Current Status of Chronic Intestinal Failure Management in Adults
Abstract
:1. Introduction
2. CIF’s Current Ideal Management and Real-Life Management
2.1. The Disease
2.1.1. Ideal Management
2.1.2. Real-Life Management
2.2. The Team
2.2.1. Ideal Management
2.2.2. Real-Life Management
2.3. The Therapy (by Steps of Care)
2.3.1. Home Parenteral Nutrition
Ideal Management
Real-Life Management
2.3.2. Surgical Management
Ideal Management
Real-Life Management
2.3.3. Medical and Nutritional Management
SBS and Fistula Patients
- Ideal Medical Management
- Loperamide and diphenoxylate/atropine are the first-line antimotility agents due to their low incidence of systemic side effects, and they should be administered 30 min before meals and bedtime [77]. Loperamide’s normal uptake is in the enterohepatic circulation, so patients with anatomy types 1 and 2 require higher doses than conventionally recommended (up 32 mg/day) to achieve a therapeutic response [78].
- Codeine and tinctures of opium are second-choice drugs and are used in the treatment of refractory diarrhea. The metabolism of opioids varies according to age and whether the patient is a poor or ultrarapid metabolizer; therefore, the antidiarrheal regimen must be individualized, taking these factors and other comorbidities into consideration [79].
- Clonidine, an agonist of 2-adrenergic receptors in the enterocytes, is effective for the treatment of chronic diarrhea resulting from longstanding diabetes [80,81]. Animal and human studies have shown that a dose of 0.3 mg/day has significant antimotility effects and prolongs the intestinal transit time, increasing nutrient and fluid absorption, while decreasing fecal sodium and potassium losses. Transdermal administration has been associated with a modest but clinically significant decrease in fecal ostomy output in SBS patients [82,83,84].
- Histamine 2 receptor antagonists (H2RAs) and proton-pump inhibitors (PPIs) reduce the volume of gastric secretions during the period of greatest hypersecretion (6–12 months after intestinal resection). It is worth noting that H2RA therapy can be added to HIVS for easy administration to decrease gastrointestinal secretions as a response to the nutrients being delivered.
- Somatostatin and somatostatin analogues such as octreotide inhibit secretagogue-induced water and electrolyte secretion in the jejunum and the colon, stimulate sodium and chloride absorption in the ileum, and inhibit the release of various GI and pancreatic hormones that may contribute to diarrhea (e.g., VIP, GIP, gastrin), decreasing gastric, biliary, and pancreatic secretions and, consequently, the volume of ostomy output. They improve blood circulation in the intestinal wall, reduce absorption of bacterial toxins, accelerate the resolution of inflammation, and stimulate T-cell proliferation [84]. Conflicting results have been reported, and high-quality evidence supporting their clinical benefit in SBS is lacking, so their use should be evaluated in each case [84,85,86,87] and considered when the first-line treatment drugs are ineffective [88,89]
- Bile acid sequestrants (cholestyramine) should be considered in anatomy type 3 if diarrhea is caused by the colonic toxicity of poorly absorbed bile salts. In anatomy type 1 or 2, the bile acid pool is reduced, so their use is not recommended, because steatorrhea and malabsorption of fat-soluble vitamins can worsen.
- There is no evidence of pancreatic exocrine deficiency in SBS, so the use of pancreatic enzymes should be considered in patients with accelerated intestinal transit and poor mixing of nutrients and enzymes due to asynchrony of pancreatic juice secretion. In this setting, their prescription must be evaluated in each case.
- Teduglutide (TED) results from the substitution of one amino acid in nGLP-2, making it resistant to degradation by DPP-IV, thereby increasing its half-life to 1.3 h in SBS. TED is absorbed rapidly, achieving maximum plasma levels 3–5 h after dosing; its clinical safety and efficacy for a subcutaneous dose of 0.05 mg/kg/day, or a 50% reduction in the dose in renal failure patients, were demonstrated in the phase III Study of Teduglutide Effectiveness in Parenteral Nutrition Dependent Short Bowel Syndrome Subjects (STEPS), carried out in centers in Europe and the US [8]. The extension trials, STEPS-2 and STEPS-3 (the latter conducted only in the US), along with other studies, showed consistent safety and efficacy with a progressive reduction in HIVS over time [9,10]. In Japan, the short- and long-term efficacy, safety, and pharmacokinetics of TED were analyzed in adult and pediatric Japanese patients with SBS-CIF. There were no differences in the maximum concentrations of TED between this population and non-Japanese patients, the treatment was associated with clinically meaningful reductions in HIVS requirements, and no new safety concerns were identified for this population [11,22,91]. With all of this evidence, the ESPEN recommended that TED should be the first choice for a carefully selected group of SBS-CIF patients dependent on HIVS, but it should be prescribed by an expert team capable of following these patients [46]. Before starting the treatment, complete laboratory tests, ruling out pregnancy in fertile women, and a colonoscopy and gastroscopy to rule out or remove polyps due to their potential to cause hyperplastic changes, are recommended by all experts. Subsequent colonoscopies should be carried out according to guidelines for surveillance after polypectomy, but no less frequently than every 5 years. Other imaging tests should be evaluated on a case-by-case basis. All patients must be monitored closely, especially those with predictors of early response, because rapid changes in fluid balance (even during the first 4 weeks) can cause fluid overload or increase the absorption of medication, indicating that a reduction in HIVS volume and/or medication dose is needed [92]. To adjust the volume, the algorithm proposed in STEPS can be used in clinical practice. The reduction in energy requirements should be determined by estimating energy balance using measures of changes in food intake, fluid balance, and body composition. The frequency of monitoring may be adapted based on an individual’s adverse effects, and assessment should be performed consistently by the expert treating physician.
- Apraglutide results from the substitution of four amino acids in nGLP-2, with a longer half-life of 72 h due to low clearance resulting from DPP-IV resistance and high protein binding, making it suitable for once-weekly dosing. In a phase II trial, two doses (5 and 10 mg) were tested, both of which were well tolerated and significantly decreased the volume output [93]. Currently, a phase III study (STAR) is ongoing.
- Glepaglutide differs from nGLP-2 in the substitution of nine amino acids and a C-terminal tail with six lysin residues; its half-life is 50 h, and it is administered once or twice weekly. Phase II studies have been published; however, the results of the Efficacy and Safety Evaluation (EASE) phase III clinical trials are not yet available [94].
- Weight: Unintentional weight loss could indicate malnutrition. However, it could be influenced by hydration status.
- CT scan: Muscle mass at the third lumbar vertebra correlates significantly with whole-body muscle mass. Combined with strength assessments (e.g., handgrip strength), this allows for a diagnosis of sarcopenia.
- Bone density: This helps determine the presence of osteopenia or osteoporosis.
- Laboratory workup: Serum levels of electrolytes, vitamins (e.g., B12, folic acid, D), trace elements (Cu, Zn, Se, and Fe), and C-reactive protein (CRP) should be included in the analysis. It is important to consider that some of these parameters must be correlated with inflammatory status.
