General Dietary Recommendations for People with Down Syndrome
Abstract
:1. Introduction
2. Studies on the Frequency of Consumption of Food Products in People with Trisomy 21
3. Health Implications of an Improper Diet
3.1. Low Consumption of Vegetables and Fruit
3.2. Low Intake of Whole Grain Cereal Products
3.3. Low Intake of Dairy Products
3.4. High Meat Consumption
4. Nutritional Recommendations for People with DS
4.1. Energy Value of the Diet
4.2. Macronutrient Content in the Diet
4.2.1. Protein
4.2.2. Fat
4.2.3. Carbohydrates
4.3. Micronutrient Content in the Diet
5. Dietary Guidelines in Different Countries
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Maatta, T. Down Syndrome, Health and Disability: A Population-Based Case Record and Follow-Up Study; Universitatis Ouluensis: Oulu, Finland, 2011. [Google Scholar]
- Bishara, N.; Clericuzio, C. Common Dysmorphic Syndromes in the NICU. NeoReviews 2009, 9, e29–e38. [Google Scholar] [CrossRef]
- Weijerman, M.E.; De Winter, J.P. Clinical Practice: The Care of Children with Down Syndrome. Eur. J. Pediatr. 2010, 169, 1445–1452. [Google Scholar] [CrossRef] [PubMed]
- Park, A.H.; Wilson, M.A.; Stevens, P.T.; Harward, R.; Hohler, N. Identification of Hearing Loss in Pediatric Patients with Down Syndrome. Otolaryngol.—Head Neck Surg. 2012, 146, 135–140. [Google Scholar] [CrossRef] [PubMed]
- Tedeschi, A.S.; Roizen, N.J.; Taylor, H.G.; Murray, G.; Curtis, C.A. The Prevalence of Congenital Hearing Loss in Neonates with Down Syndrome. J. Pediatr. 2015, 166, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Melville, C.A.; Cooper, S.; Mcgrother, C.W.; Thorp, C.F.; Collacott, R. Obesity in Adults with Down Syndrome: A Case—Control Study. J. Intellect. Disabil. Res. 2004, 49, 125–133. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, K.; Rimmer, J.H.; Heller, T. Obesity and Associated Factors in Adults with Intellectual Disability. J. Intellect. Disabil. Res. 2014, 58, 851–863. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, C.T.; Amaral, D.M.; Ribeiro, M.G.; Beserra, I.C.R.; Guimarães, M.M. Insulin Resistance in Adolescents with Down Syndrome: A Cross-Sectional Study. BMC Endocr. Disord 2005, 5, 6. [Google Scholar] [CrossRef]
- Adelekan, T.; Magge, S.; Shults, J.; Stallings, V.; Stettler, N. Lipid Profiles of Children with Down Syndrome Compared with Their Siblings. Pediatrics 2012, 129, e1382–e1387. [Google Scholar] [CrossRef]
- Dörner, K.; Gaethke, A.S.; Tolksdorf, M.; Schumann, K.P.; Gustmann, H. Cholesterol Fractions and Triglycerides in Children and Adults with down’s Syndrome. Clin. Chim. Acta 1984, 142, 307–311. [Google Scholar] [CrossRef]
- Prasher, V.; Ninan, S.; Haque, S. Fifteen-Year Follow-up of Thyroid Status in Adults with Down Syndrome. J. Intellect. Disabil. Res. 2011, 55, 392–396. [Google Scholar] [CrossRef]
