Effect of Vitamin D and Skeletal Muscle Mass on Prognosis of Patients with Diffuse Large B-Cell Lymphoma
Abstract
1. Introduction
2. Materials and Methods
2.1. Cohort of Patients
2.2. Demographic and Clinical Information
2.3. Measurement of Serum 25-Hydroxyvitamin D [25(OH)D] Levels
2.4. Measurement of Body Composition
2.5. Statistical Analysis
3. Results
3.1. Patients’ Characteristics
3.2. Comparison of SMI and Vitamin D Levels
3.3. Patient Survival Analysis by Skeletal Muscle Mass and Vitamin D Levels
3.4. Multivariable Analysis of Clinical Factors Associated with Patient OS and PFS
3.5. Effects of Skeletal Muscle Mass and Vitamin D Levels on OS and PFS on Restricted Cubic Spline Analysis
3.6. Association of BMI and VATI with Survival
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morton, L.M.; Wang, S.S.; Devesa, S.S.; Hartge, P.; Weisenburger, D.D.; Linet, M.S. Lymphoma Incidence Patterns by WHO Subtype in the United States, 1992–2001. Blood 2006, 107, 265–276. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Thieblemont, C.; Van Den Neste, E.; Lepeu, G.; Plantier, I.; Castaigne, S.; Lefort, S.; Marit, G.; Macro, M.; Sebban, C.; et al. Long-Term Outcome of Patients in the LNH-98.5 Trial, the First Randomized Study Comparing Rituximab-CHOP to Standard CHOP Chemotherapy in DLBCL Patients: A Study by the Groupe d’Etudes Des Lymphomes de l’Adulte. Blood 2010, 116, 2040–2045. [Google Scholar] [CrossRef] [PubMed]
- Coiffier, B.; Lepage, E.; Briere, J.; Herbrecht, R.; Tilly, H.; Bouabdallah, R.; Morel, P.; Van Den Neste, E.; Salles, G.; Gaulard, P.; et al. CHOP Chemotherapy plus Rituximab Compared with CHOP Alone in Elderly Patients with Diffuse Large-B-Cell Lymphoma. N. Engl. J. Med. 2002, 346, 235–242. [Google Scholar] [CrossRef]
- Tilly, H.; Morschhauser, F.; Sehn, L.H.; Friedberg, J.W.; Trněný, M.; Sharman, J.P.; Herbaux, C.; Burke, J.M.; Matasar, M.; Rai, S.; et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2022, 386, 351–363. [Google Scholar] [CrossRef]
- Sehn, L.H.; Gascoyne, R.D. Diffuse Large B-Cell Lymphoma: Optimizing Outcome in the Context of Clinical and Biologic Heterogeneity. Blood 2015, 125, 22–32. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European Consensus on Definition and Diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef]
- Nakamura, N.; Hara, T.; Shibata, Y.; Matsumoto, T.; Nakamura, H.; Ninomiya, S.; Kito, Y.; Kitagawa, J.; Kanemura, N.; Goto, N.; et al. Sarcopenia Is an Independent Prognostic Factor in Male Patients with Diffuse Large B-Cell Lymphoma. Ann. Hematol. 2015, 94, 2043–2053. [Google Scholar] [CrossRef]
- Xu, X.-T.; He, D.-L.; Tian, M.-X.; Wu, H.-J.; Jin, X. Prognostic Value of Sarcopenia in Patients With Diffuse Large B-Cell Lymphoma Treated With R-CHOP: A Systematic Review and Meta-Analysis. Front. Nutr. 2022, 9, 816883. [Google Scholar] [CrossRef] [PubMed]