- Urine output: This is useful for evaluating hydration status and should be >0.5 mL/k/h or >1 mL/k/h in patients with kidney stones or renal failure. Determining 24 h urine urea nitrogen allows for achieving nitrogen balance and assessing adequate protein requirements.
- Stool/ostomy output: Some nutritional modifications must be performed to achieve an ostomy output of less than 1000 mL/day, or to decrease the number of stool movements.
- Physical exam: Examination of skin, hair, nails, eyes, etc., is helpful to detect suspected micronutrient deficiencies [95].
- Dietary records are useful to assess oral intake and allow for identifying and correcting some dietary habits, educating the patients, and tailoring an individualized diet.
- Real-Life Medical and Nutritional Management
- Real-Life Medical Management
Author (year) | Country | N | SBS Etiology (%) | Anatomy Type: n (%) | Intestinal Length cm: Median (Range) | Time in TED (Range) | Weaning (%) | Response/No Response | Protocol |
---|---|---|---|---|---|---|---|---|---|
Lam, K. et al. (2017) [107] | USA | 18 | CD MI Others | 1:4 2:9 3:5 | 55 (15–180) | 11/18 (61) | 78%/11% | Yes | |
Puello, F. et al. (2020) [117] | USA | 18 | CD MI Others | 1: 10 (55.6) 2: 3: 3 (16) | 100 (40–240) | 3.2 years (0.6–6.2) | 5/18 (27.7) | 100% | No |
Harpain, F. et al. (2021) [118] | Austria | 13 | CD (61.5) SC (23.1) MI (15.4) | 1: 3 (23.1) 2: 7 (53.8) 3: 3 (23.1) | 106.7 25.2 | 107 weeks (26–205) | 12/13 (92) | 100% | No |
Joly, F. et al. (2019) [119] | France | 54 | MI (39) CD (30) VO (7.13) | 1: 19 (35) 2: 33 (61) 3: 2 (4) | 61.8 5.9 | 24 weeks | 13/54 (24) | 85%/15% | No |
Pevny, S. et al. (2019) [120] | Germany | 27 | MI (44) IBD (15) SC (15) | 1: 6 (22) 2–3: 21(78) | 205 173 45 34 | 104 weeks | 4/19 (21) | 79% | No |
Schoeler. M. et al. (2018) [121] | Germany | 14 | CD (50) MI (36) | 1: 5 (36) 2–3: 9 (64) | 64.5 43.3 | 15.7 7.05 months | 2/14 (14.3) | 85.7% | No |
Solar, H. et al. (2020) [108] | Argentina | 17 | MI (47) SC (17) VO (17) | 1: 1 (5.9) 2: 9 (53) 3: 7 (41) | 37.9 28.7 | 116 weeks 69.1 | 8/12 (66.6) | 94%/6% | Yes |
Nakamura, S. et al. (2022) [22] | Japan | 18 | CD (78) VO (17) Other (5) | 1: 11 (61) 2–3: 7 (39) | 219.42 147.15 | 24 weeks | 50% |
- Real-Life Nutritional Management
Non-SBS and Non-Fistula Patients
- Ideal Medical Management
- Ideal Nutritional Management
- Real-Life Medical Management
- Real-Life Nutritional Management
2.3.4. Intestinal Transplant
Ideal Management
Real-Life Management
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pironi, L.; Cuerda, C.; Jeppesen, P.B.; Joly, F.; Jonkers, C.; Krznarić, Ž.; Lal, S.; Lamprecht, G.; Lichota, M.; Mundi, M.S.; et al. ESPEN guideline on chronic intestinal failure in adults—Update 2023. Clin. Nutr. 2023, 42, 1940–2021. [Google Scholar] [CrossRef]
- ICD-11 for Mortality and Morbidity Statistics. DA96.05 Intestinal Failure. Available online: https://icd.who.int/dev11/l-m/en#/http%3a%2f%2fid.who.int%2ficd%2fentity%2f778202494 (accessed on 17 August 2022).
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. 2015, 34, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Konrad, D.; Brandt, C.; Joly, F.; Wanten, G.; Agostini, F.; Chambrier, C.; Aimasso, U.; Zeraschi, S.; Kelly, D.; et al. Clinical classification of adult patients with chronic intestinal failure due to benign disease: An international multicenter cross-sectional survey. Clin. Nutr. 2018, 37, 728–738. [Google Scholar] [CrossRef]
- Pironi, L.; Steiger, E.; Joly, F.; Wanten, G.J.A.; Chambrier, C.; Aimasso, U.; Sasdelli, A.S.; Szczepanek, K.; Jukes, A.; Theilla, M.; et al. Intravenous supplementation type and volume are associated with 1 year outcome and major complications in patients with chronic intestinal failure. Gut 2020, 69, 1787–1795. [Google Scholar] [CrossRef]
- Gondolesi, G.E.; Doeyo, M.; Echevarria, C.; Lobos, F.; Rubio, S.; Rumbo, C.; Ramisch, D.; Crivelli, A.; Schelotto, P.B.; Solar, H. Results of Surgical and Medical Rehabilitation for Adult Patients with Type III Intestinal Failure in a Comprehensive Unit Today: Building a New Model to Predict Parenteral Nutrition Independency. J. Parenter. Enter. Nutr. 2020, 44, 703–713. [Google Scholar] [CrossRef] [PubMed]
- Abu-Elmagd, K.M.; Armanyous, S.R.; Fujiki, M.; Parekh, N.R.; Osman, M.; Scalish, M.; Newhouse, E.; Fouda, Y.; Lennon, E.; Shatnawei, A.; et al. Management of Five Hundred Patients with Gut Failure at a Single Center: Surgical Innovation Versus Transplantation with a Novel Predictive Model. Ann. Surg. 2019, 270, 656–674. [Google Scholar] [CrossRef]
- Jeppesen, P.B.; Pertkiewicz, M.; Messing, B.; Iyer, K.; Seidner, D.L.; O’keefe, S.J.; Forbes, A.; Heinze, H.; Joelsson, B. Teduglutide reduces need for parenteral support among patients with short bowel syndrome with intestinal failure. Gastroenterology 2012, 143, 1473–1481.e3. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, L.K.; O’Keefe, S.J.; Fujioka, K.; Gabe, S.M.; Lamprecht, G.; Pape, U.F.; Li, B.; Youssef, N.N.; Jeppesen, P.B. Long term teduglutide for the treatment of patients with intestinal failure associated with short bowel syndrome. Clin. Transl. Gastroenterol. 2016, 7, e142. [Google Scholar] [CrossRef] [PubMed]
- Seidner, D.L.; Fujioka, K.; Boullata, J.I.; Iyer, K.; Lee, H.M.; Ziegler, T.R. Reduction of parenteral nutrition and hydration support and safety with long term teduglutide treatment in patients with short bowel syndrome-assocoiated intestinal failure. STEPS-3 study. Nutr. Clin. Pract. 2018, 33, 520–527. [Google Scholar] [CrossRef]