- Cebeci, A.N.; Güven, A.; Yildiz, M. Profile of Hypothyroidism in Down’s Syndrome. J. Clin. Res. Pediatr. Endocrinol. 2013, 5, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Friedmacher, F.; Puri, P. Hirschsprung’s Disease Associated with Down Syndrome: A Meta-Analysis of Incidence, Functional Outcomes and Mortality. Pediatr. Surg. Int. 2013, 29, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Holmes, G. Gastrointestinal Disorders in Down Syndrome. Gastroenterol. Hepatol. Bed Bench 2014, 7, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.S.; Hwang, S.T.; Jang, N.G.; Tchah, H.; Choi, D.Y.; Kim, H.Y.; Ryoo, E. A Case of Congenital Duodenal Web Causing Duodenal Stenosis in a Down Syndrome Child: Endoscopic Resection with an Insulated-Tip Knife. Gut Liver 2011, 5, 105–109. [Google Scholar] [CrossRef] [PubMed]
- Ram, G.; Chinen, J. Infections and Immunodeficiency in Down Syndrome. Clin. Exp. Immunol. 2011, 164, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Kusters, M.A.A.; Verstegen, R.H.J.; Gemen, E.F.A.; Vries, E. De Intrinsic Defect of the Immune System in Children with Down Syndrome: A Review. Clin. Exp. Immunol. 2009, 156, 189–193. [Google Scholar] [CrossRef]
- Nowak-Oczkowska, A. Are Down’s Syndrome Patients a Risk Group for Celiac Disease? Gastroenterol. Rev. 2013, 8, 77–85. [Google Scholar] [CrossRef]
- Kawatu, D.; Leleiko, N.S. Screening for Celiac Disease in Asymptomatic Children with Down Syndrome: Cost-Effectiveness of Preventing Lymphoma. Pediatrics 2006, 118, 816–817. [Google Scholar] [CrossRef]
- Rowicka, G.; Dyląg, H. Ocena Częstości Występowania Celiakii Wśród Pacjentów Poradni Gastroenterologicznej Instytutu Matki i Dziecka. Probl. Hig. Epidemiol. 2012, 93, 862–866. [Google Scholar]
- Failla, P.; Barone, C.; Pettinato, R.; Romano, C. IGG Antibodies to Beta-Lactoglobulin and Cow’s Milk Protein Intolerance in Down Syndrome. Down Syndr. Res. Pract. 2007, 5, 120–122. [Google Scholar] [CrossRef]
- Nunez-Enriquez, J.C.; Fajardo-Gutierrez, A.; Buchan-Duran, E.P.; Bernaldez-Rios, R.; Medina-Sanson, A.; Jimenez-Hernandez, E.; Amador-Sanchez, R.; Peñaloza-Gonzalez, J.G.; Paredes-Aguilera, R.; Alvarez-Rodriguez, F.J.; et al. Allergy and acute leukaemia in children with Down syndrome: A population study. Report from the Mexican inter-institutional group for the identification of the causes of childhood leukaemia. Br. J. Cancer 2013, 108, 2334–2338. [Google Scholar] [CrossRef] [PubMed]
- Shires, C.B.; Anold, S.L.; Schoumacher, R.A.; Dehoff, G.W.; Donepudi, S.K.; Mary, R. Body mass index as an indicator of obstructive sleep apnea in pediatric Down. Int. J. Pediatr. Otorhinolaryngol. 2010, 74, 768–772. [Google Scholar] [CrossRef] [PubMed]
- Rodger, J.C.; Rao, S.S.; Fletcher, C.D.; Dunnigan, M.G. Down’s syndrome: An atheroma-free model? Br. Med. J. 1977, 2, 226–228. [Google Scholar] [CrossRef]
- de la Piedra, M.J.; Alberti, G.; Cerda, J.; Cárdenas, A.; Paul, M.A.; Lizama, M.; Lizama, M.C. High Frequency of Dyslipidemia in Children and Adolescents with Down Syndrome Alta Frecuencia de Dislipidemias En Niños y Adolescentes Con Síndrome de Down. Rev. Chil. Pediatr. 2017, 88, 595–601. [Google Scholar] [CrossRef] [PubMed]
- Menéndez, M. Down syndrome, Alzheimer’s disease and seizures. Brain Dev. 2005, 27, 246–252. [Google Scholar] [CrossRef] [PubMed]
- Coppus, A.; Evenhuis, H.; Verberne, G.J.; Visser, F.; Van Gool, P.; Eikelenboom, P.; Van Duijin, C. Dementia and mortality in persons with Down’s syndrome. J. Intellect. Disabil. Res. 2006, 50, 768–777. [Google Scholar] [CrossRef] [PubMed]