- Veldurthy, V.; Wei, R.; Oz, L.; Dhawan, P.; Jeon, Y.H.; Christakos, S. Vitamin D, Calcium Homeostasis and Aging. Bone Res. 2016, 4, 16041. [Google Scholar] [CrossRef]
- Bikle, D. Nonclassic Actions of Vitamin D. J. Clin. Endocrinol. Metab. 2009, 94, 26–34. [Google Scholar] [CrossRef]
- Garland, C.F.; Garland, F.C.; Gorham, E.D.; Lipkin, M.; Newmark, H.; Mohr, S.B.; Holick, M.F. The Role of Vitamin D in Cancer Prevention. Am. J. Public Health 2006, 96, 252–261. [Google Scholar] [CrossRef] [PubMed]
- Feldman, D.; Krishnan, A.V.; Swami, S.; Giovannucci, E.; Feldman, B.J. The Role of Vitamin D in Reducing Cancer Risk and Progression. Nat. Rev. Cancer 2014, 14, 342–357. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Honda, A.; Kurokawa, M. Impact of Vitamin D Level at Diagnosis and Transplantation on the Prognosis of Hematological Malignancy: A Meta-Analysis. Blood Adv. 2022, 6, 1499–1511. [Google Scholar] [CrossRef] [PubMed]
- Potre, C.; Borsi, E.; Potre, O.; Ionita, I.; Samfireag, M.; Costachescu, D.; Secosan, C.; Lazar, S.; Ristescu, A.I. A Systematic Review Assessing the Impact of Vitamin D Levels on Adult Patients with Lymphoid Malignancies. Curr. Oncol. 2023, 30, 4351–4364. [Google Scholar] [CrossRef]
- Bittenbring, J.T.; Neumann, F.; Altmann, B.; Achenbach, M.; Reichrath, J.; Ziepert, M.; Geisel, J.; Regitz, E.; Held, G.; Pfreundschuh, M. Vitamin D Deficiency Impairs Rituximab-Mediated Cellular Cytotoxicity and Outcome of Patients with Diffuse Large B-Cell Lymphoma Treated with but Not without Rituximab. J. Clin. Oncol. 2014, 32, 3242–3248. [Google Scholar] [CrossRef] [PubMed]
- Hohaus, S.; Tisi, M.C.; Bellesi, S.; Maiolo, E.; Alma, E.; Tartaglia, G.; Corrente, F.; Cuccaro, A.; D’Alo’, F.; Basile, U.; et al. Vitamin D Deficiency and Supplementation in Patients with Aggressive B-Cell Lymphomas Treated with Immunochemotherapy. Cancer Med. 2018, 7, 270–281. [Google Scholar] [CrossRef]
- Remelli, F.; Vitali, A.; Zurlo, A.; Volpato, S. Vitamin D Deficiency and Sarcopenia in Older Persons. Nutrients 2019, 11, 2861. [Google Scholar] [CrossRef] [PubMed]
- Beaudart, C.; Buckinx, F.; Rabenda, V.; Gillain, S.; Cavalier, E.; Slomian, J.; Petermans, J.; Reginster, J.-Y.; Bruyère, O. The Effects of Vitamin D on Skeletal Muscle Strength, Muscle Mass, and Muscle Power: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Clin. Endocrinol. Metab. 2014, 99, 4336–4345. [Google Scholar] [CrossRef]
- Saeki, C.; Kanai, T.; Ueda, K.; Nakano, M.; Oikawa, T.; Torisu, Y.; Saruta, M.; Tsubota, A. Prognostic Significance of Sarcopenia and Severe Vitamin D Deficiency in Patients with Cirrhosis. JGH Open 2023, 7, 351–357. [Google Scholar] [CrossRef]
- Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 Revision of the World Health Organization Classification of Lymphoid Neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef]
