Cosmeceuticals: A Review of Clinical Studies Claiming to Contain Specific, Well-Characterized Strains of Probiotics or Postbiotics
Abstract
:1. Introduction
2. Searching the Literature and Findings
3. Cosmetics with Probiotics [Table 1]
3.1. Lactiplantibacillus plantarum HY7714
3.2. Nitrosomonas eutropha (D23)
3.3. Lactiplantibacillus pentosus KCA1
3.4. Lactiplantibacillus plantarum LB244R
3.5. Lactiplantibacillus plantarum LB244R
Live Bacteria | Applied on | Duration | Placebo Group | Findings | First Author [Reference] |
---|---|---|---|---|---|
L. plantarum HY7714 1010 cfu/d | Face | 12 wks | Yes | Increased facial skin gloss and skin moisture content Decreased wrinkle depth Decreased TEWL | Lee DE [35] |
N. eutropha (D23) 8 × 109 cells/mL | Face | 1 wk | No | Increased facial radiance Decreased facial wrinkles Decreased the intensity of pigmentation | Notay M [44] |
L. pentosus KCA1 lyophilized,12 g | Armpit | 14 d | No | Absence of axillary malodor during the treatment Decrease in odor-producing Corynebacterium species | Onwuliri V [45] |
L. plantarum LB244R 1 × 109 cfu/g | Face | 56 d | No | Increased skin hydration, firmness, elasticity and density Increased smoothness score and complexion radiance Decreased in crow’s feet, spot score and TEWL | Falholt-Elvebakken H [48] |
L. plantarum LB244R 1 × 109 cfu/g | Face | 56 d | Yes | Increased skin firmness, density, elasticity and smoothness Increased skin hydration, pH and complexion radiance score Decreased crow’s feet wrinkles and TEWL | Elvebakken HF [50] |
4. Cosmetics with Postbiotics [Table 2]
4.1. Streptococcus thermophilus S244, Dead by Sonication
4.2. Bifidobacterium longum Reuter Lysate
4.3. Lactobacillus brevis DSM17250
4.4. Lactiplantibacillus plantarum-GMNL6—Heat-Killed
4.5. Lacticaseibacillus paracasei GMNL-653—Heat-Killed
4.6. L. plantarum AN057, L. casei AN177, and S. thermophilus AN157 Metabolites
4.7. Epidermidibacterium Keratini (EPI-7) Ferment Filtrate
4.8. Lactiplantibacillus plantarum HDB Lysate
4.9. Fermented lysates VHProbi® Mix R
Bacteria Used | Quantity/ Duration | Applied on | Placebo Group | Findings | Microbiome Modulation | First Author [Reference] |
---|---|---|---|---|---|---|
S. thermophilus S244 sonicated | — 15 d | Forearm | Yes | Increased skin hydration Increased skin ceramides | - | Di Marzio L [52] |
B. longum reuter lysate | 10% cream 2 mo | Face Arms Legs | Yes | Increased skin resistance and skin barrier Decreased skin sensitivity Decrease in skin roughness and dryness | - | Guéniche A [53] |
L. brevis DSM17250 extract | 0.88 mg/g ointment 28 d | Tibia | Internal Control | Decreased TEWL | Increase S. epidermidis | Holz C [54] |
L. plantarum GMNL6 heat-killed | 1 × 109 cells/g cream 2 mo | Face | Internal Control [split face] |
Increased skin hydration Improvement of wrinkles, skin texture, tone and UV spots Decreased skin erythema and melanin indexes | Decreased Cutibacterium increased Streptococcus Staphylococcus | Tsai, WH [55] |
L. paracasei GMNL-653 heat-killed | — Shampoo 4 mo | Scalp | Baseline | Decreased sebum secretion and dandruff Increased hair volume | Decreased Cutibacterium acnes Malassezia globosa | Tsai WH [56] |