- Tyrrell, J.; Cosgrave, M.; McCarron, M.; McPherson, J.; Calvert, J.; Kelly, A.; McLaughlin, M.; Gill, M.; Lawlor, B.A. Dementia in people with Down’s syndrome. Int. J. Geriatr. Psychiatry 2001, 16, 1168–1174. [Google Scholar] [CrossRef]
- Lott, I.T.; Dierssen, M. Cognitive deficits and associated neurological complications in individuals with Down’s syndrome. Lancet Neurol. 2010, 9, 623–633. [Google Scholar] [CrossRef]
- Braunschweig, C.L.; Gomez, S.; Sheean, P.; Tomey, K.M.; Rimmer, J.; Heller, T. Nutritional Status and Risk Factors for Chronic Disease in Urban-Dwelling Adults With Down Syndrome. Am. J. Ment. Retard. 2004, 109, 186–193. [Google Scholar] [CrossRef]
- Mohamed, B.; Alhamdan, A.; Samarkandy, M. Dietary Practice and Physical Activity in Children with Down Syndrome and Their Siblings in Saudi Arabia. Can. J. Clin. Nutr. 2013, 1, 35–46. [Google Scholar] [CrossRef]
- Nordstrøm, M.; Paus, B.; Andersen, L.F.; Kolset, S.O. Dietary Aspects Related to Health and Obesity in Williams Syndrome, Down Syndrome, and Prader-Willi Syndrome. Food Nutr. Res. 2015, 59, 25487. [Google Scholar] [CrossRef] [PubMed]
- Roccatello, G.; Cocchi, G.; Dimastromatteo, R.T.; Cavallo, A.; Biserni, G.B.; Selicati, M.; Forchielli, M.L. Eating and Lifestyle Habits in Youth With Down Syndrome Attending a Care Program: An Exploratory Lesson for Future Improvements. Front. Nutr. 2021, 8, 641112. [Google Scholar] [CrossRef] [PubMed]
- Wernio, E.; Kłosowska, A.; Kuchta, A.; Cwiklíńska, A.; Sałaga-Zaleska, K.; Jankowski, M.; Kłosowski, P.; Wiśniewski, P.W.; Wierzba, J.; Małgorzewicz, S. Analysis of Dietary Habits and Nutritional Status of Children with Down Syndrome in the Context of Lipid and Oxidative Stress Parameters. Nutrients 2022, 14, 2390. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Quintana, L.; Vázquez-Lorente, H.; Carranco Romo, M.J.; Flores Buitrón, E.P.; Molina-López, J.; Moya, M.T.; Planells, E. Imbalanced Dietary Patterns, Anthropometric, and Body Composition Profiles amongst Adults with Down Syndrome. Nutr. Neurosci. 2014, 27, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Peiris, H.; Duffield, M.D.; Fadista, J.; Jessup, C.F.; Kashmir, V.; Genders, A.J.; McGee, S.L.; Martin, A.M.; Saiedi, M.; Morton, N.; et al. A Syntenic Cross Species Aneuploidy Genetic Screen Links RCAN1 Expression to β-Cell Mitochondrial Dysfunction in Type 2 Diabetes. PLoS Genet. 2016, 12, e1006033. [Google Scholar] [CrossRef]
- Gomes, R.C.; Maia, J.C.; Arrais, R.F.; Andre, C.; Auxiliadora, M.; Rocha, C.; Edinilma, M.; Brito, F.; Oliveira, A.N.A.L.; Maranha, C.M. The Celiac Iceberg: From the Clinical Spectrum to Serology and Histopathology in Children and Adolescents with Type 1 Diabetes Mellitus and Down Syndrome. Scand. J. Gastroenterol. 2016, 51, 178–185. [Google Scholar] [CrossRef]
- Lai, F.; Williams, R.S. A Prospective Study of Alzheimer Disease in Down Syndrome. Arch. Neurol. 1989, 46, 849–853. [Google Scholar] [CrossRef] [PubMed]
- Victorino, D.B.; Godoy, M.F.; Goloni-Bertollo, E.M.; Pavarino, E.C. Meta-Analysis of Methylenetetrahydrofolate Reductase Maternal Gene in Down Syndrome: Increased Susceptibility in Women Carriers of the MTHFR 677T Allele. Mol. Biol. Rep. 2014, 41, 5491–5504. [Google Scholar] [CrossRef]
