Non-Pharmacological Treatment for Cardiovascular Risk Prevention in Children and Adolescents with Obesity
Abstract
:1. Introduction
2. Obesity as a Cardiovascular Risk Factor
3. The Non-Pharmacological Treatment Approach in Children and Adolescents with Obesity
3.1. Obesity and Hypertension
3.2. Obesity and Dyslipidaemia
3.3. Obesity, Insulin Resistance, and Type 2 Diabetes Mellitus (T2DM)
3.4. Obesity and Hyperuricemia
3.5. Obesity and Obstructive Sleep Apnea Syndrome
4. Practical Advice for Treating Overweight with the Aim of Cardiovascular Prevention
4.1. Management by the Secondary Care Center
- Conduct a thorough family history to identify issues that may recur in the family (e.g., T2DM, dyslipidaemias, hypertension, etc.). Overweight and smoking habits in the family should be considered carefully, and all efforts should be made to eliminate them. It is particularly useful to have firsthand information about the grandparents’ health, as parents themselves are sometimes too young to have manifested certain diseases. In the personal history, gestational age, birth weight, breastfeeding, weaning method and its acceptance, sleep hours, time dedicated to physical activity, and time spent in sedentary activities are of particular relevance. Significant attention must be given to dietary history, including the frequency of intake of different food groups, and preferences and aversions to certain foods. This investigation allows the identification of important and repeated dietary errors, but also helps in providing dietary plans that, as much as possible, respond to the child’s tastes and habits.
- Perform anthropometric measurements (weight, height, arm circumference, waist circumference, hip circumference, triceps, and subscapular skinfold thickness) and measure blood pressure. The obtained data must be interpreted based on specific pediatric nomograms, differentiated by sex, age, and height.
- Conduct blood and instrumental tests. A reevaluation of the child’s blood and instrumental tests should be repeated every 12–18 months.
- d.
- Propose to the child and the family a personalized dietary plan based on the principles described below. Different stages of development, childhood, puberty, and adolescence involve significant changes in energy requirements. Therefore, growing children require a significant amount of energy to support the development of tissues and organs, and all proposed dietary plans must take this into account The personalized approach that takes into consideration specific factors of each individual allows for the development of dietary plans that optimally support growth and health. An important aspect of creating balanced dietary plans that meet the children’s specific nutritional needs is evaluating their energy requirements based on ideal weight determined by growth curves, which provide percentiles based on statistical data collected from reference populations. A child’s ideal weight is often expressed in terms of weight percentile for age, weight for height, or body mass index (BMI) for age [134]. The evaluation of energy requirements should be performed using predictive equations based on age, weight, height, and sex. The Harris–Benedict equation is the most frequently used formula for this need [135]. This formula divides energy demand into two main components: energy expenditure at rest (Resting Energy Expenditure, REE) and related to physical activity (Total Energy Expenditure, TEE). The REE reflects the energy needed to maintain vital functions at rest, while the TEE accounts for the calories consumed during physical activity. Another mathematical approach for calculating energy requirements is the use of the factorial method, which is a well-established practice for assessing the caloric intake necessary to maintain the body’s metabolic functions. The Schofield formula [136], one of the most commonly used variants of this approach, is based on the assumption that energy needs are directly proportional to an individual’s body weight. It involves the use of a multiplicative coefficient that varies according to the individual’s level of physical activity, allowing for a more precise estimate of the calories needed to support metabolic and physical activity [137]. This method provides a useful framework for dietary planning and optimizing caloric intake under various physiological and pathological conditions. In pediatric nutrition, adopting normocaloric dietary schemes is fundamental as it contributes to the healthy physical and cognitive development of children. Normocaloric dietary schemes are designed to provide the right amount of energy needed to support metabolic activities and growth during different developmental stages. Ensuring adequate caloric intake is essential to support the formation of new tissues, bone mineralization, and proper neuro-cognitive development. Moreover, during critical developmental phases such as childhood and adolescence, adequate nutrient intake is crucial to prevent nutritional deficiencies and promote harmonious growth. Normocaloric dietary schemes must be balanced and tailored to the specific needs of each child, considering factors such as age, sex, physical activity, and any existing medical conditions. Designing an optimal dietary scheme for children requires careful consideration of established guidelines for the intake of proteins, lipids, and carbohydrates to ensure healthy and balanced development. General recommendations emphasize the importance of adequate protein intake, typically ranging from 10 to 15% of total calories, accounting for the child’s energy needs and body weight. Proteins should come from nutrient-rich