 ± 0.98 | 4.32 ± 0.57 | F = 274.56; p = 0.00 | 3 < 1, 2 | |
Intra-group comparison | t = −7.74; p = 0.00 | t = −9.31; p = 0.00 | t = 4,85; p = 0.00 | |||
Cholesterol (mg) | Pre-intervention | 609.25 ± 164.18 | 530.22 ± 115.77 | 601.34 ± 186.70 | F = 1.59; p = 0.21 | |
Post-intervention | 93.93 ± 22.44 | 101.22 ± 23.81 | 67.60 ± 18.76 | F = 13.85; p = 0.00 | 1, 3 < 2 and 3 < 1 | |
Intra-group comparison | t = 14.89; p = 0.00 | t = 16.90; p = 0.00 | t = 13.22; p = 0.00 |
Body Composition Anthropometric Measurements | Intervention Status | 1 TMD (n = 21) ± SD | 2 LCMD (n = 21) ± SD | 3 LFMD (n = 21) ± SD | Between-Group Comparison ± SD | Difference |
---|---|---|---|---|---|---|
Body weight (kg) | Pre-intervention | 91.90 ± 10.94 | 93.71 ± 12.36 | 94.12 ± 11.44 | F = 0.40; p = 0.67 | |
Post-intervention | 84.43 ± 10.34 | 86.87 ± 12.15 | 86.71 ± 10.87 | F = 0.17; p = 0.84 | ||
Intra-group comparison | t = 23.93; p = 0.00 | t = 19.02; p = 0.00 | t = 32.61; p = 0.00 | |||
BMI (kg/m2) | Pre-intervention | 32.30 ± 1.08 | 32.46 ± 1.68 | 32.34 ± 1.19 | F = 0.22; p = 0.81 | |
Post-intervention | 29.74 ± 1.22 | 30.08 ± 1.67 | 29.80 ± 1.23 | F = 0.28; p = 0.76 | ||
Intra-group comparison | t = 27.26; p = 0.00 | t = 17,04; p = 0.00 | t = 38.39; p = 0.00 | |||
Waist circumference (cm) | Pre-intervention | 109.93 ± 7.40 | 114.71 ± 14.78 | 111.19 ± 6,55 | F = 0.31; p = 0.73 | |
Post-intervention | 100.52 ± 7.35 | 106.10 ± 13.81 | 102.21 ± 6.81 | F = 0.30; p = 0.74 | ||
Intra-group comparison | t = 22.90; p = 0.00 | t = 14.80; p = 0.00 | t = 24.21; p = 0.00 | |||
Hip circumference (cm) | Pre-intervention | 106.71 ± 6.66 | 113.90 ± 11.36 | 108.05 ± 8.90 | F = 0.08; p = 0.92 | |
Post-intervention | 100.90 ± 6.60 | 108.10 ± 10.69 | 102.38 ± 8.89 | F = 0.52; p = 0.60 | ||
Intra-group comparison | t = 20.06; p = 0.00 | t = 17.90; p = 0.00 | t = 17.68; p = 0.00 | |||
Waist/hip circumference | Pre-intervention | 1.03 ± 0.07 | 1.01 ± 0.12 | 1.03 ± 0.06 | F = 0.35; p = 0.70 | |
Post-intervention | 1.00 ± 0.07 | 0.98 ± 0.13 | 0.99 ± 0.05 | F = 0.36; p = 0.70 | ||
Intra-group comparison | t = 4.35; p = 0.00 | t = 6.24; p = 0.00 | t = 6.25; p = 0.00 | |||
Body fat percentage (%) | Pre-intervention | 40.14 ± 6.14 | 38.97 ± 6.22 | 37.99 ± 7.96 | F = 1.77; p = 0.18 | |
Post-intervention | 35.52 ± 6.58 | 35.24 ± 5.94 | 33.92 ± 8.61 | F = 0.69; p = 0.50 | ||
Intra-group comparison | t = 13.64; p = 0.00 | t = 13.45; p = 0.00 | t = 17.90; p = 0.00 | |||
Abdominal fat mass (kg) | Pre-intervention | 18.91 ± 1.84 | 18.42 ± 2.53 | 18.10 ± 2.65 | F = 0.62; p = 0.54 | |
Post-intervention | 15.30 ± 2.12 | 14.91 ± 2.37 | 14.41 ± 2.81 | F = 0.69; p = 0.50 | ||
Intra-group comparison | t = 17.69; p = 0.00 | t = 16.10; p = 0.00 | t = 20.68; p = 0.00 |
Biochemical Parameters | Intervention Status | 1 TMD (n = 21) ± SD | 2 LCMD (n = 21) ± SD | 3 LFMD (n = 21) ± SD | Between-Group Comparison ± SD | Difference |