- Kedar, R.; Chandel, D. MTHFR Gene Polymorphism and Associated Nutritional Deficiency in the Etiology and Pathogenesis of Down Syndrome. Egypt. J. Med. Hum. Genet. 2019, 20, 12. [Google Scholar] [CrossRef]
- Pavarino, E.C.; Zampieri, L.B.; Biselli, M.J.; Goloni Bertollo, E.M. Abnormal Folate Metabolism and Maternal Risk for Down Syndrome. In Genetics and Etiology of Down Syndrome; InTech: Rijeka, Croácia, 2011. [Google Scholar]
- Vione, B.; Ramacieri, G.; Zavaroni, G.; Piano, A.; La Rocca, G.; Caracausi, M.; Vitale, L.; Piovesan, A.; Gori, C.; Pirazzoli, G.L.; et al. One-Carbon Pathway Metabolites Are Altered in the Plasma of Subjects with Down Syndrome: Relation to Chromosomal Dosage. Front. Med. 2022, 9, 1006891. [Google Scholar] [CrossRef]
- Weickert, M.O.; Pfeiffer, A.F.H. Metabolic Effects of Dietary Fiber Consumption and Prevention of Diabetes 1. J. Nutr. 2008, 138, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Russell, W.R.; Baka, A.; Björck, I.; Delzenne, N.; Gao, D.; Griffiths, H.R.; Hadjilucas, E.; Juvonen, K.; Lahtinen, S.; Lansink, M.; et al. Impact of Diet Composition on Blood Glucose Regulation. Crit. Rev. Food Sci. Nutr. 2016, 56, 541–590. [Google Scholar] [CrossRef] [PubMed]
- Granfeldt, Y.; Nyberg, L.; Björck, I. Muesli with 4 g Oat Beta-Glucans Lowers Glucose and Insulin Responses after a Bread Meal in Healthy Subjects. Eur. J. Clin. Nutr. 2008, 62, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.J.A.; Kendall, C.W.C.; Augustin, L.S.A.; Franceschi, S.; Hamidi, M.; Marchie, A.; Jenkins, A.L.; Axelsen, M. Glycemic Index: Overview of Implications in Health and Disease. Am. J. Clin. Nutr. 2002, 76, 266S–273S. [Google Scholar] [CrossRef] [PubMed]
- Weickert, M.O.; Pfeiffer, A.F. Impact of Dietary Fiber Consumption on Insulin Resistance and the Prevention of Type 2 Diabetes. J. Nutr. 2018, 148, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Bazzano, L.A. Effects of Soluble Dietary Fiber on Low-Density Lipoprotein Cholesterol and Coronary Heart Disease Risk. Curr. Atheroscler. Rep. 2008, 10, 473–477. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Yi, C.X.; Katiraei, S.; Kooijman, S.; Zhou, E.; Chung, C.K.; Gao, Y.; Van Den Heuvel, J.K.; Meijer, O.C.; Berbée, J.F.P.; et al. Butyrate Reduces Appetite and Activates Brown Adipose Tissue via the Gut-Brain Neural Circuit. Gut 2018, 67, 1269–1279. [Google Scholar] [CrossRef] [PubMed]
- Włodarczyk, J.; Płoska, M.; Płoski, K.; Fichna, J. Rola Krótkołańcuchowych Kwasów Tłuszczowych w Nieswoistych Chorobach Zapalnych Jelit i Raku Jelita Grubego. Adv. Biochem. 2021, 67, 223–230. [Google Scholar] [CrossRef]
- Marín, S.; Xandri Graupera, A. Nutritional status of intellectual disabled persons with Down syndrome. Nutr. Hosp. 2011, 26, 1059–1066. [Google Scholar] [CrossRef]
- Goluch-Koniuszy, Z.; Kunowski, M. Glycemic Index and Glycemic Load of diets in children and young people with Down’s Syndrome. Acta Sci. Pol. Technol. Aliment. 2013, 12, 181–194. [Google Scholar]
- Luke, A.; Sutton, M.; Schoeller, D.A.; Roizen, N.J.M. Nutrient Intake and Obesity in Prapubescent Children with Down Syndrome. J. Am. Diet. Assoc. 1996, 96, 1262–1267. [Google Scholar] [CrossRef]