- O’Keefe, S.J.D.; Jeppesen, P.B.; Gilroy, R.; Pertkiewicz, M.; Allard, J.P.; Messing, B. Safety and Efficacy of Teduglutide After 52 Weeks of Treatment in Patients with Short Bowel Intestinal Failure. Clin. Gastroenterol. Hepatol. 2013, 11, 815–823. [Google Scholar] [CrossRef]
- Knowles, C.H.; Lindberg, G.; Panza, E.; De Giorgio, R. New perspectives in the diagnosis and management of enteric neuropathies. Nat. Rev. Gastroenterol. Hepatol. 2013, 10, 206–218. [Google Scholar] [CrossRef] [PubMed]
- Panganamamula, K.V.; Parkman, H.P. Chronic intestinal pseudo-obstruction. Curr. Treat. Options Gastroenterol. 2005, 8, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Lapointe, R. Chronic intestinal pseudo -obstruction treated near small bowel resection: A 20 year of experience. J. Gastrointest. Surg. 2010, 14, 1937–1942. [Google Scholar] [CrossRef] [PubMed]
- Tappenden, K. Anatomical and physiological considerations in short bowel syndrome. Emphasis in intestinal adaptation and the role of enterohormones. Nutr. Clin. Pract. 2023, 38, S27–S31. [Google Scholar] [CrossRef] [PubMed]
- Downes, T.; Cheruvu, M.; Karunaratne, T.; De Gregorio, R.; Farmer, A. Pathopjysiology, Diagnosis, and Management of Chronic intestinal Pseudo Obstruction. J. Clin. Gastroenterol. 2018, 52, 477–489. [Google Scholar] [CrossRef] [PubMed]
- Lakananurak, N.; Moccia, L.; Wall, E.; Herlitz, J.; Catron, H.; Lozano, E.; Delgado, A.; Vanuytsel, T.; Mercer, D.; Pevny, S.; et al. Characteristics of adult intestinal failure centers: An international multicenter survey. Nutr. Clin. Pract. 2023, 38, 657–663. [Google Scholar] [CrossRef] [PubMed]
- Gondolesi, G.E.; Ortega, M.L.; Doeyo, M. First registry of adult patients with chronic intestinal failure due to short bowel syndrome in Argentina: The RESTORE project. J. Parenter. Enter. Nutr. 2022, 46, 1623–1631. [Google Scholar] [CrossRef] [PubMed]
- Rumbo, C.; Solar, H.; Ortega, M.; De Barrio, S.; Busoni, V.; Martinuzzi, A.; Mansur, A.; Tanzi, M.; Perez, C.; Rudi, L.; et al. RESTORE “amendment”: From Argentina to Latin America, new steps of the First prospective Intestinal Failure Registry due to short bowel syndrome. Transplantation 2023, 107, 42–43. [Google Scholar] [CrossRef]
- Wang, M.Y.; Wu, M.H.; Hsieh, D.Y.; Lin, L.J.; Lee, P.H.; Chen, W.J.; Lin, M.T. Home parenteral nutrition support in adults: Experience of medical center in Asia. J. Parenter. Enter. Nutr. 2007, 31, 306–310. [Google Scholar] [CrossRef]
- Kong, W.; Wang, J.; Ni, X.; Li, Y.; Mao, Q.; Yao, D.; Fan, S.; Chen, Y.; Cai, Z.; Li, J. Transition of Decade in Short Bowel Syndrome in China: Yesterday, Today, and Tomorrow. Transplant. Proc. 2015, 47, 1983–1987. [Google Scholar] [CrossRef]
- Nakamura, S.; Wada, M.; Mizushima, T.; Sugita, A.; Tazuke, Y.; Ohge, H.; Udagawa, E.; Suzuki, R.K.; Yoon, M.; Grimm, A.; et al. Efficacy, safety and pharmacokinetics of teduglutide in adult Japanese patients with short bowel syndrome and intestinal failure: Two phase III studies with an extension. Surg. Today 2023, 53, 347–359. [Google Scholar] [CrossRef]
- Chang Chuen, M.; Ho Man, N.; Fang Kuan, C.; Veena, L.; Ennaliza, S. Long term clinical outcome of home parenteral nutrition in Singapore. Asia Pac. J. Clin. Nutr. 2023, 32, 282–294. [Google Scholar]
- Corcos, O.; Castier, Y.; Sibert, A.; Gaujoux, S.; Ronot, M.; Joly, F.; Paugam, C.; Bretagnol, F.; Abdel-Rehim, M.; Francis, F.; et al. Effects of a multimodal management strategy for acute mesenteric ischemia on survival and intestinal failure. Clin. Gastroenterol. Hepatol. 2013, 11, 158–165.e2. [Google Scholar] [CrossRef]
- Körner, M. Interprofessional teamwork in medical rehabilitation: A comparison of multidisciplinary and interdisciplinary team approach. Clin. Rehabil. 2010, 24, 745–755. [Google Scholar] [CrossRef]
- Grainger, J.; Maeda, Y.; Donnelly, S.; Vaizey, C. Assessment and management of patients with intestinal failure: A multidisciplinary approach. Clin. Exp. Gastroenterol. 2018, 11, 233–241. [Google Scholar] [CrossRef]
- Vaizey, C.J.; Maeda, Y.; Barbosa, E.; Bozzetti, F.; Calvo, J.; Irtun, Ø.; Jeppesen, P.B.; Klek, S.; Panisic-Sekeljic, M.; Papaconstantinou, I.; et al. European Society of Coloproctology consensus on the surgical management of intestinal failure in adults. The Association of Coloproctology of Great Britain and Ireland. Color. Dis. 2016, 18, 535–548. [Google Scholar]
- Mercer, D. Surgical considerations in the management of short bowel syndrome. Nutr. Clin. Pract. 2023, 38, S88–S97. [Google Scholar] [CrossRef]
- Geransar, P.; Lal, S.; Jeppesen, P.; Pironi, L.; Rzepa, E.; Schneide, S. Survey of healthcare professionals’ experiences of care delivery in patients with chronic intestinal failure: ATLAS of Variance. Clin. Nutr. ESPEN 2023, 54, 157–165. [Google Scholar] [CrossRef]
- Solar, H.; Doeyo, M.; Ortega, M.; De Barrio, S.; Olano, E.; Moreira, E.; Buncuga, M.; Manzur, A.; Crivelli, A.; Gondolesi, G. Postsurgical intestinal rehabilitation using semisynthetic glucagon-like peptide-2 analogue (sGLP-2) at a referral center: Can patients achieve parenteral nutrition and sGLP-2 independency? J. Parenter. Enter. Nutr. 2021, 45, 1072–1082. [Google Scholar] [CrossRef]
- Nikoupoor, H.; Moradi, A.M.; Arasteh, P.; Shamsaeefar, A.; Karami, M.Y.; Eghlimi, H.; Shafiekhani, M.; Nikeghbalian, S. Guideline for Management of Mesenteric Ischemia: Shiraz Intestinal Failure Unit Protocol. Arch. Iran. Med. 2020, 23, 422–425. [Google Scholar] [CrossRef]
- Dreesen, M.; Foulon, V.; Vanhaecht, K.; De Pourcq, L.; Hiele, M.; Willems, L. Guidelines recommendations on care of adult patients receiving home parenteral nutrition: A systemic review of global practices. Clin. Nutr. 2012, 31, 602–608. [Google Scholar] [CrossRef]