L. plantarum AN057, L. casei AN177, S. thermophilus AN157 co-fermented metabolites CLS02021 | — 4 wks | Face | Internal Control [split face] | Increased skin moisture and elasticity Decreased skin pore size and wrinkle depth | - | Catic T [4] |
E. keratini (EPI-7) fermented filtrate | — 3 wks | Face | Internal Control [split face] | Increased skin barrier function Increased elasticity, and dermal density | Increased Cutibacterium, Clostridium, Prevotella | Kim J [62] |
L. plantarum HDB lysate | — 2 wks | Face | Internal Control [split face] | Increased skin moisture Decreased TEWL Decreased skin redness | Decreased Proteobacteria, Staphylococcii, Lawsonella clevelandensis increased Corynebacterium acnes | Kim KM [64] |
L. rhamnosus VHProbi®E06 L. paracasei VHProbi® E12 L. plantarum VHProbi® E15 L. helveticus VHProbi® Y21 fermented lysates VHProbi® Mix R | 3% in aquatic solution 1 mo | Face | Baseline | Increase moisturization Increased Burden of Sensitive Skin Decreased TEWL Decreases skin redness, redness profile score Decreased skin swelling, oozing, scabs, rashes | - | Cui, H. [66] |
5. Discussion
6. Future Perspectives
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Guéniche, A.; Philippe, D.; Bastien, P.; Blum, S.; Buyukpamukcu, E.; Castiel-Higounenc, I. Probiotics for photoprotection. Derm. Endocrinol. 2009, 1, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Grice, E.A.; Segre, J.A. The skin microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef] [PubMed]
- da Silva Vale, A.; de Melo Pereira, G.V.; de Oliveira, A.C.; de Carvalho Neto, D.P.; Herrmann, L.W.; Karp, S.G.; Soccol, V.T.; Soccol, C.R. Production, Formulation, and Application of Postbiotics in the Treatment of Skin Conditions. Fermentation 2023, 9, 264. [Google Scholar] [CrossRef]
- Catic, T.; Pehlivanovic, B.; Pljakic, N.; Balicevac, A. The Moisturizing Efficacy of a Proprietary Dermo-Cosmetic Product (CLS02021) Versus Placebo in a 4-week Application Period. Med. Arch. 2022, 76, 108–114. [Google Scholar] [CrossRef]
- Li, X.; Xing, L.; Lai, R.; Yuan, C.; Humbert, P. Literature mapping: Association of microscopic skin microflora and biomarkers with macroscopic skin health. Clin. Exp. Dermatol. 2021, 46, 21–27. [Google Scholar] [CrossRef] [PubMed]
- Rawal, S.; Ali, S.A. Probiotics and postbiotics play a role in maintaining dermal health. Food Funct. 2023, 14, 3966–3981. [Google Scholar] [CrossRef] [PubMed]
- Lolou, V.; Panayiotidis, M.I. Functional Role of Probiotics and Prebiotics on Skin Health and Disease. Fermentation 2019, 5, 41. [Google Scholar] [CrossRef]
- Dréno, B.; Araviiskaia, E.; Berardesca, E.; Gontijo, G.; Sanchez Viera, M.; Xiang, L.F.; Martin, R.; Bieber, T. Microbiome in healthy skin, update for dermatologists. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 2038–2047. [Google Scholar] [CrossRef] [PubMed]
- Gueniche, A.; Perin, O.; Bouslimani, A.; Landemaine, L.; Misra, N.; Cupferman, S.; Aguilar, L.; Clavaud, C.; Chopra, T.; Khodr, A. Advances in Microbiome-Derived Solutions and Methodologies Are Founding a New Era in Skin Health and Care. Pathogens 2022, 11, 121. [Google Scholar] [CrossRef]