sources such as fish, lean meats, dairy, and legumes. Regarding lipids, guidelines usually recommend that 25–35% of total calories come from fats, with particular attention to essential fatty acids and limiting saturated and trans fats. For carbohydrates, the recommendation is to provide about 45–50% of total calories from this source, favoring complex carbohydrates like fruits, vegetables, and whole grains, while limiting added sugars [138]. Another nutrient to consider when developing a dietary scheme is fiber. The recommended amount of fiber varies according to the child’s age and daily caloric needs. Generally, a gradual increase in fiber intake with age is advised to match increasing nutritional needs. Recommendations suggest that children aged 1 to 3 years should consume about 19 g of fiber per day, while for those aged 4 to 8 years, intake should increase to about 25 g per day. Fiber, mainly derived from fruits, vegetables, legumes, and whole grains, not only promotes intestinal regularity but also helps control blood sugar levels and maintain a healthy body weight [139]. In designing a dietary scheme for children, it is crucial to balance the overall intake of all nutrients to guarantee an adequate integration of vitamins and micronutrients. Vitamins, essential for several biological processes, play key roles in growth, metabolism, and maintaining a robust immune system. Micronutrients, such as minerals and trace elements, are also fundamental for bone health, tissue formation, and the regulation of metabolic reactions. The appropriate intake of vitamins like A, C, D, and B group vitamins, along with minerals such as iron, calcium, and zinc, is essential to prevent nutritional deficiencies that could negatively impact the growth and general well-being of children [138,139,140]. A balanced dietary scheme that includes a variety of foods from all nutritional categories provides a comprehensive approach to ensuring the optimal intake of essential vitamins and micronutrients. An awareness and implementation of these principles in general dietary planning for children is crucial for promoting optimal development and supporting long-term health. Nutritional counseling for families of children at cardiovascular risk is a key element in managing this pediatric population. This process involves active collaboration among health professionals, including nutritionists, pediatricians, and other specialists, with the aim to provide targeted and personalized support. Nutritional education for both children and their families is essential to achieve understanding and the implementation of a specific diet. It is fundamental to engage families in the process of changing dietary habits in order to ensure that dietary recommendations are sustainable in the home context. Teaching children and their families to recognize appropriate portion sizes and to make conscious food choices is crucial for the success of any dietary strategy for the prevention and/or treatment of cardiovascular diseases. Equally important is to provide detailed guidance on the choice of food sources and information on the importance of the quantity and quality of macronutrients. Additionally, nutritional counseling should inform families about the importance of limiting sodium intake and controlling portions. Nutritional counseling should also actively involve parents in promoting an active lifestyle by incorporating physical exercise into the children’s daily routine. Food education, personalized consultation, and regular monitoring are key elements of nutritional counseling, aiming to instill healthy eating habits that can positively influence children’s long-term cardiovascular health.
4.2. Control of Blood Pressure Values
- Increase the intake of fruits and vegetables for their high contents of potassium, fiber, and antioxidants. Potassium and magnesium contribute to the regulation of blood pressure by improving vascular function and reducing peripheral resistance. The high fiber content in fruits and vegetables may also reduce insulin resistance and increase the feeling of satiety.
- Reduce sodium intake. Limit foods with high sodium contents, such as processed foods and fast food. Reducing sodium intake has shown direct effects on blood pressure by decreasing water retention and vascular sensitivity. The amount of added salt during daily food preparation should not exceed 5 g (about 2 g of sodium), and even less for younger children. The consumption of foods with much salt should be limited (cured meats, aged cheeses, processed foods, ready meals, foods preserved in brine or salt, and foods with evident added salt such as French fries and popcorn).
- Consume low-fat dairy products, as they provide calcium without an excess of saturated fats. Additionally, the bioactive peptides present in dairy products may have a vasodilating effect.
- Reduce the intake of simple sugars. Added sugars, often consumed by children, are present in sugary drinks, sweets, and highly processed foods. Reducing the intake of simple sugars not only promotes the maintenance of a healthy body weight but can also reduce vascular resistance.
4.3. Control of Dyslipidaemia
- Limit the intake of saturated fats, mainly found in foods of animal origin and in processed food products (red meat, high-fat dairy products, baked goods, and fried foods). Promoting a diet low in saturated fats is essential for lowering LDL cholesterol levels in children with dyslipidaemia. Additionally, these saturated fats can negatively affect lipid metabolism by increasing the production of cholesterol in the liver and reducing the body’s ability to eliminate excess cholesterol.