- Burns, D.L.; Gill, B.M. Reversal of parenteral nutrition-associated liver disease with a fish base lipid emulsion (Omegaven) in an adult dependent on home parenteral nutrition. JPEN J. Parenter. Enter. Nutr. 2000, 24, 345–350. [Google Scholar]
- Venocourt Jackson, E.; Hill, S.J.; Walmsley, R.S. Successful treatment of parenteral nutrition-associated liver disease in an adult by use of a fish oil -bases lipid source. Nutrition 2013, 29, 356–358. [Google Scholar] [CrossRef]
- Ahmed, S.; Innes, J.K.; Calder, P.C. Influence of different intravenous lipid emulsion on fatty acid status and laboratory and clinical outcomes in adult patients receiving home parenteral nutrition: A systematic review. Clin. Nutr. 2021, 4, 1115–1122. [Google Scholar] [CrossRef]
- Pironi, L.; Agsotini, F.; Guidetti, M. Intravenous lipids in home parenteral nutrition. World Rev. Nutr. Diet. 2015, 112, 141–149. [Google Scholar]
- Vanek, V.W.; Seidner, D.L.; Allen, P.; Bistrian, B.; Collier, S.; Gura, K.; Miles, J.M.; Valentine, C.J.; Kochevar, M.; Novel Nutrient Task Force, Intravenous Fat Emulsions Workgroup; et al. ASPEN Position paper: Clinical role for alternative intravenous fat emulsions. Nutr. Clin. Pract. 2012, 27, 150–920. [Google Scholar] [CrossRef]
- Klek, S.; Chambrier, C.; Singer, P.; Rubin, M.; Bowling, T.; Staun, M.; Joly, F.; Rasmussen, H.; Strauss, B.J.; Wanten, G.; et al. Four-week parenteral nutrition using a third-generation lipid emulsion (SMOFlipid)-a. double blind, randomized, multicenter study in adults. Clin. Nutr. 2013, 32, 224–231. [Google Scholar] [CrossRef]
- Cawley, C.; Lal, S.; Nightingale, J.; Small, M. Standardized Parenteral Support Catheter Guidelines Connecting a Parenteral Support (PC) Infusion. Principles of Care and Management of Central Venous Catheters. 2018. Available online: https://www.bapen.org.uk/pdfs/bifa/standardised-parenteral-support-catheter-guidelines.pdf (accessed on 15 December 2023).
- Zürcher, M.; Tramer, M.R.; Walder, B. Colonization and bloodstream infection with single-versus multi-lumen central venous catheters: A quantitative systematic review. Anasth. Analg. 2004, 99, 177–182. [Google Scholar] [CrossRef]
- Pittiruti, M.; Hamilton, H.; Biffi, R.; MacFie, J.; Pertkiewicz, M. ESPEN guidelines on parenteral nutrition: Central venous catheters (access, care, diagnosis and therapy of complications). Clin. Nutr. 2009, 28, 365–377. [Google Scholar] [CrossRef]
- Musu, M.; Finco, G.; Mura, P.; Landoni, G.; Piazza, M.F.; Messina, M.; Tidore, M.; Mucci, M.; Campagna, M.; Galletta, M. Controlling catheter-related bloodstream infections through a multi-center educational programme for intensive care units. J. Hosp. Infect. 2017, 97, 275–281. [Google Scholar] [CrossRef]
- Menegueti, M.G.; Ardison, K.M.; Bellissimo-Rodrigues, F.; Gaspar, G.G.; Martins-Filho, O.A.; Puga, M.L.; Laus, A.M.; Basile-Filho, A.; Auxiliadora-Martins, M. The impact of implementation of bundle to reduce catheter-related bloodstream infection rates. J. Clin. Med. Res. 2015, 7, 857–861. [Google Scholar] [CrossRef] [PubMed]
- Ryder, M. Evidence-based practice in the management of vascular access devices for home parenteral nutrition therapy. J. Parenter. Enter. Nutr. 2006, 30 (Suppl. 1), S82–S93. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, A.Q.; Cao, L.; Xia, H.T.; Ma, J.J. Taurolidine lock solutions for the prevention of catheter related bloodstream infections: A systematic review and met analysis of randomized controlled trials. PLoS ONE 2013, 8, e79417. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Arends, J.; Bozzetti, F.; Cuerda, C.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN guidelines on chronic intestinal failure in adults. Clin. Nutr. 2016, 35, 247–307. [Google Scholar] [CrossRef]
- Saunders, J.; Naghibi, M.; Leach, Z.; Parsons, C.; King, A.; Smith, T.; Stroud, M. Taurolidine locks significantly reduce the incidence of catheter-related blood stream infections in high-risk patients on home parenteral nutrition. Eur. J. Clin. Nutr. 2015, 69, 282–284. [Google Scholar] [CrossRef] [PubMed]
- Mermel, L.A.; Alang, N. Adverse effects associated with ethanol catheter lock solutions: A systemic review. J. Antimicrob. Chemother. 2014, 69, 2611–2619. [Google Scholar] [CrossRef] [PubMed]
- Cuerda, C.; Pironi, L.; Arends, J.; Bozzetti, F.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN practical guideline: Clinical nutrition in chronic intestinal failure. Clin. Nutr. 2021, 40, 5196–5220. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.; Matarese, L.E. Bacteria, bones and stones: Managing complications of short bowel syndrome. Nutr. Clin. Pract. 2018, 33, 454–466. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Steiger, E.; Brandt, C.; Joly, F.; Wanten, G.; Chambrier, C.; Aimasso, U.; Sasdelli, A.S.; Zeraschi, S.; Kelly, D.; et al. Home parenteral nutrition provision modalities for chronic intestinal failure in adult patients: An international survey. Clin. Nutr. 2020, 39, 585–591. [Google Scholar] [CrossRef]
- Reber, E.; Staub, K.; Schönenberger, K.A.; Stanga, A.; Leuenberger, M.; Pichard, C.; Schuetz, P.; Mühlebach, S.; Stanga, Z. Management of Home Parenteral Nutrition: Complications and Survival. Ann. Nutr. Metab. 2021, 77, 46–55. [Google Scholar] [CrossRef]
- Thorarinsdottir, H.; Rockholt, M.; Klarin, B.; Broman, M.; Fraenkel, C.; Kander, T. Cather related infections: A Scandinavian observational study on the impact of a simple hyfgiene insertion bundle. Acta Anaesthesiol. Scand. 2020, 64, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Pichitchaipitak, O.; Ckumdee, S.; Apivanich, S.; Chotiprasitsakul, D.; Shantavasinkul, P.C. Predictive factors of catheter-related bloodstream infection in patients receiving home parenteral nutrition. Nutrition 2018, 46, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Lloyd, D.A.; Vega, R.; Bassett, P.; Forbes, A.; Gabe, S.M. Survival and dependence on home parenteral nutrition: Experience over a 25 years period in a UK referral center. Aliment. Pharm. Ther. 2006, 24, 1231–1240. [Google Scholar] [CrossRef] [PubMed]