- Burke, É.A.; Carroll, R.; Dwyer, M.O.; Walsh, J.B.; Mccallion, P. Osteoporosis and People with Down Syndrome: A Preliminary Descriptive Examination of the Intellectual Disability Supplement to the Irish Longitudinal Study on Ageing Wave 1 Results. Health 2018, 10, 1233–1249. [Google Scholar] [CrossRef]
- Souverein, P.C.; Webb, D.J.; Weil, J.G.; Van Staa, T.P.; Egberts, A.C.G. Use of Antiepileptic Drugs and Risk of Fractures: Case-Control Study among Patients with Epilepsy. Neurology 2006, 66, 1318–1324. [Google Scholar] [CrossRef] [PubMed]
- Rai, N.; Thapa, M.; Pokharel, M.; Acharya, J.; Yadav, D. Intracranial Calcification and Seizure with Down Syndrome: A Case Report. J. Nepal Med. Assoc. 2022, 60, 1063. [Google Scholar] [CrossRef]
- Hosdurga, S.; Hussain, S.; Fraser, J. Abnormal Calcium, Calcinosis, and Creatinine in Down’s Syndrome. Physician 2021, 7, 1–4. [Google Scholar] [CrossRef]
- Manz, F. A Toddler with Down Syndrome, Hypercalcaemia, Hypercalciuria, Medullary Nephrocalcinosis and Renal Failure. Pediatr. Nephrol. 1996, 10, 251. [Google Scholar] [CrossRef] [PubMed]
- Magenis, M.L.; Gonc, A.; Bongiolo, A.M.; Antonio, M.; Castro, K.; Dalira, I.; Perry, S. Dietary Practices of Children and Adolescents with Down Syndrome. J. Intellect. Disabil. 2018, 22, 125–134. [Google Scholar] [CrossRef] [PubMed]
- Holm, P.I.; Ueland, P.M.; Vollset, S.E.; Midttun, Ø.; Blom, H.J.; Keijzer, M.B.A.J.; Den Heijer, M. Betaine and Folate Status as Cooperative Determinants of Plasma Homocysteine in Humans. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 379–385. [Google Scholar] [CrossRef]
- Łubińska, M.; Kazimierska, E.; Sworczak, K. Hyperhomocysteinemia as a New Risk Factor for Different Diseases. Adv. Clin. Exp. Med. 2006, 15, 897–903. [Google Scholar]
- Rasmussen, S.; Irgens, L.M.; Albrechtsen, S.; Dalaker, K. Predicting Preeclampsia in the Second Pregnancy from Low Birth Weight in the First Pregnancy. Obstet. Gynecol. 2000, 96, 696–700. [Google Scholar] [CrossRef]
- Walker, P.; Rhubart-Berg, P.; Mckenzie, S.; Kelling, K.; Lawrence, R.S. Invited Paper Public Health Implications of Meat Production and Consumption. Public Health Nutr. 2005, 8, 348–356. [Google Scholar] [CrossRef] [PubMed]
- Godfray, H.C.J.; Aveyard, P.; Garnett, T.; Hall, J.W.; Key, T.J.; Lorimer, J.; Pierrehumbert, R.T.; Scarborough, P.; Springmann, M.; Jebb, S.A. Meat Consumption, Health, and the Environment. Science 2018, 361, eaam5324. [Google Scholar] [CrossRef] [PubMed]
- Christakos, S.; DeLuca, H.F. Minireview: Vitamin D: Is There a Role in Extraskeletal Health? Endocrinology 2011, 152, 2930–2936. [Google Scholar] [CrossRef] [PubMed]
- Arnson, Y.; Amital, H.; Shoenfeld, Y. Vitamin D and Autoimmunity: New Aetiological and Therapeutic Considerations. Ann. Rheum. Dis. 2007, 66, 1137–1142. [Google Scholar] [CrossRef] [PubMed]
- Pilz, S.; März, W.; Wellnitz, B.; Seelhorst, U.; Fahrleitner-Pammer, A.; Dimai, H.P.; Boehm, B.O.; Dobnig, H. Association of Vitamin D Deficiency with Heart Failure and Sudden Cardiac Death in a Large Cross-Sectional Study of Patients Referred for Coronary Angiography. J. Clin. Endocrinol. Metab. 2008, 93, 3927–3935. [Google Scholar] [CrossRef] [PubMed]