- Limit dietary cholesterol intake to no more than 100 mg per 1000 kcal of energy intake with the diet. This goal is easily achievable by including 2–3 “vegetarian” meals per week.
- Prefer the intake of foods containing unsaturated fats by replacing saturated fats with unsaturated fats. Sources of unsaturated fats, such as fish, olive oil, avocado, nuts, and seeds, can be encouraged in the diet to promote a more favorable lipid profile. Increasing the intake of foods with unsaturated fats is also recommended as they represent a source of omega-3, particularly found in fatty fishlike salmon, trout, and tuna, and in olive oil. Long-chain fatty acids from the omega-3 and omega-6 series can help reduce triglyceride levels.
- Increase the intake of soluble fiber found in fruits, vegetables, legumes, and grains. These fibers can bind to cholesterol, reducing its intestinal absorption and thus contributing to the reduction of total and LDL cholesterol levels. Since soluble fibers are abundant in a wide range of foods, it is relatively simple to incorporate them into children’s daily diets. The following foods are all excellent source of soluble fiber: fruits like apples, pears, citrus fruits, and bananas; vegetables such as carrots, broccoli, and zucchini; legumes like beans, lentils, and peas; and oats and healthy snacks like fresh fruit or nuts. Incorporating a variety of these foods into the diet can ensure an adequate intake of soluble fiber.
4.4. Control of Hyperinsulinemia
- Include complex carbohydrates in the diet, such as whole grains, fruits, and vegetables, in order to prevent glycemic spikes and provide energy in a gradual manner.
- Distribute the intake of carbohydrates throughout the day, both in quantitative and in qualitative terms, to maintain stable blood sugar levels.
- Limit the intake of added sugars to improve insulin sensitivity and reduce triglyceride and uric acid levels. Completely eliminate sugary beverages.
4.5. Obstructive Sleep Apnea Syndrome
5. Follow Up
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- EpiCentro Indagine Nazionale 2023: Il Convegno del 10 Maggio. 2024. Available online: https://www.epicentro.iss.it/okkioallasalute/indagine-2023-convegno-10-maggio-2024 (accessed on 30 June 2024).
- CDC. Childhood Obesity Facts. Available online: https://www.cdc.gov/obesity/php/data-research/childhood-obesity-facts.html (accessed on 30 June 2024).
- Hu, K.; Staiano, A.E. Trends in Obesity Prevalence Among Children and Adolescents Aged 2 to 19 Years in the US From 2011 to 2020. JAMA Pediatr. 2022, 176, 1037–1039. [Google Scholar] [CrossRef]
- Abarca-Gómez, L.; Abdeen, Z.A.; Hamid, Z.A.; Abu-Rmeileh, N.M.; Acosta-Cazares, B.; Acuin, C.; Adams, R.J.; Aekplakorn, W.; Afsana, K.; Aguilar-Salinas, C.A.; et al. Worldwide Trends in Body-Mass Index, Underweight, Overweight, and Obesity from 1975 to 2016: A Pooled Analysis of 2416 Population-Based Measurement Studies in 128·9 Million Children, Adolescents, and Adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef]
- Obesity and Overweight. Available online: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 June 2024).
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting Adult Obesity from Childhood Obesity: A Systematic Review and Meta-Analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef] [PubMed]
- MacLean, P.S.; Higgins, J.A.; Giles, E.D.; Sherk, V.D.; Jackman, M.R. The Role for Adipose Tissue in Weight Regain after Weight Loss. Obes. Rev. 2015, 16 (Suppl. S1), 45–54. [Google Scholar] [CrossRef]
- Berenson, G.S.; Srinivasan, S.R.; Bao, W.; Newman, W.P.; Tracy, R.E.; Wattigney, W.A. Association between Multiple Cardiovascular Risk Factors and Atherosclerosis in Children and Young Adults. The Bogalusa Heart Study. N. Engl. J. Med. 1998, 338, 1650–1656. [Google Scholar] [CrossRef]
- WHO. Mortality Database—WHO. Available online: https://www.who.int/data/data-collection-tools/who-mortality-database (accessed on 30 June 2024).
- Global Health Estimates. Available online: https://www.who.int/data/global-health-estimates (accessed on 30 June 2024).