- Hara, T.; Yoshikawa, T.; Goto, H.; Sawada, M.; Yamada, T.; Fukuno, K.; Kasahara, S.; Shibata, Y.; Matsumoto, T.; Mabuchi, R.; et al. R-THP-COP versus R-CHOP in Patients Younger than 70 Years with Untreated Diffuse Large B Cell Lymphoma: A Randomized, Open-Label, Noninferiority Phase 3 Trial. Hematol. Oncol. 2018, 36, 638–644. [Google Scholar] [CrossRef] [PubMed]
- International Non-Hodgkin’s Lymphoma Prognostic Factors Project. A Predictive Model for Aggressive Non-Hodgkin’s Lymphoma. N. Engl. J. Med. 1993, 329, 987–994. [CrossRef] [PubMed]
- Hans, C.P.; Weisenburger, D.D.; Greiner, T.C.; Gascoyne, R.D.; Delabie, J.; Ott, G.; Müller-Hermelink, H.K.; Campo, E.; Braziel, R.M.; Jaffe, E.S.; et al. Confirmation of the Molecular Classification of Diffuse Large B-Cell Lymphoma by Immunohistochemistry Using a Tissue Microarray. Blood 2004, 103, 275–282. [Google Scholar] [CrossRef] [PubMed]
- Cheson, B.D.; Pfistner, B.; Juweid, M.E.; Gascoyne, R.D.; Specht, L.; Horning, S.J.; Coiffier, B.; Fisher, R.I.; Hagenbeek, A.; Zucca, E.; et al. Revised Response Criteria for Malignant Lymphoma. J. Clin. Oncol. 2007, 25, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Batista, M.C.; Menegat, F.D.; Ferreira, C.E.S.; Faulhaber, A.C.L.; Campos, D.A.L.S.; Mangueira, C.L.P. Analytical and Clinical Validation of the New Roche Elecsys Vitamin D Total II Assay. Clin. Chem. Lab. Med. 2018, 56, e298–e301. [Google Scholar] [CrossRef]
- Tamaki, J.; Iki, M.; Sato, Y.; Kajita, E.; Nishino, H.; Akiba, T.; Matsumoto, T.; Kagamimori, S.; JPOS Study Group. Total 25-Hydroxyvitamin D Levels Predict Fracture Risk: Results from the 15-Year Follow-up of the Japanese Population-Based Osteoporosis (JPOS) Cohort Study. Osteoporos. Int. 2017, 28, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Cobzas, D.; Birdsell, L.; Lieffers, J.; Baracos, V. Automated Segmentation of Muscle and Adipose Tissue on CT Images for Human Body Composition Analysis. In Proceedings of the Medical Imaging 2009: Visualization, Image-Guided Procedures, and Modeling, Lake Buena Vista, FL, USA, 8–10 February 2009; Volume 7261, pp. 197–204. [Google Scholar]
- Popuri, K.; Cobzas, D.; Esfandiari, N.; Baracos, V.; Jägersand, M. Body Composition Assessment in Axial CT Images Using FEM-Based Automatic Segmentation of Skeletal Muscle. IEEE Trans. Med. Imaging 2016, 35, 512–520. [Google Scholar] [CrossRef] [PubMed]
- Nishikawa, H.; Shiraki, M.; Hiramatsu, A.; Moriya, K.; Hino, K.; Nishiguchi, S. Japan Society of Hepatology Guidelines for Sarcopenia in Liver Disease (1st Edition): Recommendation from the Working Group for Creation of Sarcopenia Assessment Criteria. Hepatol. Res. 2016, 46, 951–963. [Google Scholar] [CrossRef]
- Ebadi, M.; Martin, L.; Ghosh, S.; Field, C.J.; Lehner, R.; Baracos, V.E.; Mazurak, V.C. Subcutaneous Adiposity Is an Independent Predictor of Mortality in Cancer Patients. Br. J. Cancer 2017, 117, 148–155. [Google Scholar] [CrossRef]
- Kanda, Y. Investigation of the Freely Available Easy-to-Use Software “EZR” for Medical Statistics. Bone Marrow Transplant. 2013, 48, 452–458. [Google Scholar] [CrossRef]