- Egert, M.; Simmering, R. The Microbiota of the Human Skin. Adv. Exp. Med. Biol. 2016, 902, 61–81. [Google Scholar] [CrossRef]
- Coppola, S.; Avagliano, C.; Sacchi, A.; Laneri, S.; Calignano, A.; Voto, L.; Luzzetti, A.; Berni Canani, R. Potential Clinical Applications of the Postbiotic Butyrate in Human Skin Diseases. Molecules 2022, 27, 1849. [Google Scholar] [CrossRef]
- Keshari, S.; Balasubramaniam, A.; Myagmardoloonjin, B.; Herr, D.R.; Negari, I.P.; Huang, C.-M. Butyric Acid from Probiotic Staphylococcus epidermidis in the Skin Microbiome Down-Regulates the Ultraviolet-Induced Pro-Inflammatory IL-6 Cytokine via Short-Chain Fatty Acid Receptor. Int. J. Mol. Sci. 2019, 20, 4477. [Google Scholar] [CrossRef]
- Fluhr, J.W.; Mao-Qiang, M.; Brown, B.E.; Wertz, P.W.; Crumrine, D.; Sundberg, J.P.; Feingold, K.R.; Elias, P.M. Glycerol regulates stratum corneum hydration in sebaceous gland deficient (asebia) mice. J. Investig. Dermatol. 2003, 120, 728–737. [Google Scholar] [CrossRef]
- Imokawa, G.; Abe, A.; Jin, K.; Higaki, Y.; Kawashima, M.; Hidano, A. Decreased level of ceramides in stratum corneum of atopic dermatitis: An etiologic factor in atopic dry skin? J. Investig. Dermatol. 1991, 96, 523–526. [Google Scholar] [CrossRef]
- Breiden, B.; Sandhoff, K. The role of sphingolipid metabolism in cutaneous permeability barrier formation. Biochim. Biophys. Acta 2014, 1841, 441–452. [Google Scholar] [CrossRef]
- Rabionet, M.; Gorgas, K.; Sandhoff, R. Ceramide synthesis in the epidermis. Biochim. Biophys. Acta 2014, 1841, 422–434. [Google Scholar] [CrossRef]
- Samadi, A.; Nasrollahi, S.A.; Rostami, M.N.; Rezagholi, Z.; Abolghasemi, F.; Firooz, A. Long-term effects of two 24-hour moisturizing products on skin barrier structure and function: A biometric and molecular study. Health Sci. Rep. 2021, 4, e308. [Google Scholar] [CrossRef]
- Montagna, W.; Carlisle, K. Structural changes in aging human skin. J. Investig. Dermatol. 1979, 73, 47–53. [Google Scholar] [CrossRef]
- Makrantonaki, E.; Bekou, V.; Zouboulis, C.C. Genetics and skin aging. Derm.-Endocrinol. 2012, 4, 280–284. [Google Scholar] [CrossRef]
- Pageon, H.; Azouaoui, A.; Zucchi, H.; Ricois, S.; Tran, C.; Asselineau, D. Potentially beneficial effects of rhamnose on skin ageing: An in vitro and in vivo study. Int. J. Cosmet. Sci. 2019, 41, 213–220. [Google Scholar] [CrossRef]
- Margolis, D.J.; Kruithof, E.K.; Barnard, M.; Howe, K.; Lazarus, G.S. Fibrinolytic abnormalities in two different cutaneous manifestations of venous disease. J. Am. Acad. Dermatol. 1996, 34, 204–208. [Google Scholar] [CrossRef]
- Watson, R.E.; Griffiths, C.E.; Craven, N.M.; Shuttleworth, C.A.; Kielty, C.M. Fibrillin-rich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. J. Investig. Dermatol. 1999, 112, 782–787. [Google Scholar] [CrossRef]
- Shuster, S.; Black, M.M.; McVitie, E. The influence of age and sex on skin thickness, skin collagen and density. Br. J. Dermatol. 1975, 93, 639–643. [Google Scholar] [CrossRef]
- Russell-Goldman, E.; Murphy, G.F. The Pathobiology of Skin Aging: New Insights into an Old Dilemma. Am. J. Pathol. 2020, 190, 1356–1369. [Google Scholar] [CrossRef]