- Birger, M.; Kaldjian, A.S.; Roth, G.A.; Moran, A.E.; Dieleman, J.L.; Bellows, B.K. Spending on Cardiovascular Disease and Cardiovascular Risk Factors in the United States: 1996 to 2016. Circulation 2021, 144, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Moran, A.E.; Forouzanfar, M.H.; Roth, G.A.; Mensah, G.A.; Ezzati, M.; Murray, C.J.L.; Naghavi, M. Temporal Trends in Ischemic Heart Disease Mortality in 21 World Regions, 1980 to 2010: The Global Burden of Disease 2010 Study. Circulation 2014, 129, 1483–1492. [Google Scholar] [CrossRef]
- Roth, G.A.; Mensah, G.A.; Johnson, C.O.; Addolorato, G.; Ammirati, E.; Baddour, L.M.; Barengo, N.C.; Beaton, A.Z.; Benjamin, E.J.; Benziger, C.P.; et al. Global Burden of Cardiovascular Diseases and Risk Factors, 1990–2019: Update from the GBD 2019 Study. J. Am. Coll. Cardiol. 2020, 76, 2982–3021. [Google Scholar] [CrossRef] [PubMed]
- Di Cesare, M.; Sorić, M.; Bovet, P.; Miranda, J.J.; Bhutta, Z.; Stevens, G.A.; Laxmaiah, A.; Kengne, A.-P.; Bentham, J. The Epidemiological Burden of Obesity in Childhood: A Worldwide Epidemic Requiring Urgent Action. BMC Med. 2019, 17, 212. [Google Scholar] [CrossRef]
- Genovesi, S.; Giussani, M.; Faini, A.; Vigorita, F.; Pieruzzi, F.; Strepparava, M.G.; Stella, A.; Valsecchi, M.G. Maternal Perception of Excess Weight in Children: A Survey Conducted by Paediatricians in the Province of Milan. Acta Paediatr. 2005, 94, 747–752. [Google Scholar] [CrossRef]
- Hampl, S.E.; Hassink, S.G.; Skinner, A.C.; Armstrong, S.C.; Barlow, S.E.; Bolling, C.F.; Avila Edwards, K.C.; Eneli, I.; Hamre, R.; Joseph, M.M.; et al. Clinical Practice Guideline for the Evaluation and Treatment of Children and Adolescents with Obesity. Pediatrics 2023, 151, e2022060640. [Google Scholar] [CrossRef] [PubMed]
- Vajravelu, M.E.; Tas, E.; Arslanian, S. Pediatric Obesity: Complications and Current Day Management. Life 2023, 13, 1591. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Kim, W.J.; Khera, A.V.; Kim, J.Y.; Yon, D.K.; Lee, S.W.; Shin, J.I.; Won, H.-H. Association between Adiposity and Cardiovascular Outcomes: An Umbrella Review and Meta-Analysis of Observational and Mendelian Randomization Studies. Eur. Heart J. 2021, 42, 3388–3403. [Google Scholar] [CrossRef] [PubMed]
- Pajunen, P.; Kotronen, A.; Korpi-Hyövälti, E.; Keinänen-Kiukaanniemi, S.; Oksa, H.; Niskanen, L.; Saaristo, T.; Saltevo, J.T.; Sundvall, J.; Vanhala, M.; et al. Metabolically Healthy and Unhealthy Obesity Phenotypes in the General Population: The FIN-D2D Survey. BMC Public Health 2011, 11, 754. [Google Scholar] [CrossRef] [PubMed]
- Damanhoury, S.; Newton, A.S.; Rashid, M.; Hartling, L.; Byrne, J.L.S.; Ball, G.D.C. Defining Metabolically Healthy Obesity in Children: A Scoping Review. Obes. Rev. 2018, 19, 1476–1491. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Tassistro, E.; Giussani, M.; Lieti, G.; Patti, I.; Orlando, A.; Montemerlo, M.; Antolini, L.; Parati, G. Association of Obesity Phenotypes with Left Ventricular Mass Index and Left Ventricular Hypertrophy in Children and Adolescents. Front. Endocrinol. 2022, 13, 1006588. [Google Scholar] [CrossRef] [PubMed]