- Danescu, L.G.; Levy, S.; Levy, J. Vitamin D and Diabetes Mellitus. Endocrine 2009, 35, 11–17. [Google Scholar] [CrossRef] [PubMed]
- Reichrath, J. Vitamin D and the skin: An ancient friend, revisited-cutaneous vitamin D endocrine system-inflammatory skin diseases-skin-vitamin D-vitamin D deficiency. Exp. Dermatol. 2007, 16, 618–625. [Google Scholar] [CrossRef] [PubMed]
- Płudowski, P.; Karczmarewicz, E.; Czech-Kowalska, J. Nowe spojrzenie na suplementację witaminą D (Pol.)/A New Perspective on Vitamin D Supplementation (Ang.). Stand. Med. 2009, 1, 23–41. [Google Scholar]
- Brantmüller, É.; Gyuró, M.; Karácsony, I. Development of Walking and Self-Sufficiency Ability Related to Nutrition among People with Down Syndrome. Pract. Theory Syst. Educ. 2015, 10, 165–176. [Google Scholar] [CrossRef]
- Martínez-Espinosa, R.M.; Vila, M.D.M.; García-Galbis, M.R. Evidences from Clinical Trials in Down Syndrome: Diet, Exercise and Body Composition. Int. J. Environ. Res. Public Health 2020, 17, 4294. [Google Scholar] [CrossRef]
- Spear, D.; Novak, P.; Rosenzweig, L.; Wallace, L.S.; Conway, C.; Wittenbrook, W.; Lemons, S.; Medlen, J.G. Academy of Nutrition and Dietetics: Standards of Practice and Standards of Professional Performance for Registered Dietitians (Competent, Proficient, and Expert) in Intellectual and Developmental Disabilities. J. Acad. Nutr. Diet. 2012, 112, 1454–1464.e35. [Google Scholar] [CrossRef]
- Jarosz, M. (red) Normy Żywienia Dla Populacji Polskiej Nowelizacja (Pol)/Nutrition Standards for the Polish Population—Amendment (Ang); Institute of Food and Nutrition: Warsaw, Poland, 2012. [Google Scholar]
- Revilla, N.R.; Martínez-Cué, C. Antioxidants in Down Syndrome: From Preclinical Studies to Clinical Trials. Antioxidants 2020, 9, 692. [Google Scholar] [CrossRef] [PubMed]
- Albu, C.-C.; Russu, E.-A.; Albu, D.-F.; Albu, Ş.-D. Folic Acid and Its Implications in Genetic Pathology. World J. Adv. Res. Rev. World 2022, 16, 742–748. [Google Scholar] [CrossRef]
- Shirode, P.S.; Parekh, A.D.; Patel, V.V.; Vala, J.; Jaimalani, A.M.; Vora, N.M.; Gummalla, V.; Patel, J.S.; Shriram, N. Early Detection of Subclinical Atherosclerosis: Hyperhomocysteinemia as a Promising Marker in Adolescents With Vitamin B Deficiency. Cureus 2023, 15, e41571. [Google Scholar] [CrossRef] [PubMed]
- Vraneković, J.; Slivšek, G.; Majstorović, D. Methyltetrahydrofolate-Homocysteine Methyltransferase Reductase Gene and Congenital Heart Defects in Down Syndrome. Genet. Appl. 2020, 4, 12–17. [Google Scholar] [CrossRef]
- Lyon, P.; Strippoli, V.; Fang, B.; Cimmino, L. B Vitamins and One-Carbon Metabolism: Implications in Human Health and Disease. Nutrients 2020, 12, 2867. [Google Scholar] [CrossRef] [PubMed]
- Snetselaar, L.G.; De Jesus, J.M.; Desilva, D.M.; Stoody, E.E. Dietary Guidelines for Americans, 2020–2025: Understanding the Scientific Process, Guidelines, and Key Recommendations. Nutr. Today 2021, 56, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Cobiac, L.J.; Scarborough, P.; Kaur, A.; Rayner, M. The Eatwell Guide: Modelling the Health Implications of Incorporating New Sugar and Fibre Guidelines. PLoS ONE 2016, 11, e0167859. [Google Scholar] [CrossRef]