- Zhang, S.; Duan, E. Fighting against Skin Aging: The Way from Bench to Bedside. Cell Transplant. 2018, 27, 729–738. [Google Scholar] [CrossRef]
- Cole, M.A.; Quan, T.; Voorhees, J.J.; Fisher, G.J. Extracellular matrix regulation of fibroblast function: Redefining our perspective on skin aging. J. Cell Commun. Signal. 2018, 12, 35–43. [Google Scholar] [CrossRef]
- Dou, J.; Feng, N.; Guo, F.; Chen, Z.; Liang, J.; Wang, T.; Guo, X.; Xu, Z. Applications of Probiotic Constituents in Cosmetics. Molecules 2023, 28, 6765. [Google Scholar] [CrossRef]
- Hill, C.; Guarner, F.; Reid, G.; Gibson, G.R.; Merenstein, D.J.; Pot, B.; Morelli, L.; Canani, R.B.; Flint, H.J.; Salminen, S.; et al. Expert consensus document: The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastroenterol. Hepatol. 2014, 11, 506–514. [Google Scholar] [CrossRef]
- Callewaert, C.; Knödlseder, N.; Karoglan, A.; Güell, M.; Paetzold, B. Skin microbiome transplantation and manipulation: Current state of the art. Comput. Struct. Biotechnol. J. 2021, 19, 624–631. [Google Scholar] [CrossRef]
- Yu, X.; Wei, M.; Yang, D.; Wu, X.; Wei, H.; Xu, F. Lactiplantibacillus plantarum Strain FLPL05 Promotes Longevity in Mice by Improving Intestinal Barrier. Probiotics Antimicrob. Proteins 2023, 15, 1193–1205. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Vinderola, G.; Druart, C.; Gosálbez, L.; Salminen, S.; Vinot, N.; Lebeer, S. Postbiotics in the medical field under the perspective of the ISAPP definition: Scientific, regulatory, and marketing considerations. Front. Pharmacol. 2023, 14, 1239745. [Google Scholar] [CrossRef] [PubMed]
- Iordache, F.; Iordache, C.; Chifiriuc, M.; Bleotu, C.; Pavel, M.; Pelinescu, D.; Sasarman, E.; Lazar, V.; Bucur, M.; Dracea, O.; et al. Antimicrobial and immunomodulatory activity of some probiotic fractions with potential clinical application. Arch. Zootech. 2008, 11, 41–51. [Google Scholar]
- Kimoto-Nira, H.; Aoki, R.; Sasaki, K.; Suzuki, C.; Mizumachi, K. Oral intake of heat-killed cells of Lactococcus lactis strain H61 promotes skin health in women. J. Nutr. Sci. 2012, 1, e18. [Google Scholar] [CrossRef]
- Lee, D.E.; Huh, C.-S.; Ra, J.; Choi, I.-D.; Jeong, J.-W.; Kim, S.-H.; Ryu, J.H.; Seo, Y.K.; Koh, J.S.; Lee, J.-H.; et al. Clinical Evidence of Effects of Lactobacillus plantarum HY7714 on Skin Aging: A Randomized, Double Blind, Placebo-Controlled Study. J. Microbiol. Biotechnol. 2015, 25, 2160–2168. [Google Scholar] [CrossRef]
- Duarte, M.; Oliveira, A.L.; Oliveira, C.; Pintado, M.; Amaro, A.; Madureira, A.R. Current postbiotics in the cosmetic market—An update and development opportunities. Appl. Microbiol. Biotechnol. 2022, 106, 5879–5891. [Google Scholar] [CrossRef]
- Vinderola, G.; Sanders, M.E.; Salminen, S. The Concept of Postbiotics. Foods 2022, 11, 1077. [Google Scholar] [CrossRef]
- Puebla-Barragan, S.; Reid, G. Probiotics in Cosmetic and Personal Care Products: Trends and Challenges. Molecules 2021, 26, 1249. [Google Scholar] [CrossRef]
- Bermudez-Brito, M.; Plaza-Díaz, J.; Muñoz-Quezada, S.; Gómez-Llorente, C.; Gil, A. Probiotic mechanisms of action. Ann. Nutr. Metab. 2012, 61, 160–174. [Google Scholar] [CrossRef]