- Howard, L. Home parenteral nutrition: Survival, cost, and quality of life. Gastroenterology 2006, 130, S52–S59. [Google Scholar] [CrossRef] [PubMed]
- Scolapio, J.S.; Fleming, C.R.; Kelly, D.G.; Wick, D.M.; Zinsmeister, A.R. Survival of home parenteral nutrition-treated patients: 20 years of experience at the Mayo Clinic. Mayo Clin. Proc. 1999, 74, 217–222. [Google Scholar] [CrossRef] [PubMed]
- Kopczynska, M.; Hvas, C.L.; Jepsen, P.; Teubner, A.; Abraham, A.; Burden, S.T.; Taylor, M.; Carlson, G.; Lal, S. Standardized survival and excess Life Years Lost in patients with type 3 intestinal failure. Clin. Nutr. 2022, 41, 2446–2454. [Google Scholar] [CrossRef]
- Joly, F.; Baxter, J.; Staun, M.; Kelly, D.G.; Hwa, Y.L.; Corcos, O.; De Francesco, A.; Agostini, F.; Klek, S.; Santarpia, L.; et al. Five-year survival and causes of death in patients on home parenteral nutrition for severe chronic and benign intestinal failure. Clin. Nutr. 2018, 37, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Nikoupour, H.; Arasteh, P.; Shamsaeefar, A. Experiences with intestinal failure from an intestinal rehabilitation unit in a country without home parenteral nutrition. J. Parenter. Enter. Nutr. 2022, 46, 946–957. [Google Scholar] [CrossRef] [PubMed]
- Nikoupour, H.; Khosravi, M.B.; Vatankhah, P.; Shafiekhani, M.; Shamsaeefar, A.; Arasteh, P.; Anbardar, M.H.; Eghbal, M.H.; Sahmeddini, M.A.; Khalili, F.; et al. Intestinal Transplantation in a Country Without Home Parenteral Nutrition: The Largest Report from the Middle East. Turk. J. Gastroenterol. 2022, 33, 793–802. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Setakhr, V.; Seksik, P.; Allez, M.; Treton, X.; De Vos, M.; Laharie, D.; Colombel, J.F.; Abitbol, V.; Reimund, J.M.; et al. Long-term outcome of enterocutaneous fistula in patients with Crohn’s disease treated with anti-TNF therapy: A cohort study from the GETAID. Am. J. Gastroenterol. 2014, 109, 1443–1449. [Google Scholar] [CrossRef]
- Kasparek, M.S.; Bruckmeier, A.; Beigel, F.; Müller, M.H.; Brand, S.; Mansmann, U.; Jauch, K.W.; Ochsenkühn, T.; Kreis, M.E. Infliximab does not affect postoperative complication rates in Crohn’s patients undergoing abdominal surgery. Inflamm. Bowel Dis. 2012, 18, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Vaizey, C.J.; Maeda, Y.; Barbosa, E. ESCP consensus on the surgical management of intestinal failure in adults. Color Dis. 2016, 18, 535–548. [Google Scholar]
- Carlson, G.L.; Gardiner, K.; McKee, R.; MacFie, J.; Vaizey, C. The Surgical Management of Patients with Intestinal Failure. Issues in Professional Practice; Association of Surgeons of Great Britain and Ireland: London, UK, 2010. [Google Scholar]
- Klek, S.; Forbes, A.; Gabe, S.; Holst, M.; Wanten, G.; Irtun, Ø.; Damink, S.O.; Panisic-Sekeljic, M.; Pelaez, R.B.; Pironi, L.; et al. Management of acute intestinal failure: A position paper from the European Society for Clinical Nutrition and Metabolism (ESPEN) Special Interest Group. Clin. Nutr. 2016, 35, 1209–1218. [Google Scholar] [CrossRef]
- Messing, B.; Crenn, P.; Beau, P.; Boutron-Ruault, M.C.; Rambaud, J.C.; Matuchansky, C. Long-term survival and parentral nutrition dependence in adult patients with the short bowel syndrome. Gastroenterology 1999, 117, 1043–1050. [Google Scholar] [CrossRef] [PubMed]
- Amiot, A.; Messing, B.; Corcos, O.; Panis, Y.; Joly, F. Determinants of home parenteral nutrition dependence and survival of 268 patients with non-malignant short bowel syndrome. Clin. Nutr. 2013, 32, 368–374. [Google Scholar] [CrossRef] [PubMed]
- Bianchi, A. Intestinal loop lengthening—A technique for increasing small intestinal length. J. Peiatr. Surg. 1980, 15, 145–151. [Google Scholar] [CrossRef]
- Kim, H.B.; Fauza, D.; Garza, J.; Oh, J.T.; Nurko, S.; Jaksic, T. Serial Transverse Enteroplasty (STEP): A novel bowel lengthening procedure. J. Pediatr. Surg. 2003, 38, 425–429. [Google Scholar] [CrossRef] [PubMed]
- Sabbagh, C.; Amiot, A.; Maggiori, L.; Corcos, O.; Joly, F.; Panis, Y. Non transplantation surgical approach for chronic intestinal pseudo-obstruction: Analysis of 63 adult consecutive cases. Neurogastroenterol. Motil. 2013, 25, e680–e686. [Google Scholar] [CrossRef] [PubMed]
- Girvent, M.; Carlson, G.L.; Anderson, I.; Shaffer, J.; Irving, M.; Scott, N.A. Intestinal failure after surgery for complicated radiation enteritis. Ann. R. Coll. Surg. Engl. 2000, 82, 198–201. [Google Scholar] [PubMed]
- Amiot, A.; Joly, F.; Lefevre, J.H.; Corcos, O.; Bretagnol, F.; Bouhnik, Y.; Panis, Y.; Messing, B. Long term outcome after extensive intestinal resection for chronic radiation enteritis. Dig. Liver. Dis. 2013, 45, 110–114. [Google Scholar] [CrossRef]
- Gondolesi, G.E.; Ortega, M.; Martinez, M.I.; Rumbo, C.; Solar, H. Autologous gastrointestinal reconstruction surgery for short bowel syndrome: The cornerstone for intestinal rehabilitation. Curr. Opin. Organ. Transplant. 2022, 27, 148–153. [Google Scholar] [CrossRef]
- Mughal, M.M.; Irving, M.H. Treatment of end stage chronic intestinal pseudo-obstruction by subtotal enterectomy and home parenteral nutrition. Gut 1988, 29, 1613–1617. [Google Scholar] [CrossRef]
- Amiot, A.; Joly, F.; Alves, A.; Panis, Y.; Bouhnik, Y.; Messing, B. Long term Outcome of Chronic Intestinal Pseudo-Obstruction Adult Patients Requiring Home Parenteral Nutrition. Am. J. Gastroenterol. 2009, 104, 1262–1270. [Google Scholar] [CrossRef]