- López García, E.; Bretón Lesmes, I.; Díaz Perales, A.; Moreno Arribas, V.; del Puy Portillo Baquedano, M.; María Rivas Velasco, A.; Fresán Salvo, U.; Tejedor Romero, L.; Bartolomé Ortega Porcel, F.; Aznar Laín, S.; et al. Report of the Scientific Committee of the Spanish Agency for Food Safety and Nutrition (AESAN) on Sustainable Dietary and Physical Activity Recommendations for the Spanish Population. Food Risk Assess Europe 2023, 1, 0005E. [Google Scholar] [CrossRef]
- DGE-Ernährungskreis (Germ)/DGE German Society for Nutrition (Eng). Available online: https://www.dge.de/gesunde-ernaehrung/gut-essen-und-trinken/dge-ernaehrungskreis/ (accessed on 12 May 2024).
- Wolnicka, K. Talerz Zdrowego Żywienia (Pol)/Healtly Eating Plate (Ang). Available online: https://ncez.pzh.gov.pl/abc-zywienia/talerz-zdrowego-zywienia/ (accessed on 11 February 2024).
Authors | Characteristics of the Study Group | Results |
---|---|---|
Braunschweig et al., 2004 [30] | Forty-eight adults with DS | The average number of portions consumed per day in the study group was: 1.0 for vegetables, 2.8 for fruit, 1.6 for dairy products, 5.6 for bread, and 6.1 for meat. The authors found in the results that none of the participants consumed the recommended 5 servings of vegetables and fruit every day. |
Mohamed et al., 2013 [31] | One hundred and eight children aged 5 to 12 years with DS and siblings as a control group | DS group: 51% of children consumed 1 to 3 portions of meat per week, the vast majority (86%) of which was poultry meat. Fish, eggs, and yellow cheese were eaten 1 to 3 times a week by the majority (80 to 86%) of the subjects. Milk was consumed 1 to 3 times a week by over half of the subjects, and pasta and rice by the majority of the subjects (89%). Only from 15% to 17% of the subjects consumed fresh vegetables and fruit in the amount of 4 to 6 portions per week. |
Nordstrøm et al., 2015 [32] | Eighty-one children and adults aged 16 to 42 with Prader-Willi, Williams, and Down syndromes | DS subgroup: 33% of people with DS consumed fruit every day, fruit juices—37%, vegetables—29%. About 50% of the subjects consumed sugary drinks 3 times a week or less and 4 times a week or more often. About 70% of the subjects ate fish and pre-cooked meals 3 times a week or less. Thirty percent of the subjects ate pre-cooked meals 4 times a week or more often. The consumption of sugary drinks and ready-to-eat foods was higher among people living in communities than with families. No difference was observed in the frequency of consumption of other tested products in people with DS, living with families, and in institutionalized centers. |
Roccatello et al., 2021 [33] | Thirty-four children with DS aged 6 to 16 years | Children most often chose pasta (82% of subjects), bread and its derivatives (47% of subjects), and sweets (29% of subjects). Vegetables (34% of subjects), sweets (26% of subjects), and fruit (18% of subjects) were indicated as the least liked. |