- McFarland, L.V.; Evans, C.T.; Goldstein, E.J.C. Strain-Specificity and Disease-Specificity of Probiotic Efficacy: A Systematic Review and Meta-Analysis. Front. Med. 2018, 5, 124. [Google Scholar] [CrossRef]
- Ra, J.; Lee, D.E.; Kim, S.H.; Jeong, J.-W.; Ku, H.K.; Kim, T.-Y.; Choi, I.-D.; Jeung, W.; Sim, J.-H.; Ahn, Y.-T. Effect of oral administration of Lactobacillus plantarum HY7714 on epidermal hydration in ultraviolet B-irradiated hairless mice. J. Microbiol. Biotechnol. 2014, 24, 1736–1743. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.M.; Lee, D.E.; Park, S.D.; Kim, Y.-T.; Kim, Y.J.; Jeong, J.W.; Jang, S.S.; Ahn, Y.-T.; Sim, J.-H.; Huh, C.-S.; et al. Oral administration of Lactobacillus plantarum HY7714 protects hairless mouse against ultraviolet B-induced photoaging. J. Microbiol. Biotechnol. 2014, 24, 1583–1591. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.Y.; Ibrahim, O.; Khetarpal, S.; Gaber, M.; Jamas, S.; Gryllos, I.; Dover, J.S. Dermal Microflora Restoration with Ammonia-Oxidizing Bacteria Nitrosomonas Eutropha in the Treatment of Keratosis Pilaris: A Randomized Clinical Trial. J. Drugs Dermatol. 2018, 17, 285–288. [Google Scholar] [PubMed]
- Notay, M.; Saric-Bosanac, S.; Vaughn, A.R.; Dhaliwal, S.; Trivedi, M.; Reiter, P.N.; Rybak, I.; Li, C.C.; Weiss, L.B.; Ambrogio, L.; et al. The use of topical Nitrosomonas eutropha for cosmetic improvement of facial wrinkles. J. Cosmet. Dermatol. 2020, 19, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Onwuliri, V.; Agbakoba, N.R.; Anukam, K.C. Topical cream containing live lactobacilli decreases malodor-producing bacteria and downregulates genes encoding PLP-dependent enzymes on the axillary skin microbiome of healthy adult Nigerians. J. Cosmet. Dermatol. 2021, 20, 2989–2998. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Schmid, J.; Flachsmann, F. Identification of odoriferous sulfanylalkanols in human axilla secretions and their formation through cleavage of cysteine precursors by a C-S lyase isolated from axilla bacteria. Chem. Biodivers. 2004, 1, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Anukam, K.C.; Macklaim, J.M.; Gloor, G.B.; Reid, G.; Boekhorst, J.; Renckens, B.; van Hijum, S.A.; Siezen, R.J. Genome sequence of Lactobacillus pentosus KCA1: Vaginal isolate from a healthy premenopausal woman. PLoS ONE 2013, 8, e59239. [Google Scholar] [CrossRef]
- Falholt Elvebakken, H.; Bruntse, A.B.; Vedel, C.; Kjaerulff, S. Topical Lactiplantibacillus plantarum LB244R® ointment alleviates skin aging: An exploratory trial. J. Cosmet. Dermatol. 2023, 22, 1911–1918. [Google Scholar] [CrossRef] [PubMed]
- Christensen, I.B.; Vedel, C.; Clausen, M.-L.; Kjærulff, S.; Agner, T.; Nielsen, D.S. Targeted Screening of Lactic Acid Bacteria with Antibacterial Activity toward Staphylococcus aureus Clonal Complex Type 1 Associated with Atopic Dermatitis. Front. Microbiol. 2021, 12, 733847. [Google Scholar] [CrossRef]
- Elvebakken, H.F.; Christensen, I.B.; Vedel, C.; Kjærulff, S. A proof of concept: Clinical anti-aging efficacy and safety of Lactiplantibacillus plantarum LB244R® applied topically in a double-blinded placebo-controlled study. J. Cosmet. Dermatol. 2024, 23, 1233–1242. [Google Scholar] [CrossRef]