- Linden, A. Measuring Diagnostic and Predictive Accuracy in Disease Management: An Introduction to Receiver Operating Characteristic (ROC) Analysis. J. Eval. Clin. Pract. 2006, 12, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.; Howell, D.; Patmore, R.; Jack, A.; Roman, E. Incidence of Haematological Malignancy by Sub-Type: A Report from the Haematological Malignancy Research Network. Br. J. Cancer 2011, 105, 1684–1692. [Google Scholar] [CrossRef]
- Miyamoto, H.; Kawakami, D.; Hanafusa, N.; Nakanishi, T.; Miyasaka, M.; Furutani, Y.; Ikeda, Y.; Ito, K.; Kato, T.; Yokoyama, K.; et al. Determination of a Serum 25-Hydroxyvitamin D Reference Ranges in Japanese Adults Using Fully Automated Liquid Chromatography-Tandem Mass Spectrometry. J. Nutr. 2023, 153, 1253–1264. [Google Scholar] [CrossRef] [PubMed]
- Drake, M.T.; Maurer, M.J.; Link, B.K.; Habermann, T.M.; Ansell, S.M.; Micallef, I.N.; Kelly, J.L.; Macon, W.R.; Nowakowski, G.S.; Inwards, D.J.; et al. Vitamin D Insufficiency and Prognosis in Non-Hodgkin’s Lymphoma. J. Clin. Oncol. 2010, 28, 4191–4198. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Cao, Y.; Duan, X.; Li, J.; Zhao, W.; Wang, H. Bioavailable 25(OH)D Level Is Associated with Clinical Outcomes of Patients with Diffuse Large B-Cell Lymphoma: An Exploratory Study. Clin. Nutr. 2021, 40, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Herrick, K.A.; Storandt, R.J.; Afful, J.; Pfeiffer, C.M.; Schleicher, R.L.; Gahche, J.J.; Potischman, N. Vitamin D Status in the United States, 2011-2014. Am. J. Clin. Nutr. 2019, 110, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Rybchyn, M.S.; Abboud, M.; Puglisi, D.A.; Gordon-Thomson, C.; Brennan-Speranza, T.C.; Mason, R.S.; Fraser, D.R. Skeletal Muscle and the Maintenance of Vitamin D Status. Nutrients 2020, 12, 3270. [Google Scholar] [CrossRef] [PubMed]
- Girgis, C.M.; Brennan-Speranza, T.C. Vitamin D and Skeletal Muscle: Current Concepts From Preclinical Studies. JBMR Plus 2021, 5, e10575. [Google Scholar] [CrossRef] [PubMed]
- Sassi, F.; Tamone, C.; D’Amelio, P. Vitamin D: Nutrient, Hormone, and Immunomodulator. Nutrients 2018, 10, 1656. [Google Scholar] [CrossRef]
- Stockton, K.A.; Mengersen, K.; Paratz, J.D.; Kandiah, D.; Bennell, K.L. Effect of Vitamin D Supplementation on Muscle Strength: A Systematic Review and Meta-Analysis. Osteoporos. Int. 2011, 22, 859–871. [Google Scholar] [CrossRef]
- Rosendahl-Riise, H.; Spielau, U.; Ranhoff, A.H.; Gudbrandsen, O.A.; Dierkes, J. Vitamin D Supplementation and Its Influence on Muscle Strength and Mobility in Community-Dwelling Older Persons: A Systematic Review and Meta-Analysis. J. Hum. Nutr. Diet. 2017, 30, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Wierzbicka, A.; Oczkowicz, M. Sex Differences in Vitamin D Metabolism, Serum Levels and Action. Br. J. Nutr. 2022, 128, 2115–2130. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.-H.; Wang, T.-F.; Liu, L.-K.; Lee, W.-J.; Peng, L.-N.; Chen, L.-K. Epidemiology of Sarcopenia and Factors Associated With It Among Community-Dwelling Older Adults in Taiwan. Am. J. Med. Sci. 2019, 357, 124–133. [Google Scholar] [CrossRef] [PubMed]