- Iyer, K.; DiBaise, J.K.; Rubio-Tapia, A. AGA Clinical practice update on management of short bowel syndrome: Expert review. Clin. Gastroenterol. Hepatol. 2022, 20, 2185–2194.e2. [Google Scholar]
- Parrish, C.R.; DiBaise, J.K. Managing the adult patient with short bowel syndrome. Gastroenterol. Hepatol. 2017, 13, 600–608. [Google Scholar]
- Bering, J.; DiBaise, J.K. Short bowel syndrome: Complications and management. Nutr. Clin. Pract. 2023, 38, S46–S58. [Google Scholar] [CrossRef]
- Fedorak, R.N.; Field, M.; Chang, E.B. Treatment of diabetic diarrhea with clonidine. Ann. Intern. Med. 1985, 102, 197–199. [Google Scholar] [CrossRef]
- Valdovinos, M.A.; Camilleri, M.; Zimmerman, B.R. Chronic diarrhea in diabetes mellitus: Mechanisms and an approach to diagnosis and treatment. Mayo Clin. Proc. 1993, 68, 691–702. [Google Scholar] [CrossRef]
- Chang, E.B.; Field, M.; Miller, R.J. Enterocyte alpha 2-adrenergic receptors: Yohimbine and p-aminoclonidine binding relative to ion transport. Am. J. Physiol. 1983, 244, G76–G82. [Google Scholar] [CrossRef]
- Buchman, A.L.; Fryer, J.; Wallin, A.; Ahn, C.W.; Polensky, S.; Zaremba, K. Clonidine reduces diarrhea and sodium loss in patients with proximal jejunostomy: A cotrolled study. J. Parenter. Enter. Nutr. 2006, 30, 487–491. [Google Scholar] [CrossRef]
- McDoniel, K.; Taylor, B.; Huey, W.; Eiden, K.; Everett, S.; Fleshman, J.; Buchman, T.G.; Alpers, D.; Klein, S. Use of clonidine to decrease intestinal fluid losses in patients with high output short bowel syndrome. J. Parenter. Enter. Nutr. 2004, 28, 265–268. [Google Scholar] [CrossRef] [PubMed]
- Ladefoged, K.; Christensen, K.C.; Hegnhoj, J.; Jarnum, S. Effect of a long-acting somatostatin analogue SMS 201-995 on jejunostomy effluents in patients with severe short bowel syndrome. Gut 1989, 30, 943–949. [Google Scholar] [CrossRef]
- Rahbour, G.; Siddiqui, M.R.; Ullah, M.R.; Gabe, S.M.; Warusavitarne, J.; Vaizey, C.J. A meta-analysis of outcomes following use of somatostatin and its analogues for the management of enterocutaneous fistulas. Ann. Surg. 2012, 256, 946–954. [Google Scholar] [CrossRef]
- Ramos-De la Medina, A.; Sarr, M.G. Somatostin analogues in the prevention of pancreas related complications agates pancreatic resection. J. Hepatobiliary Pancreat. Surg. 2006, 13, 1290–1293. [Google Scholar]
- de Vries, F.E.E.; Reeskamp, L.F.; van Ruler, O.; van Arum, I.; Kuin, W.; Dijksta, G.; Haveman, J.W.; Boermeester, M.A.; Serlie, M.J. Systematic review: Pharmacotherapy for high-output enterostomies or enteral fisulas. Aliment. Pharmacol. Ther. 2017, 46, 266–273. [Google Scholar] [CrossRef]
- Chan, L.N.; Parrish, C.R.; DiBaise, J.K. Short bowel syndrome in adults-part 4A. A guide to front line drugs used in the treatment of short bowel syndrome. Pract. Gastroenterol. 2015, 39, 28–42. [Google Scholar]
- Da Rocha, M.H.M.; Lee, A.D.W.; De Mario Marin, M.L.; Faintuch, S.; Mishaly, A.; Faintuch, J. Treating short bowel syndrome with pharmacotherapy. Expert Opin. Pharmacother. 2020, 21, 709–720. [Google Scholar] [CrossRef]
- Marier, J.; Jomphe, C.; Peyret, T.; Wang, Y. Population pharmacokinetics and exposure-response analyses of teduglutide in adult and pediatric patients with short bowel syndrome. Clin. Transl. Sci. 2021, 14, 2497–2509. [Google Scholar] [CrossRef]
- Pironi, L.; Allard, J.P.; Joly, F.; Geransar, P.; Genestin, E.; Pape, U.F. Use of teduglutide in adults with short bowel syndrome-associated intestinal failure. Nutr. Clin. Pract. 2024, 39, 141–153. [Google Scholar] [CrossRef]
- Eliasson, J.; Hvistendahl, M.K.; Freund, N.; Bolognani, F.; Meyer, C.; Jeppesen, P.B. Apraglutide, a novel glucagon-like peptide-2 analog, improves fluid absorption in patients with short bowel syndrome intestinal failure: Findings from a placebo-controlled, randomized phase 2 trial. J. Parenter. Enter. Nutr. 2022, 46, 896–904. [Google Scholar] [CrossRef]
- Naimi, R.M.; Hvistendahl, M.; Enevoldsen, L.H.; Madsen, J.L.; Fuglsang, S.; Poulsen, S.S.; Kissow, H.; Pedersen, J.; Nerup, N.; Ambrus, R.; et al. Glepaglutide, a novel long-acting glucagon-like peptide-2 analogue, for patients with short bowel syndrome: A randomized phase 2 trial. Lancet Gastroenterol. Hepatol. 2019, 4, 354–363. [Google Scholar] [CrossRef]
- Roberts, K.; Parrish, C.R.; Shah, N.D.; Walls, E. Navigating nutrition and hydration care in the adult patient with short bowel syndrome. Nutr. Clin. Pract. 2023, 38, s59–s75. [Google Scholar] [CrossRef] [PubMed]
- Matarese, L.E. Nutrition and fluid optimization for patients with short bowel syndrome. J. Parenter. Enter. Nutr. 2013, 37, 161–170. [Google Scholar] [CrossRef]
- Bering, J.; diBaise, J.K. Short bowel syndrome in adults. Am. J. Gastroenterol. 2022, 117, 876–883. [Google Scholar] [CrossRef]
- Limtrakun, N.; Lakananurak, N. Dietary Strategies for Managing Short Bowel Syndrome. Curr. Treat. Options Gastroenterol. 2022, 20, 376–391. [Google Scholar] [CrossRef]
- Gabe, S.; Shaffer, J.L.; Forbes, A.; Holst, M.; Irtun, Ø.; Kłęk, S.; Damink, S.O.; Pertkiewicz, M.; Pironi, L.; Rasmussen, H.H.; et al. The management of patients with high output enterocutaneous gastrointestinal fistula: A European Survey. Clin. Nutr. 2012, 7 (Suppl. 1), 14–15. [Google Scholar]
- Gondolesi, G.E.; Pattín, F.; Nikkoupur, H. Management of intestinal failure in middle-income countries, for children and adults. Curr. Opin. Organ. Transplant. 2018, 23, 212–218. [Google Scholar] [CrossRef] [PubMed]
- Zegarra Cavani, S.; Huaman Egoavil, E. Síndrome de intestino corto asociado a la falla intestinal. Cirujano 2019, 16, 54–62. [Google Scholar]