- Di Marzio, L.; Cinque, B.; De Simone, C.; Cifone, M.G. Effect of the lactic acid bacterium Streptococcus thermophilus on ceramide levels in human keratinocytes in vitro and stratum corneum in vivo. J. Investig. Dermatol. 1999, 113, 98–106. [Google Scholar] [CrossRef] [PubMed]
- Di Marzio, L.; Cinque, B.; Cupelli, F.; De Simone, C.; Cifone, M.G.; Giuliani, M. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int. J. Immunopathol. Pharmacol. 2008, 21, 137–143. [Google Scholar] [CrossRef] [PubMed]
- Guéniche, A.; Bastien, P.; Ovigne, J.M.; Kermici, M.; Courchay, G.; Chevalier, V.; Breton, L.; Castiel-Higounenc, I. Bifidobacterium longum lysate, a new ingredient for reactive skin. Exp. Dermatol. 2010, 19, e1–e8. [Google Scholar] [CrossRef] [PubMed]
- Holz, C.; Benning, J.; Schaudt, M.; Heilmann, A.; Schultchen, J.; Goelling, D.; Lang, C. Novel bioactive from Lactobacillus brevis DSM17250 to stimulate the growth of Staphylococcus epidermidis: A pilot study. Benef. Microbes 2017, 8, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-H.; Chou, C.-H.; Chiang, Y.-J.; Lin, C.-G.; Lee, C.-H. Regulatory effects of Lactobacillus plantarum-GMNL6 on human skin health by improving skin microbiome. Int. J. Med. Sci. 2021, 18, 1114–1120. [Google Scholar] [CrossRef] [PubMed]
- Tsai, W.-H.; Fang, Y.-T.; Huang, T.-Y.; Chiang, Y.-J.; Lin, C.-G.; Chang, W.-W. Heat-killed Lacticaseibacillus paracasei GMNL-653 ameliorates human scalp health by regulating scalp microbiome. BMC Microbiol. 2023, 23, 121. [Google Scholar] [CrossRef]
- Coderch, L.; López, O.; de la Maza, A.; Parra, J.L. Ceramides and skin function. Am. J. Clin. Dermatol. 2003, 4, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Juncan, A.M.; Moisă, D.G.; Santini, A.; Morgovan, C.; Rus, L.-L.; Vonica-Țincu, A.L.; Loghin, F. Advantages of Hyaluronic Acid and Its Combination with Other Bioactive Ingredients in Cosmeceuticals. Molecules 2021, 26, 4429. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-G.; Trujillo, M.E.; Kang, S.; Nam, J.-J.; Kim, Y.-J. Epidermidibacterium keratini gen. nov., sp. nov., a member of the family Sporichthyaceae, isolated from keratin epidermis. Int. J. Syst. Evol. Microbiol. 2018, 68, 745–750. [Google Scholar] [CrossRef]
- Lee, Y.-G.; Lee, D.-G.; Gwag, J.; Kim, M.; Kim, M.; Kim, H.-G.; Ko, J.-H.; Yeo, H.; Kang, S.; Baek, N.-I. A 1,1′-biuracil from Epidermidibacterium keratini EPI-7 shows anti-aging effects on human dermal fibroblasts. Appl. Biol. Chem. 2019, 62, 14. [Google Scholar] [CrossRef]
- Brosnan, M.E.; Brosnan, J.T. Orotic acid excretion and arginine metabolism. J. Nutr. 2007, 137, 1656s–1661s. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Lee, Y.I.; Mun, S.; Jeong, J.; Lee, D.-G.; Kim, M.; Jo, H.; Lee, S.; Han, K.; Lee, J.H. Efficacy and Safety of Epidermidibacterium Keratini EPI-7 Derived Postbiotics in Skin Aging: A Prospective Clinical Study. Int. J. Mol. Sci. 2023, 24, 4634. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Lee, C.-W.; Cha, S.Y.; Choi, J.-W.; Lee, S. Skin Barrier Enhancement of Ferment using Lava Seawater and Lactobacillus plantarum HDB1234 as a Novel Cosmetic Ingredient. J. Korean Soc. Cosmetol. 2021, 27, 356–363. [Google Scholar] [CrossRef]