- Mendes, J.; Santos, A.; Borges, N.; Afonso, C.; Moreira, P.; Padrão, P.; Negrão, R.; Amaral, T.F. Vitamin D Status and Functional Parameters: A Cross-Sectional Study in an Older Population. PLoS ONE 2018, 13, e0201840. [Google Scholar] [CrossRef] [PubMed]
- Shachar, S.S.; Williams, G.R.; Muss, H.B.; Nishijima, T.F. Prognostic Value of Sarcopenia in Adults with Solid Tumours: A Meta-Analysis and Systematic Review. Eur. J. Cancer 2016, 57, 58–67. [Google Scholar] [CrossRef] [PubMed]
- Caan, B.J.; Cespedes Feliciano, E.M.; Prado, C.M.; Alexeeff, S.; Kroenke, C.H.; Bradshaw, P.; Quesenberry, C.P.; Weltzien, E.K.; Castillo, A.L.; Olobatuyi, T.A.; et al. Association of Muscle and Adiposity Measured by Computed Tomography with Survival in Patients with Nonmetastatic Breast Cancer. JAMA Oncol. 2018, 4, 798–804. [Google Scholar] [CrossRef] [PubMed]
- Kimura, M.; Naito, T.; Kenmotsu, H.; Taira, T.; Wakuda, K.; Oyakawa, T.; Hisamatsu, Y.; Tokito, T.; Imai, H.; Akamatsu, H.; et al. Prognostic Impact of Cancer Cachexia in Patients with Advanced Non-Small Cell Lung Cancer. Support. Care Cancer 2015, 23, 1699–1708. [Google Scholar] [CrossRef]
- Prado, C.M.; Purcell, S.A.; Laviano, A. Nutrition Interventions to Treat Low Muscle Mass in Cancer. J. Cachexia Sarcopenia Muscle 2020, 11, 366–380. [Google Scholar] [CrossRef] [PubMed]
- Swartz, M.C.; Lewis, Z.H.; Lyons, E.J.; Jennings, K.; Middleton, A.; Deer, R.R.; Arnold, D.; Dresser, K.; Ottenbacher, K.J.; Goodwin, J.S. Effect of Home- and Community-Based Physical Activity Interventions on Physical Function among Cancer Survivors: A Systematic Review and Meta-Analysis. Arch. Phys. Med. Rehabil. 2017, 98, 1652–1665. [Google Scholar] [CrossRef]
- Beckwée, D.; Delaere, A.; Aelbrecht, S.; Baert, V.; Beaudart, C.; Bruyere, O.; de Saint-Hubert, M.; Bautmans, I. Exercise Interventions for the Prevention and Treatment of Sarcopenia. A Systematic Umbrella Review. J. Nutr. Health Aging 2019, 23, 494–502. [Google Scholar] [CrossRef]
All Patients (n = 186) | |
---|---|
Age, y—median (range); mean (SD) | 71 (20–93); 69 (13) |
Age > 60 y—n (%) | 148 (80) |
Male—n (%) | 106 (57) |
ECOG PS ≥ 2—n (%) | 27 (15) |
B symptoms—n (%) | 49 (26) |
BMI (kg/cm2)—median (range); mean (SD) | 22 (15–41); 22 (4) |
SMI (cm2/cm2)—median (range); mean (SD) | 42 (24–76); 42 (8) |
VATI (cm2/cm2)—median (range); mean (SD) | 31 (2–120); 35 (26) |
SATI (cm2/cm2)—median (range); mean (SD) | 37 (1–140); 42 (25) |
Low SMI—n (%) | 83 (45) |
sIL-2R (U/mL)—median (range); mean (SD) | 1200 (190–91000); 3000 (7300) |
Vitamin D (ng/mL)—median (range); mean (SD) | 13 (4.0–27); 13 (7) |
Extranodal sites ≥ 2—n (%) | 55 (30) |
Ann Arbor Stage III/IV—n (%) | 105 (57) |