- George, A.; Li, B.; Carroll, R. Off-Label Teduglutide Therapy in Non-Intestinal Failure Patients with Chronic Malabsorption. Dig. Diseeases Sci. 2019, 64, 1599–1603. [Google Scholar] [CrossRef]
- Loutfy, A.; Kurin, M.; Shah, R.; Cavitkov, P. Characterization of American teduglutide consumers from 2015–2020: A large database study. J. Pareneter. Enter. Nutr. 2022, 46, 646–651. [Google Scholar] [CrossRef]
- Pironi, L.; Sasdelli, A.S.; Venerito, F.M.; Musio, A.; Pazzeschi, C.; Guidetti, M. Candidacy of adult patients with short bowel syndrome for treatment with glucagon-like peptide-2 analogues: A systemic analysis of a single centre cohort. Clin. Nutr. 2021, 40, 4065–4074. [Google Scholar] [CrossRef]
- Bond, A.; Taylor, M.; Abraham, A.; Teubner, A.; Soop, M.; Carlson, G.; Lal, S. Examining the pathophysiology of short bowel syndrome and glucagon-like peptide 2 analogue suitability in chronic intestinal failure: Experience from a national intestinal failure unit. Eur. J. Clin. Nutr. 2019, 73, 751–756. [Google Scholar] [CrossRef] [PubMed]
- de Dreuille, B.; Nuzzo, A.; Bataille, J.; Mailhat, C.; Billiauws, L.; Le Gall, M.; Joly, F. Post-Marketing Use of Teduglutide in a Large Cohort of Adults with Short Bowel Syndrome-Associated Chronic Intestinal Failure: Evolution and Outcomes. Nutrients 2023, 15, 2448. [Google Scholar] [CrossRef] [PubMed]
- Lam, K.; Schwartz, L.; Batisti, J.; Iyer, K. Sigle-Center Experience with use of Teduglutide in Adult Patients with Short Boewl Syndrome. J. Parenter. Enter. Nutr. 2018, 42, 225–230. [Google Scholar] [CrossRef] [PubMed]
- Solar, H.; Crivelli, A.; de Barrio, S.; Buncuga, M.; Manzur, A. Teduglutida en pacientes adultos con falla intestinal crónica por síndrome de intestino corto: Protocolo de manejo con base en recomendaciones de expertos. Acta Gastroenterol. Latinoam. 2022, 52, 47–56. [Google Scholar] [CrossRef]
- Bioletto, F.; D’Eusebio, C.; Merlo, F.D.; Aimasso, U.; Ossola, M.; Pellegrini, M.; Ponzo, V.; Chiarotto, A.; De Francesco, A.; Ghigo, E.; et al. Efficacy of teduglutide for parenteral support reduction in patients with short bowel syndrome: A systematic review and meta-analysis. Nutrients 2022, 14, 796. [Google Scholar] [CrossRef]
- Chen, K.; Joly, F.; Mu, F.; Kelkar, S.S.; Olivier, C.; Xie, J.; Seidner, D.L. Predictors and timing of response to teduglutide in patients with short bowel syndrome dependent on parenteral support. Clin. Nutr. ESPEN 2021, 43, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.S.; Xie, J.; Tang, W.; Zhao, J.; Jeppesen, P.B.; Signorovitch, J.E. Identifying a subpopulation with higher likelihoods of early response to treatment in a heterogeneous rare disease: A post hoc study of response to teduglutide for short bowel syndrome. Ther. Clin. Risk Manag. 2018, 14, 1267–1277. [Google Scholar] [CrossRef]
- Allard, J.P.; Genestin, E.; Gondolesi, G.; Mason, J.; Pironi, L.; Schwartz, L.; Zhang, P.; Jeppesen, P.B. P25- a prospective multicenter registry for patients with short bowel syndrome (SBS Registry): Long-term effectiveness analysis in the context of teduglutide treatment. J. Parenter. Enter. Nutr. 2021, 45, S44–S240. [Google Scholar]
- Armstrong, D.; Forbes, A.; Jeppesen, P.B.; Lee, H.-M.; Nagy, P.; Seidner, D.L. Colon polyps in patients with short bowel syndrome before and after teduglutide: Post hoc analysis of the STEPS study series. Clin. Nutr. 2020, 39, 1774–1777. [Google Scholar] [CrossRef]
- Ukleja, A.; Alkhairi, B.; Bejarano, P.; Podugu, A. De Novo Development of Hamartomatous Duodenal Polyps in a Patient With Short Bowel Syndrome During Teduglutide Therapy: A Case Report. J. Parenter. Enter. Nutr. 2018, 42, 658–660. [Google Scholar] [CrossRef]
- de Dreuille, B.; Cazals-Hatem, D.; Ronot, M.; Theou-Anton, N.; Dermine, S.; Le Beyec-Le Bihan, J.; Billiauws, L.; Le Gall, M.; Bado, A.; Joly, F. Unexpected upper gastrointestinal polyps in patients with short bowel syndrome treated with teduglutide: Need for close monitoring. Am. J. Clin. Nutr. 2023, 117, 1143–1151. [Google Scholar] [CrossRef] [PubMed]
- Dibb, M.; Soop, M.; Teubner, A.; Shaffer, J.; Abraham, A.; Carlson, G.; Lal, S. Survival and nutritional dependence on home parenteral nutrition: Three decades of experience from a single referral centre. Clin. Nutr. 2017, 36, 570–576. [Google Scholar] [CrossRef]
- Puello, F.; Wall, E.; Herlitz, J.; Lozano, E.S.; Semrad, C.; Micic, D. Long-Term Outcomes with Teduglutide From a Single Center. J. Parenter. Enter. Nutr. 2021, 45, 318–322. [Google Scholar] [CrossRef]
- Harpain, F.; Schlager, L.; Hütterer, E.; Dawoud, C.; Kirchnawy, S.; Stift, J.; Krotka, P.; Stift, A. Teduglutide in short bowel syndrome patients: A way back to normal life? J. Parenter. Enter. Nutr. 2022, 46, 300–309. [Google Scholar] [CrossRef] [PubMed]
- Joly, F.; Seguy, D.; Nuzzo, A.; Chambrier, C.; Beau, P.; Poullenot, F.; Thibault, R.; Armengol Debeir, L.; Layec, S.; Boehm, V.; et al. Six-month outcomes of teduglutide treatment in adult patients with short bowel syndrome with chronic intestinal failure: A real-world French observational cohort study. Clin. Nutr. 2020, 39, 2856–2862. [Google Scholar] [CrossRef] [PubMed]
- Pevny, S.; Maasberg, S.; Rieger, A.; Karber, M.; Blüthner, E.; Knappe-Drzikova, B.; Thurmann, D.; Büttner, J.; Weylandt, K.H.; Wiedenmann, B.; et al. Experience with teduglutide treatment for short bowel syndrome in clinical practice. Clin. Nutr. 2019, 38, 1745–1755. [Google Scholar] [CrossRef] [PubMed]
- Schoeler, M.; Klag, T.; Wendler, J.; Bernhard, S.; Adolph, M.; Kirschniak, A.; Goetz, M.; Malek, N.; Wehkamp, J. GLP-2 analog teduglutide significantly reduces need for parenteral nutrition and stool frequency in a real-life setting. Ther. Adv. Gastroenterol. 2018, 11, 1756284818793343. [Google Scholar] [CrossRef] [PubMed]