Wernio et al., 2022 [34] | Thirty-nine children with DS aged 9 to 18 years | Seven percent of the subjects consumed vegetables and natural dairy products but also added sugar to their meals several times a day. Moreover, 2.5% of the subjects consumed whole grain products several times a day. Fifty-one percent of the subjects ate fruit every day, vegetable oils, nuts, and seeds—20%, sweets—7%. 43.6% consumed fatty fish at least once a week. In their conclusions, the authors found that the diet of children with DS significantly differs from the recommendations for the consumption of dairy products, vegetables, whole grains, which should be eaten several times a day, as well as fruit, seeds, nuts, which should be eaten daily, and fatty fish, which should be eaten at least once a week. The subjects preferred products that were a source of saturated fatty acids, not monounsaturated and polyunsaturated fatty acids. The subjects consumed red meat more often than fish but less often than white meat. They consumed potatoes more often than other starchy foods. Fruit was consumed more often than sweets, and fruit juices more often than sugary drinks. |
Herrera-Quintana et al., 2024 [35] | Twenty-three adults with DS aged 21 to 44 years | Eighty-two percent of the subjects did not eat the recommended 5 servings of vegetables and fruit per day. In addition, excessive consumption of sweets, snacks, and red meat was observed, more than twice a week. |
Nutrient | Recommendation |
---|---|
Energy intake | In line with the norms for the general population. |
For individuals with excess body weight | Small energy deficit, always supported by a prior estimation of the actual amounts of food consumed. |
For individuals with weight deficiency | Individually increased energy value with recognition of accompanying health problems causing underweight. |
Protein intake | In line with the norms for the general population with varied sources of protein. |
For undernourished individuals and those with excess body weight | Individually increased protein content. |
Fat intake | In line with the norms for the general population with varied sources and adequate intake of monounsaturated and omega-3 polyunsaturated fatty acids. |
For individuals with liver and pancreatic diseases | Individually decreased fat content. |
Carbohydrate intake | In line with the norms for the general population with a predominance of complex carbohydrates and limitation of sugar intake. |
For individuals with diseases of the gastrointestinal tract | Modification of carbohydrate sources and therefore fiber content. |
Micronutrient intake | In line with the norms for the general population, with particular attention to dietary sources of vitamins A, C, and E, folates, vitamins B6 and B12, and minerals such as selenium and zinc. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruszka, J.; Włodarek, D. General Dietary Recommendations for People with Down Syndrome. Nutrients 2024, 16, 2656. https://doi.org/10.3390/nu16162656
Gruszka J, Włodarek D. General Dietary Recommendations for People with Down Syndrome. Nutrients. 2024; 16(16):2656. https://doi.org/10.3390/nu16162656
Chicago/Turabian StyleGruszka, Joanna, and Dariusz Włodarek. 2024. "General Dietary Recommendations for People with Down Syndrome" Nutrients 16, no. 16: 2656. https://doi.org/10.3390/nu16162656
APA StyleGruszka, J., & Włodarek, D. (2024). General Dietary Recommendations for People with Down Syndrome. Nutrients, 16(16), 2656. https://doi.org/10.3390/nu16162656