---|---|---|---|---|---|---|
Fasting blood glucose (mg/dL) | Pre-intervention | 123.29 ± 17.08 | 117.14 ± 13.33 | 114.14 ± 13.47 | F = 2.10; p = 0.13 | |
Post-intervention | 106.05 ± 13.67 | 103.05 ± 10.93 | 102.71 ± 10.79 | F = 0.50; p = 0.61 | ||
Intra-group comparison | t = 11.26; p = 0.01 | t = 9.61; p = 0.01 | t = 8.38; p = 0.01 | |||
HOMA-IR | Pre-intervention | 4.24 ± 0.70 | 3.85 ± 0.70 | 4.24 ± 1.00 | F = 1.60; p = 0.21 | |
Post-intervention | 2.38 ± 0.46 | 2.50 ± 0.55 | 2.67 ± 0.80 | F = 1.17; p = 0.32 | ||
Intra-group comparison | t = 18.32; p = 0.01 | t = 15.05; p = 0.01 | t = 18.38; p = 0.01 | |||
ALT (U/L) | Pre-intervention | 69.19 ± 14.48 | 66.38 ± 11.36 | 68.67 ± 15.30 | F = 0.25; p = 0.78 | |
Post-intervention | 48.52 ± 9.00 | 51.43 ± 6.34 | 51.95 ± 10.79 | F = 0.90; p = 0.41 | ||
Intra-group comparison | t = 11.00; p = 0.01 | t = 7.60; p = 0.01 | t = 9.66; p = 0.01 | |||
AST (U/L) | Pre-intervention | 42.19 ± 13.36 | 45.71 ± 14.62 | 50.43 ± 16.50 | F = 1.62; p = 0.21 | |
Post-intervention | 26.76 ± 7.08 | 34.90 ± 8.17 | 37.24 ± 10.60 | F = 8.31; p = 0.01 | 1 < 2, 3 | |
Intra-group comparison | t = 7.90; p = 0.01 | t = 6.14; p = 0.01 | t = 7.29; p = 0.01 | |||
GGT (U/L) | Pre-intervention | 35.38 ± 7.05 | 39.33 ± 11.13 | 43.29 ± 12.10 | F = 3.08; p = 0.05 | 1 < 3 |
Post-intervention | 20.81 ± 5.73 | 31.24 ± 8.17 | 30.76 ± 8.26 | F = 13.02; p = 0.01 | 1 < 2, 3 | |
Intra-group comparison | t = 10.81; p = 0.01 | t = 7.11; p = 0.01 | t = 9.06; p = 0.01 | |||
FLI | Pre-intervention | 85.62 ± 7.34 | 87.90 ± 8.79 | 88.71 ± 4.77 | F = 1.06; p = 0.35 | |
Post-intervention | 60.38 ± 13.15 | 71.95 ± 17.18 | 68.71 ± 10.97 | F = 3.82; p = 0.03 | 1 < 2 | |
Intra-group comparison | t = 13.97; p = 0.01 | t = 7.90; p = 0.01 | t = 13.53; p = 0.01 | |||
FIB-4 | Pre-intervention | 0.61 ± 0.22 | 0.73 ± 0.28 | 0.73 ± 0.22 | F = 1.64; p = 0.20 | |
Post-intervention | 0.48 ± 0.16 | 0.61 ± 0.20 | 0.62 ± 0.17 | F = 4.10; p = 0.02 | 1 < 3 | |
Intra-group comparison | t = 6.84; p = 0.01 | t = 4.59; p = 0.01 | t = 5.53; p = 0.01 |
1 TMD (n = 21) ± SD | 2 LCMD (n = 21) ± SD | 3 LFMD (n = 21) ± SD | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ALT | AST | GGT | FLI | ALT | AST | GGT | FLI | ALT | AST | GGT | FLI | ||
Carbohydrate (g) | r | 0.41 | 0.29 | 0.43 | 0.38 | 0.42 | 0.28 | 0.16 | −0.52 | −0.15 | −0.34 | −0.29 | 0.24 |
p | 0.06 | 0.19 | 0.05 | 0.89 | 0.054 | 0.21 | 0.47 | 0.01 | 0.50 | 0.12 | 0.19 | 0.29 | |
Carbohydrate (%) | r | 0.02 | −0.49 | 0.09 | 0.17 | 0.21 | 0.20 | 0.38 | −0.18 | 0.08 | −0.01 | −0.07 | −0.16 |
p | 0.90 | 0.83 | 0.68 | 0.44 | 0.35 | 0.36 | 0.84 | 0.42 | 0.71 | 0.94 | 0.73 | 0.46 | |
Fiber (g) | r | 0.22 | 0.04 | 0.21 | −0.17 | 0.15 | 0.12 | 0.06 | −0.03 | 0.08 | 0.07 | 0.08 | 0.45 |
p | 0.32 | 0.86 | 0.34 | 0.46 | 0.50 | 0.57 | 0.77 | 0.87 | 0.70 | 0.75 | 0.70 | 0.03 | |