- Antolini, L.; Giussani, M.; Orlando, A.; Nava, E.; Valsecchi, M.G.; Parati, G.; Genovesi, S. Nomograms to Identify Elevated Blood Pressure Values and Left Ventricular Hypertrophy in a Paediatric Population: American Academy of Pediatrics Clinical Practice vs. Fourth Report/European Society of Hypertension Guidelines. J. Hypertens. 2019, 37, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Salvi, P.; Nava, E.; Tassistro, E.; Giussani, M.; Desimone, I.; Orlando, A.; Battaglino, M.; Lieti, G.; Montemerlo, M.; et al. Blood Pressure and Body Weight Have Different Effects on Pulse Wave Velocity and Cardiac Mass in Children. J. Clin. Med. 2020, 9, 2954. [Google Scholar] [CrossRef] [PubMed]
- Serbis, A.; Giapros, V.; Paschou, S.A.; Siomou, E. Children with Metabolically Healthy Obesity Have a Worse Metabolic Profile Compared to Normal-Weight Peers: A Cross-Sectional Study. Endocrine 2021, 73, 580–587. [Google Scholar] [CrossRef]
- Genovesi, S.; Antolini, L.; Orlando, A.; Gilardini, L.; Bertoli, S.; Giussani, M.; Invitti, C.; Nava, E.; Battaglino, M.G.; Leone, A.; et al. Cardiovascular Risk Factors Associated with the Metabolically Healthy Obese (MHO) Phenotype Compared to the Metabolically Unhealthy Obese (MUO) Phenotype in Children. Front. Endocrinol. 2020, 11, 27. [Google Scholar] [CrossRef]
- Zhao, M.; López-Bermejo, A.; Caserta, C.A.; Medeiros, C.C.M.; Kollias, A.; Bassols, J.; Romeo, E.L.; Ramos, T.D.A.; Stergiou, G.S.; Yang, L.; et al. Metabolically Healthy Obesity and High Carotid Intima-Media Thickness in Children and Adolescents: International Childhood Vascular Structure Evaluation Consortium. Diabetes Care 2019, 42, 119–125. [Google Scholar] [CrossRef] [PubMed]
- Arnlöv, J.; Ingelsson, E.; Sundström, J.; Lind, L. Impact of Body Mass Index and the Metabolic Syndrome on the Risk of Cardiovascular Disease and Death in Middle-Aged Men. Circulation 2010, 121, 230–236. [Google Scholar] [CrossRef]
- Caleyachetty, R.; Thomas, G.N.; Toulis, K.A.; Mohammed, N.; Gokhale, K.M.; Balachandran, K.; Nirantharakumar, K. Metabolically Healthy Obese and Incident Cardiovascular Disease Events Among 3.5 Million Men and Women. J. Am. Coll. Cardiol. 2017, 70, 1429–1437. [Google Scholar] [CrossRef] [PubMed]
- Hinnouho, G.-M.; Czernichow, S.; Dugravot, A.; Batty, G.D.; Kivimaki, M.; Singh-Manoux, A. Metabolically Healthy Obesity and Risk of Mortality: Does the Definition of Metabolic Health Matter? Diabetes Care 2013, 36, 2294–2300. [Google Scholar] [CrossRef]
- Hinnouho, G.-M.; Czernichow, S.; Dugravot, A.; Nabi, H.; Brunner, E.J.; Kivimaki, M.; Singh-Manoux, A. Metabolically Healthy Obesity and the Risk of Cardiovascular Disease and Type 2 Diabetes: The Whitehall II Cohort Study. Eur. Heart J. 2015, 36, 551–559. [Google Scholar] [CrossRef] [PubMed]
- Lassale, C.; Tzoulaki, I.; Moons, K.G.M.; Sweeting, M.; Boer, J.; Johnson, L.; Huerta, J.M.; Agnoli, C.; Freisling, H.; Weiderpass, E.; et al. Separate and Combined Associations of Obesity and Metabolic Health with Coronary Heart Disease: A Pan-European Case-Cohort Analysis. Eur. Heart J. 2018, 39, 397–406. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.; Song, Y.; Chen, Y.; Hui, R.; Zhang, W. Combined Effect of Obesity and Cardio-Metabolic Abnormality on the Risk of Cardiovascular Disease: A Meta-Analysis of Prospective Cohort Studies. Int. J. Cardiol. 2013, 168, 4761–4768. [Google Scholar] [CrossRef] [PubMed]
- Bell, J.A.; Kivimaki, M.; Hamer, M. Metabolically Healthy Obesity and Risk of Incident Type 2 Diabetes: A Meta-Analysis of Prospective Cohort Studies. Obes. Rev. 2014, 15, 504–515. [Google Scholar] [CrossRef] [PubMed]