- Kim, K.M.; Song, J.-W.; Lee, C.-W.; Kim, D.-S.; Sohn, J.; Lee, S. Skin Barrier-Enhancing Effects of Dermabiotics HDB with Regulation of Skin Microbiota. J. Microbiol. Biotechnol. 2024, 34, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-J.; Oh, H.N.; Park, T.; Kim, H.; Lee, H.G.; An, S.; Sul, W.J. Aged related human skin microbiome and mycobiome in Korean women. Sci. Rep. 2022, 12, 2351. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Feng, C.; Zhang, T.; Martínez-Ríos, V.; Martorell, P.; Tortajada, M.; Cheng, S.; Cheng, S.; Duan, Z. Effects of a lotion containing probiotic ferment lysate as the main functional ingredient on enhancing skin barrier: A randomized, self-control study. Sci. Rep. 2023, 13, 16879. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Guo, C.; Wang, Q.; Feng, C.; Duan, Z. A pilot study on the efficacy of topical lotion containing anti-acne postbiotic in subjects with mild -to -moderate acne. Front. Med. 2022, 9, 1064460. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, A.V.; Harding, C.R. Moisturization and skin barrier function. Dermatol. Ther. 2004, 17 (Suppl. S1), 43–48. [Google Scholar] [CrossRef] [PubMed]
- Lodén, M. Role of topical emollients and moisturizers in the treatment of dry skin barrier disorders. Am. J. Clin. Dermatol. 2003, 4, 771–788. [Google Scholar] [CrossRef]
- Huuskonen, L.; Anglenius, H.; Ahonen, I.; Tiihonen, K. Effects of Bacterial Lysates and Metabolites on Collagen Homeostasis in TNF-α-Challenged Human Dermal Fibroblasts. Microorganisms 2023, 11, 1465. [Google Scholar] [CrossRef]
- Negari, I.P.; Keshari, S.; Huang, C.-M. Probiotic Activity of Staphylococcus epidermidis Induces Collagen Type I Production through FFaR2/p-ERK Signaling. Int. J. Mol. Sci. 2021, 22, 1414. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-S.; Min, J.-W.; Gye, S.-B.; Kim, Y.-W.; Kang, H.-C.; Choi, Y.-S.; Seo, W.-S.; Lee, B.-Y. Suppression of UVB-Induced MMP-1 Expression in Human Skin Fibroblasts Using Lysate of Lactobacillus iners Derived from Korean Women’s Skin in Their Twenties. Curr. Issues Mol. Biol. 2024, 46, 513–526. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.; Mineroff Gollogly, J.; Wang, J.Y.; Jagdeo, J. Cosmeceuticals for antiaging: A systematic review of safety and efficacy. Arch. Dermatol. Res. 2024, 316, 173. [Google Scholar] [CrossRef] [PubMed]
- Han, J.H.; Kim, H.S. Skin Deep: The Potential of Microbiome Cosmetics. J. Microbiol. 2024, 62, 181–199. [Google Scholar] [CrossRef] [PubMed]
- De Almeida, C.V.; Antiga, E.; Lulli, M. Oral and Topical Probiotics and Postbiotics in Skincare and Dermatological Therapy: A Concise Review. Microorganisms 2023, 11, 1420. [Google Scholar] [CrossRef] [PubMed]