- Lakananurak, N.; Wall, E.; Catron, H.; Delgado, A.; Greif, S.; Herlitz, J.; Moccia, L.; Mercer, D.; Vanuytsel, T.; Kumpf, V.; et al. Real-World Management or High Stool Output in Patients with Short Bowel syndrome; An International Multicenter survey. Nutrients 2023, 15, 2763. [Google Scholar] [CrossRef] [PubMed]
- Nieuwenhuijs, V.B.; Verheem, A.; van Duijvenbode-Beumer, H.; Visser, M.R.; Verhoef, J.; Gooszen, H.G.; Akkermans, L.M. The role of interdigestive small bowel motility in the regulation of gut microflora, bacterial overgrowth, and bacterial translocation in rats. Ann. Surg. 1998, 228, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, J.M.D.; Paine, P.; McLaughlin, J.; Emmanuel, A.; Martin, J.E.; Lal, S. The management of adult patients with severe chronic small intestinal dysmotility. Gut 2020, 69, 2074–2792. [Google Scholar] [CrossRef]
- Perlemuter, G.; Cacoub, P.; Chaussade, S.; Wechsleer, B.; Couturier, D.; Piette, J.C. Octreotide treatment of chronic intestinal pseudoobstruction secondary to connective tissue diseases. Arthritis Rheum 1999, 42, 1545–1549. [Google Scholar] [CrossRef] [PubMed]
- Conley, T.E.; Lal, S. Nutritional considerations in severe primary chronic small intestinal dysmotility. Curr. Opin. Clin. Nutr. Metab. Care 2021, 24, 433–439. [Google Scholar] [CrossRef] [PubMed]
- Gavazzi, C.; Bhoori, S.; Lovullo, S.; Cozzi, G.; Mariani, L. Role of home parenteral nutrition in chronic radiation enteritis. Am. J. Gastroenterol. 2006, 101, 374–379. [Google Scholar] [CrossRef] [PubMed]
- Bozzetti, F.; Cozzaglio, L.; Gavazzi, C.; Gennari, L. Radiation enteropathy. Tumori 1995, 81, 117–121. [Google Scholar] [PubMed]
- Di Nardo, G.; Di Lorenzo, C.; Lauro, A.; Stanghellini, V.; Thapar, N.; Karunaratne, T.B.; Volta, U.; De Giorgio, R. Chronic intestinal pseudo- obstruction in children and adults: Diagnosis and therapeutic options. Neurogastroenterol. Motil. 2017, 29, e12945. [Google Scholar] [CrossRef] [PubMed]
- De Giorgio, R.; Cogliandro, R.F.; Barbara, G.; Corinaldesi, R.; Stanghellini, V. Chronic intestinal pseudo-obstruction: Clinical features, diagnosis, and therapy. Gastroenterol. Clin. N. Am. 2011, 40, 787–807. [Google Scholar] [CrossRef] [PubMed]
- Di Nardo, G.; Karunaratne, T.; Frediani, S.; De Giorgio, R. Chronic intestinal psudo-obstruction: Progress in management? Neurogastroenterol. Motil. 2017, 29, e13231. [Google Scholar]
- Emmanuel, A.; Shand, A.; Kamm, M. Erythromiycin for the treatment ofo chronic intestinal pseudo-obstruction: Description of six cases with a positive response. Aliment. Pharmacol. Ther. 2004, 19, 686–694. [Google Scholar] [CrossRef] [PubMed]
- Vasant, D.H.; Pironi, L.; Barbara, G.; Bozzetti, F.; Cuerda, C.; Joly, F.; Mundi, M.; Paine, P.; Staun, M.; Szczepanek, K.; et al. An international survey on clinicians´ perspectives on the diagnosis and management of chronic intestinal pseudo-obstruction and enteric dysmotility. Neurogastroenterol. Motil. 2020, 32, e13937. [Google Scholar] [CrossRef]
- Lauro, A.; De Giorgio, R.; Pinna, A. Advancement in the clinical management of intestinal pseudo-obstruction. Expert. Rev. Gastroenterol. Hepatol. 2014, 9, 197–208. [Google Scholar] [CrossRef]
- Ceulemans, L.J.; Dubois, A.; Clarysse, M.; Canovai, E.; Venick, R.; Mazariegos, G.; Vanuytsel, T.; Hibi, T.; Avitzur, Y.; Hind, J.; et al. Outcome After Intestinal Transplantation from Living Versus Deceased Donors: A Propensity-matched Cohort Analysis of the International Intestinal Transplant Registry. Ann. Surg. 2023, 278, 807–814. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.transplant-observatory.org/wp-content/uploads/2023/11/2022-data-global-report_VF_2.pdf (accessed on 15 December 2023).
Effect | Drug | Dose |
---|---|---|
Antimotility | Loperamide | 2–4 mg 30 min before meals and bedtime. In anatomy type 1 or 2, ≥32 mg/day |
Diphenoxylate/atropine | 2.5–5 mg up to every 6 h | |
Codeine | 15–60 mg 4 times/day | |
Opium tincture | 0.3–2.0 mL 4 times/day | |
Clonidine | 0.3 mg/day | |
Antisecretory | Proton-pump inhibitors | 20–40 mg 2 times/day |
Histamine 2 receptor antagonists | 150–300 mg/day | |
Octreotide | 50–250 μg 3–4 times/day subcutaneously | |
Cholestyramine | 4 g up to 3 times/day | |
Pancreatic enzymes | 30,000–40,000 IU of lipase before major meals | |
Antibiotics | Metronidazole | 500 mg 3 times/day |
Rifaximin | 550 mg 2 times/day | |
Tetracycline | 250 mg/day | |
Amoxicillin-clavulanate | 500 mg 3 times/day | |
Ciprofloxacin | 500 mg 2 times/day | |
Doxycycline | 100 mg 2 times/day | |
Norfloxacin | 400 mg/day |
Anatomy Type 1 | Anatomy Type 2 and Type 3 |
---|---|
-Avoid hyperosmolar solutions, control simple sugars, avoid high concentrations of salt. -Include starch-containing food. -Control lactose (less than 20 g/day). | -Control simple sugars. -Avoid oxalate consumption. -Select the type of fiber according to symptoms. -Low-fat diet. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Solar, H.; Ortega, M.L.; Gondolesi, G. Current Status of Chronic Intestinal Failure Management in Adults. Nutrients 2024, 16, 2648. https://doi.org/10.3390/nu16162648
Solar H, Ortega ML, Gondolesi G. Current Status of Chronic Intestinal Failure Management in Adults. Nutrients. 2024; 16(16):2648. https://doi.org/10.3390/nu16162648
Chicago/Turabian StyleSolar, Héctor, Mariana L. Ortega, and Gabriel Gondolesi. 2024. "Current Status of Chronic Intestinal Failure Management in Adults" Nutrients 16, no. 16: 2648. https://doi.org/10.3390/nu16162648
APA StyleSolar, H., Ortega, M. L., & Gondolesi, G. (2024). Current Status of Chronic Intestinal Failure Management in Adults. Nutrients, 16(16), 2648. https://doi.org/10.3390/nu16162648