Elevated LDH (>ULN)—n (%) | 116 (62) |
COO—n (%) | |
GCB | 69 (37) |
Non-GCB | 85 (46) |
Unknown | 32 (17) |
IPI—n (%) | |
Low risk (0, 1) | 56 (30) |
Low intermediate risk (2) | 41 (22) |
High intermediate risk (3) | 41 (22) |
High risk (4, 5) | 48 (26) |
First treatment—n (%) | |
R-CHOP | 158 (85) |
R-THP-COP | 25 (13) |
R-CVP | 3 (2) |
Intrathecal therapy—n (%) | 37 (20) |
Radiation therapy—n (%) | 49 (26) |
Vitamin D (ng/mL) | ||||
---|---|---|---|---|
No. | Median (Range) | Mean (SD) | p-Value | |
Age, y | ||||
≤60 | 38 | 9.3 (4.0–24) | 11 (6) | 0.008 |
>60 | 148 | 14 (4.0–27) | 14 (7) | |
Sex | ||||
Male | 106 | 13 (4.0–27) | 14 (6) | 0.22 |
Female | 80 | 12 (4.0–26) | 13 (7) | |
ECOG PS | ||||
0–1 | 159 | 13 (4.0–27) | 14 (6) | 0.005 |
≥2 | 27 | 7.5 (4.0–26) | 10 (6) | |
B symptoms | ||||
Absent | 137 | 14 (4.0–27) | 14 (6) | 0.004 |
Present | 49 | 10 (4.0–26) | 11 (7) | |
SMI status | ||||
High SMI | 103 | 14 (4.0–27) | 14 (6) | 0.19 |
Low SMI | 83 | 11 (4.0–26) | 13 (7) | |
Extranodal sites | ||||
0–1 | 131 | 14 (4.0–26) | 14 (6) | 0.001 |
≥2 | 55 | 10 (4.0–27) | 11 (6) | |
Ann Arbor Stage | ||||
I/II | 81 | 16 (4.0–26) | 15 (6) | 0.001 |
III/IV | 105 | 11 (4.0–27) | 12 (6) | |
LDH | ||||
Normal | 70 | 15 (4.0–26) | 15 (6) | 0.004 |
Elevated | 116 | 12 (4.0–27) | 12 (7) | |
COO | ||||
GCB | 69 | 13 (4.0–26) | 14 (7) | 0.34 |
Non-GCB | 85 | 12 (4.0–27) | 13 (7) | |
Unknown | 32 | 8 (4.0–24) | 12 (6) | |
IPI | ||||
Low (0, 1) | 56 | 16 (4.0–26) | 15 (6) | 0.004 |
Low intermediate (2) | 41 | 14 (4.0–26) | 14 (7) | |
High intermediate (3) | 41 | 11 (4.0–24) | 12 (6) | |
High (4, 5) | 48 | 11 (4.0–27) | 12 (6) |
High Vitamin D (>9.6 ng/dL) (n = 123) | Low Vitamin D (≤9.6 ng/dL) (n = 63) | p-Value | |
---|---|---|---|
Age, y—median (range); mean (SD) | 72 (21–93); 70 (11) | 68 (20–86); 66 (14) | 0.12 |
Age > 60 y—n (%) | 105 (85) | 43 (68) | 0.01 |
Male—n (%) | 73 (59) | 33 (52) | 0.43 |
ECOG PS ≥ 2—n (%) | 13 (11) | 14 (22) | 0.05 |
B symptoms—n (%) | 27 (22) | 22 (35) | 0.08 |
BMI (kg/cm2)—median (range); mean (SD) | 22 (15–41); 22 (4) | 22 (15–33); 23 (4) | 0.33 |
SMI (cm2/cm2)—median (range); mean (SD) | 42 (24–76); 42 (8) | 40 (28–63); 42 (8) | 0.70 |
VATI (cm2/cm2)—median (range); mean (SD) | 31 (2–120); 39 (24) | 32 (3–120); 46 (27) | 0.82 |
SATI (cm2/cm2)—median (range); mean (SD) | 36 (3–130); 35 (26) | 39 (1–140); 36 (27) | 0.08 |
Low SMI—n (%) | 51 (42) | 32 (51) | 0.28 |
sIL-2R (U/mL)—median (range); mean (SD) | 2100 (240–18,000); 2400 (8400) | 870 (190–91,000); 4000 (4300) | <0.001 |
Extranodal sites ≥ 2—n (%) | 29 (24) | 26 (41) | 0.02 |
Ann Arbor Stage III/IV—n (%) | 63 (51) | 42 (67) | 0.06 |
Elevated LDH (>ULN)—n (%) | 68 (55) | 48 (76) | 0.01 |
COO—n (%) | |||
GCB | 49 (40) | 20 (32) | 0.048 |
Non-GCB | 59 (48) | 26 (41) | |
Unknown | 15 (12) | 17 (27) | |
IPI—n (%) | 0.07 | ||
Low (0, 1) | 44 (36) | 12 (19) | |
Low intermediate (2) | 28 (23) | 13 (21) | |