- Michalsen, V.L.; Wild, S.H.; Kvaløy, K.; Svartberg, J.; Melhus, M.; Broderstad, A.R. Obesity Measures, Metabolic Health and Their Association with 15-Year All-Cause and Cardiovascular Mortality in the SAMINOR 1 Survey: A Population-Based Cohort Study. BMC Cardiovasc. Disord. 2021, 21, 510. [Google Scholar] [CrossRef]
- Wei, D.; González-Marrachelli, V.; Melgarejo, J.D.; Liao, C.-T.; Hu, A.; Janssens, S.; Verhamme, P.; Van Aelst, L.; Vanassche, T.; Redon, J.; et al. Cardiovascular Risk of Metabolically Healthy Obesity in Two European Populations: Prevention Potential from a Metabolomic Study. Cardiovasc. Diabetol. 2023, 22, 82. [Google Scholar] [CrossRef]
- Yumuk, V.; Tsigos, C.; Fried, M.; Schindler, K.; Busetto, L.; Micic, D.; Toplak, H. Obesity Management Task Force of the European Association for the Study of Obesity European Guidelines for Obesity Management in Adults. Obes. Facts 2015, 8, 402–424. [Google Scholar] [CrossRef] [PubMed]
- Santini, F.; Busetto, L.; Cresci, B.; Sbraccia, P. SIO Management Algorithm for Patients with Overweight or Obesity: Consensus Statement of the Italian Society for Obesity (SIO). Eat. Weight Disord. 2016, 21, 305–307. [Google Scholar] [CrossRef] [PubMed]
- Council on Community Pediatrics and Committee on Native American Child Health. Health Equity and Children’s Rights. Pediatrics 2010, 125, 838–849. [Google Scholar] [CrossRef] [PubMed]
- González, D.; Nazmi, A.; Victora, C.G. Childhood Poverty and Abdominal Obesity in Adulthood: A Systematic Review. Cad. Saude Publica 2009, 25 (Suppl. S3), S427–S440. [Google Scholar] [CrossRef] [PubMed]
- Beech, B.; Fitzgibbon, M.; Resnicow, K.; Whitt-Glover, M. The Impact of Socioeconomic Factors and the Built Environment on Childhood and Adolescent Obesity. Child. Obes. (Former. Obes. Weight. Manag.) 2011, 7, 19–24. [Google Scholar] [CrossRef]
- El-Sayed, A.M.; Scarborough, P.; Galea, S. Ethnic Inequalities in Obesity among Children and Adults in the UK: A Systematic Review of the Literature. Obes. Rev. 2011, 12, e516–e534. [Google Scholar] [CrossRef]
- Townshend, T.; Lake, A. Obesogenic Environments: Current Evidence of the Built and Food Environments. Perspect. Public Health 2017, 137, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Copeland, W.E.; Wolke, D.; Lereya, S.T.; Shanahan, L.; Worthman, C.; Costello, E.J. Childhood Bullying Involvement Predicts Low-Grade Systemic Inflammation into Adulthood. Proc. Natl. Acad. Sci. USA 2014, 111, 7570–7575. [Google Scholar] [CrossRef] [PubMed]
- Guarner, V.; Rubio-Ruiz, M.E. Low-Grade Systemic Inflammation Connects Aging, Metabolic Syndrome and Cardiovascular Disease. Interdiscip. Top. Gerontol. 2015, 40, 99–106. [Google Scholar] [CrossRef]
- Infant and Young Child Feeding: Model Chapter for Textbooks for Medical Students and Allied Health Professionals; WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2009; ISBN 978-92-4-159749-4.
- Adair, L.S. How Could Complementary Feeding Patterns Affect the Susceptibility to NCD Later in Life? Nutr. Metab. Cardiovasc. Dis. 2012, 22, 765–769. [Google Scholar] [CrossRef]
- Bach-Faig, A.; Berry, E.M.; Lairon, D.; Reguant, J.; Trichopoulou, A.; Dernini, S.; Medina, F.X.; Battino, M.; Belahsen, R.; Miranda, G.; et al. Mediterranean Diet Pyramid Today. Science and Cultural Updates. Public Health Nutr. 2011, 14, 2274–2284. [Google Scholar] [CrossRef]
- UNESCO. Mediterranean Diet. Available online: https://ich.unesco.org/en/RL/mediterranean-diet-00884 (accessed on 10 July 2024).