Sucrose (g) | r | 0.24 | 0.20 | 0.33 | 0.65 | 0.49 | 0.47 | 0.26 | −0.31 | 0.12 | 0.43 | 0.43 | 0.28 |
p | 0.28 | 0.37 | 0.13 | 0.001 | 0.02 | 0.01 | 0.24 | 0.17 | 0.35 | 0.04 | 0.04 | 0.20 | |
Protein (g) | r | 0.15 | 0.31 | 0.08 | −0.19 | 0.45 | 0.23 | −0.13 | −0.59 | −0.14 | −0.22 | −0.16 | 0.09 |
p | 0.51 | 0.16 | 0.71 | 0.40 | 0.04 | 0.29 | 0.56 | 0.005 | 0.53 | 0.31 | 0.48 | 0.68 | |
Protein (%) | r | −0.31 | −0.10 | −0.33 | −0.40 | 0.19 | 0.09 | −0.04 | −0.35 | −0.10 | −0.09 | −0.12 | −0.23 |
p | 0.17 | 0.66 | 0.13 | 0.07 | 0.39 | 0.67 | 0.86 | 0.11 | 0.65 | 0.68 | 0.59 | 0.30 | |
Total fat (g) | r | 0.56 | 0.46 | 0.47 | 0.27 | −0.13 | −0.14 | −0.25 | 0.06 | −0.10 | −0.16 | −0.5 | 0.45 |
p | 0.007 | 0.03 | 0.03 | 0.22 | 0.54 | 0.52 | 0.25 | 0.77 | 0.65 | 0.46 | 0.80 | 0.03 | |
Total fat (%) | r | 0.16 | 0.14 | 0.08 | 0.01 | −0.27 | −0.20 | −0.30 | 0.27 | −0.05 | 0.02 | 0.11 | 0.24 |
p | 0.47 | 0.54 | 0.72 | 0.94 | 0.23 | 0.36 | 0.18 | 0.22 | 0.81 | 0.90 | 0.61 | 0.29 | |
SFA (%) | r | 0.32 | 0.19 | 0.19 | 0.28 | −0.25 | 0.14 | 0.23 | 0.29 | 0.26 | −0.28 | 0.24 | 0.66 |
p | 0.15 | 0.40 | 0.39 | 0.21 | 0.26 | 0.53 | 0.31 | 0.22 | 0.25 | 0.20 | 0.28 | 0.001 | |
MUFA (%) | r | 0.11 | 0.18 | 0.09 | 0.12 | 0.26 | 0.24 | 0.29 | 0.44 | 0.45 | 0.39 | 0.43 | 0.09 |
p | 0.61 | 0.42 | 0.69 | 0.60 | 0.25 | 0.28 | 0.20 | 0.04 | 0.03 | 0.07 | 0.04 | 0.66 | |
Oleic acid (%) | r | 0.03 | 0.08 | 0.01 | 0.08 | 0.30 | 0.28 | 0.30 | 0.42 | 0.50 | 0.43 | 0.43 | 0.09 |
p | 0.87 | 0.72 | 0.97 | 0.71 | 0.18 | 0.20 | 0.17 | 0.052 | 0.02 | 0.05 | 0.02 | 0.66 | |
PUFA (%) | r | −0.02 | −0.05 | −0.02 | −0.39 | −0.12 | −0.11 | −0.17 | −0.03 | −0.15 | 0.03 | 0.02 | 0.46 |
p | 0.91 | 0.81 | 0.92 | 0.07 | 0.60 | 0.61 | 0.45 | 0.86 | 0.50 | 0.89 | 0.90 | 0.03 | |
Cholesterol (mg) | r | 0.06 | 0.15 | 0.14 | 0.38 | 0.51 | 0.15 | −0.17 | −0.25 | 0.03 | −0.13 | −0.08 | 0.64 |
p | 0.77 | 0.51 | 0.95 | 0.08 | 0.01 | 0.50 | 0.44 | 0.28 | 0.87 | 0.56 | 0.71 | 0.002 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uluçay Kestane, V.; Baş, M. Efficacy of the Mediterranean Diet Containing Different Macronutrients on Non-Alcoholic Fatty Liver Disease. Nutrients 2024, 16, 2699. https://doi.org/10.3390/nu16162699
Uluçay Kestane V, Baş M. Efficacy of the Mediterranean Diet Containing Different Macronutrients on Non-Alcoholic Fatty Liver Disease. Nutrients. 2024; 16(16):2699. https://doi.org/10.3390/nu16162699
Chicago/Turabian StyleUluçay Kestane, Vahibe, and Murat Baş. 2024. "Efficacy of the Mediterranean Diet Containing Different Macronutrients on Non-Alcoholic Fatty Liver Disease" Nutrients 16, no. 16: 2699. https://doi.org/10.3390/nu16162699
APA StyleUluçay Kestane, V., & Baş, M. (2024). Efficacy of the Mediterranean Diet Containing Different Macronutrients on Non-Alcoholic Fatty Liver Disease. Nutrients, 16(16), 2699. https://doi.org/10.3390/nu16162699