High intermediate (3) | 23 (19) | 18 (29) | |
High (4, 5) | 28 (23) | 20 (32) | |
First treatment—n (%) | 0.78 | ||
R-CHOP | 106 (86) | 52 (83) | |
R-THP-COP | 15 (12) | 10 (16) | |
R-CVP | 2 (2) | 1 (2) | |
Intrathecal therapy—n (%) | 24 (20) | 13 (21) | 0.85 |
Radiation therapy—n (%) | 39 (32) | 10 (16) | 0.02 |
All Patients (n = 186) | High Vitamin D (>9.6 ng/dL) (n = 123) | Low Vitamin D (≤9.6 ng/dL) (n = 63) | p-Value | |
---|---|---|---|---|
CR—n (%) | 150 (83) | 105 (87) | 45 (75) | 0.06 |
OR—n (%) | 166 (92) | 115 (95) | 51 (85) | 0.04 |
Relapse—n (%) | 45 (24) | 24 (20) | 21 (33) | 0.047 |
Death—n (%) | 49 (26) | 22 (18) | 27 (43) | <0.001 |
Death reason—n (%) | ||||
Lymphoma | 29 (59) | 11 (50) | 18 (67) | 0.26 |
Other | 20 (41) | 11 (50) | 9 (33) |
Overall Survival | Progression-Free Survival | |||
---|---|---|---|---|
Factor | HR (95% CI) | p-Value | HR (95% CI) | p-Value |
Male | 1.8 (1.0–3.4) | 0.051 | 2.0 (1.2–3.4) | 0.01 |
COO | ||||
GCB | (reference group) | (reference group) | ||
Non-GCB | 2.1 (1.1–4.0) | 0.02 | 1.7 (1.0–2.8) | 0.06 |
Unknown | 0.9 (0.4–2.3) | 0.90 | 0.66 (0.29–1.5) | 0.31 |
IPI, category | ||||
Low risk | (reference group) | (reference group) | ||
Low-intermediate risk | 1.9 (0.7–5.6) | 0.24 | 2.2 (0.92–5.2) | 0.08 |
High-intermediate risk | 4.4 (1.7–12) | 0.003 | 4.0 (1.8–8.9) | <0.001 |
High risk | 5.7 (2.3–15) | <0.001 | 5.3 (2.5–11) | <0.001 |
Low SMI | 1.4 (0.8–2.5) | 0.28 | 1.4 (0.86–2.4) | 0.17 |
Low vitamin D | 3.2 (1.8–5.8) | <0.001 | 2.5 (1.5–4.1) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nakamura, N.; Kanemura, N.; Matsumoto, T.; Nakamura, H.; Shibata, Y.; Yamaguchi, K.; Kitagawa, J.; Ikoma, Y.; Suzaki, T.; Kaneda, Y.; et al. Effect of Vitamin D and Skeletal Muscle Mass on Prognosis of Patients with Diffuse Large B-Cell Lymphoma. Nutrients 2024, 16, 2653. https://doi.org/10.3390/nu16162653
Nakamura N, Kanemura N, Matsumoto T, Nakamura H, Shibata Y, Yamaguchi K, Kitagawa J, Ikoma Y, Suzaki T, Kaneda Y, et al. Effect of Vitamin D and Skeletal Muscle Mass on Prognosis of Patients with Diffuse Large B-Cell Lymphoma. Nutrients. 2024; 16(16):2653. https://doi.org/10.3390/nu16162653
Chicago/Turabian StyleNakamura, Nobuhiko, Nobuhiro Kanemura, Takuro Matsumoto, Hiroshi Nakamura, Yuhei Shibata, Kimihiro Yamaguchi, Junichi Kitagawa, Yoshikazu Ikoma, Tomomi Suzaki, Yuto Kaneda, and et al. 2024. "Effect of Vitamin D and Skeletal Muscle Mass on Prognosis of Patients with Diffuse Large B-Cell Lymphoma" Nutrients 16, no. 16: 2653. https://doi.org/10.3390/nu16162653
APA StyleNakamura, N., Kanemura, N., Matsumoto, T., Nakamura, H., Shibata, Y., Yamaguchi, K., Kitagawa, J., Ikoma, Y., Suzaki, T., Kaneda, Y., Ninomiya, S., Takada, E., Hara, T., Tsurumi, H., & Shimizu, M. (2024). Effect of Vitamin D and Skeletal Muscle Mass on Prognosis of Patients with Diffuse Large B-Cell Lymphoma. Nutrients, 16(16), 2653. https://doi.org/10.3390/nu16162653