- UNESCO. Dieta Mediterranea; Unesco Commissione Nazionale Italiana per l’Unesco: Rome, Italy, 2024; Available online: https://www.unesco.it/it/iniziative-dellunesco/patrimonio-culturale-immateriale/dieta-mediterranea/ (accessed on 10 July 2024).
- Carrera-Bastos, P.; Fontes-Villalba, M.; O’Keefe, J.; Lindeberg, S.; Cordain, L. The Western Diet and Lifestyle and Diseases of Civilization. Res. Rep. Clin. Cardiol. 2011, 2, 2–15. [Google Scholar] [CrossRef]
- Azzam, A. Is the World Converging to a “Western Diet”? Public Health Nutr. 2021, 24, 309–317. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Gutierrez, E.; Sayavedra, L. Diet, Microbiota and the Gut-Brain Axis. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2021; ISBN 978-0-08-100596-5. [Google Scholar]
- SIO (Società Italiana dell’Obesità); ADI. Standard Italiani per La Cura Dell’Obesità SIO-ADI 2016–2017; SIO (Società Italiana dell’Obesità): Pisa, Italy, 2017; Available online: https://sio-obesita.org/wp-content/uploads/2017/09/STANDARD-OBESITA-SIO-ADI.pdf (accessed on 10 July 2024).
- Maffeis, C.; Olivieri, F.; Valerio, G.; Verduci, E.; Licenziati, M.R.; Calcaterra, V.; Pelizzo, G.; Salerno, M.; Staiano, A.; Bernasconi, S.; et al. The Treatment of Obesity in Children and Adolescents: Consensus Position Statement of the Italian Society of Pediatric Endocrinology and Diabetology, Italian Society of Pediatrics and Italian Society of Pediatric Surgery. Ital. J. Pediatr. 2023, 49, 69. [Google Scholar] [CrossRef] [PubMed]
- Guide du Parcours de Soins: Surpoids et Obésité Chez l’Enfant et l’Adolescent(e). Available online: https://www.has-sante.fr/jcms/p_3321295/fr/guide-du-parcours-de-soins-surpoids-et-obesite-chez-l-enfant-et-l-adolescent-e (accessed on 3 July 2024).
- Moreno Aznar, L.A.; Lorenzo Garrido, H. Obesidad infantil. In Tratamiento en Gastroenterología, Hepatología y Nutrición Pediátrica; Ergon: Würzburg, Germany, 2021; pp. 843–850. ISBN 9788417844998. [Google Scholar]
- Obesidade Infantile. Available online: https://www.sns24.gov.pt/tema/saude-da-crianca/obesidade-infantil/ (accessed on 3 July 2024).
- World Health Organization. Guideline: Assessing and Managing Children at Primary Health-Care Facilities to Prevent Overweight and Obesity in the Context of the Double Burden of Malnutrition: Updates for the Integrated Management of Childhood Illness (IMCI); WHO Guidelines Approved by the Guidelines Review Committee; World Health Organization: Geneva, Switzerland, 2017; ISBN 978-92-4-155012-3. [Google Scholar]
- Hassapidou, M.; Duncanson, K.; Shrewsbury, V.; Ells, L.; Mulrooney, H.; Androutsos, O.; Vlassopoulos, A.; Rito, A.; Farpourt, N.; Brown, T.; et al. EASO and EFAD Position Statement on Medical Nutrition Therapy for the Management of Overweight and Obesity in Children and Adolescents. Obes. Facts 2023, 16, 29–52. [Google Scholar] [CrossRef]
- The ECOG Free Obesity eBook. Homepage. Available online: https://ebook.ecog-obesity.eu/ (accessed on 3 July 2024).
- Braet, C.; Moens, E.; Latomme, J. Psychological Treatment of Childhood Obesity: Main Principles and Pitfalls. In The Free Obesity eBook; Available online: http://ebook.ecog-obesity.eu/ (accessed on 10 July 2024).
- Consensus Nazionale Su Diagnosi, Trattamento e Prevenzione Dell’Obesità Del Bambino e Dell’adolescente—Siedp—Società Italiana Endocrinologia e Diabetologia Pediatrica. Available online: https://www.siedp.it/pagina/778/consensus+nazionale+su+diagnosi,+trattamento+e+prevenzione+dell'obesita+del+bambino+e+dell'adolescente (accessed on 3 July 2024).