- Gkitsaki, I.; Potsaki, P.; Dimou, I.; Laskari, Z.; Koutelidakis, A.; Giaouris, E. Development of a functional Greek sheep yogurt incorporating a probiotic Lacticaseibacillus rhamnosus wild-type strain as adjunct starter culture. Heliyon 2024, 10, e24446. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, R.; Shah, N.P. Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt—A review. Int. J. Food Microbiol. 2011, 149, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, H.E.; Bhatia, N.D.; Friedman, A.; Eng, R.M.; Seite, S. The Role of Cutaneous Microbiota Harmony in Maintaining a Functional Skin Barrier. J. Drugs Dermatol. 2017, 16, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Maisel, A.; Waldman, A.; Furlan, K.; Weil, A.; Sacotte, K.; Lazaroff, J.M.; Lin, K.; Aranzazu, D.; Avram, M.M.; Bell, A.; et al. Self-reported Patient Motivations for Seeking Cosmetic Procedures. JAMA Dermatol. 2018, 154, 1167–1174. [Google Scholar] [CrossRef]
- Draelos, Z.; Bogdanowicz, P.; Saurat, J.H. Top weapons in skin aging and actives to target the consequences of skin cell senescence. J. Eur. Acad. Dermatol. Venereol. 2024, 38 (Suppl. S4), 15–22. [Google Scholar] [CrossRef]
- Yadav, N.; Ajmal, G.; Kumawat, D.M.; Diwan, A. Probiotic in Cosmetics: A Patents Landscape Study. Int. J. Life Sci. Pharma Res. 2023, 13, L48–L61. [Google Scholar] [CrossRef]
- Telesetsky, A. UN Food and Agriculture Organization: Exercising Legal Personality to Implement the UN Convention on the Law of the Sea; Springer: Berlin/Heidelberg, Germany, 2020; pp. 203–220. [Google Scholar]
- Nerini, A.; Matera, C.; Stefanile, C. Psychosocial predictors in consideration of cosmetic surgery among women. Aesthetic Plast. Surg. 2014, 38, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, J.; Fabi, S.G. The psychological and aesthetic impact of age-related hair changes in females. J. Cosmet. Dermatol. 2019, 18, 1161–1169. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theodorou, I.M.; Kapoukranidou, D.; Theodorou, M.; Tsetis, J.K.; Menni, A.E.; Tzikos, G.; Bareka, S.; Shrewsbury, A.; Stavrou, G.; Kotzampassi, K. Cosmeceuticals: A Review of Clinical Studies Claiming to Contain Specific, Well-Characterized Strains of Probiotics or Postbiotics. Nutrients 2024, 16, 2526. https://doi.org/10.3390/nu16152526
Theodorou IM, Kapoukranidou D, Theodorou M, Tsetis JK, Menni AE, Tzikos G, Bareka S, Shrewsbury A, Stavrou G, Kotzampassi K. Cosmeceuticals: A Review of Clinical Studies Claiming to Contain Specific, Well-Characterized Strains of Probiotics or Postbiotics. Nutrients. 2024; 16(15):2526. https://doi.org/10.3390/nu16152526
Chicago/Turabian StyleTheodorou, Ioannis M., Dorothea Kapoukranidou, Markos Theodorou, Joulia K. Tsetis, Alexandra Eleftheria Menni, Georgios Tzikos, Stella Bareka, Anne Shrewsbury, George Stavrou, and Katerina Kotzampassi. 2024. "Cosmeceuticals: A Review of Clinical Studies Claiming to Contain Specific, Well-Characterized Strains of Probiotics or Postbiotics" Nutrients 16, no. 15: 2526. https://doi.org/10.3390/nu16152526
APA StyleTheodorou, I. M., Kapoukranidou, D., Theodorou, M., Tsetis, J. K., Menni, A. E., Tzikos, G., Bareka, S., Shrewsbury, A., Stavrou, G., & Kotzampassi, K. (2024). Cosmeceuticals: A Review of Clinical Studies Claiming to Contain Specific, Well-Characterized Strains of Probiotics or Postbiotics. Nutrients, 16(15), 2526. https://doi.org/10.3390/nu16152526