- Bathrellou, E.; Yannakoulia, M.; Papanikolaou, K.; Pehlivanidis, A.; Pervanidou, P.; Kanaka-Gantenbein, C.; Tokou, I.; Tsiantis, J.; Chrousos, G.P.; Sidossis, L.S. Parental Involvement Does Not Augment the Effectiveness of an Intense Behavioral Program for the Treatment of Childhood Obesity. Hormones 2010, 9, 171–175. [Google Scholar] [CrossRef]
- Bell, C.S.; Samuel, J.P.; Samuels, J.A. Prevalence of Hypertension in Children. Hypertension 2019, 73, 148–152. [Google Scholar] [CrossRef]
- Genovesi, S.; Giussani, M.; Pieruzzi, F.; Vigorita, F.; Arcovio, C.; Cavuto, S.; Stella, A. Results of Blood Pressure Screening in a Population of School-Aged Children in the Province of Milan: Role of Overweight. J. Hypertens. 2005, 23, 493–497. [Google Scholar] [CrossRef]
- Sorof, J.M.; Lai, D.; Turner, J.; Poffenbarger, T.; Portman, R.J. Overweight, Ethnicity, and the Prevalence of Hypertension in School-Aged Children. Pediatrics 2004, 113, 475–482. [Google Scholar] [CrossRef]
- Song, P.; Zhang, Y.; Yu, J.; Zha, M.; Zhu, Y.; Rahimi, K.; Rudan, I. Global Prevalence of Hypertension in Children: A Systematic Review and Meta-Analysis. JAMA Pediatr. 2019, 173, 1154–1163. [Google Scholar] [CrossRef]
- Chen, X.; Wang, Y. Tracking of Blood Pressure from Childhood to Adulthood: A Systematic Review and Meta-Regression Analysis. Circulation 2008, 117, 3171–3180. [Google Scholar] [CrossRef] [PubMed]
- Theodore, R.F.; Broadbent, J.; Nagin, D.; Ambler, A.; Hogan, S.; Ramrakha, S.; Cutfield, W.; Williams, M.J.A.; Harrington, H.; Moffitt, T.E.; et al. Childhood to Early-Midlife Systolic Blood Pressure Trajectories: Early-Life Predictors, Effect Modifiers, and Adult Cardiovascular Outcomes. Hypertension 2015, 66, 1108–1115. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Giussani, M.; Orlando, A.; Orgiu, F.; Parati, G. Salt and Sugar: Two Enemies of Healthy Blood Pressure in Children. Nutrients 2021, 13, 697. [Google Scholar] [CrossRef] [PubMed]
- Genovesi, S.; Montelisciani, L.; Giussani, M.; Lieti, G.; Patti, I.; Orlando, A.; Antolini, L.; Parati, G. Role of Insulin Resistance as a Mediator of the Relationship between Body Weight, Waist Circumference, and Systolic Blood Pressure in a Pediatric Population. Metabolites 2023, 13, 327. [Google Scholar] [CrossRef]
- Viazzi, F.; Antolini, L.; Giussani, M.; Brambilla, P.; Galbiati, S.; Mastriani, S.; Stella, A.; Pontremoli, R.; Valsecchi, M.G.; Genovesi, S. Serum Uric Acid and Blood Pressure in Children at Cardiovascular Risk. Pediatrics 2013, 132, e93–e99. [Google Scholar] [CrossRef]
- Expert Panel on Integrated Guidelines for Cardiovascular Health and Risk Reduction in Children and Adolescents: Summary Report. Pediatrics 2011, 128, S213–S256. [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A Clinical Trial of the Effects of Dietary Patterns on Blood Pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Theodoridis, X.; Chourdakis, M.; Chrysoula, L.; Chroni, V.; Tirodimos, I.; Dipla, K.; Gkaliagkousi, E.; Triantafyllou, A. Adherence to the DASH Diet and Risk of Hypertension: A Systematic Review and Meta-Analysis. Nutrients 2023, 15, 3261. [Google Scholar] [CrossRef]
- Petrou, S.; Kupek, E. Epidemiological Trends and Risk Factors for Tobacco, Alcohol and Drug Use among Adolescents in Scotland, 2002–2013. J. Public Health 2019, 41, 62–70. [Google Scholar] [CrossRef]
- Barbosa Filho, V.C.; de Campos, W.; da Silva Lopes, A. Prevalence of Alcohol and Tobacco Use among Brazilian Adolescents: A Systematic Review. Rev. Saude Publica 2012, 46, 901–917. [Google Scholar] [CrossRef]
- Anthony, J.C.; Echeagaray-Wagner, F. Epidemiologic Analysis of Alcohol and Tobacco Use. Alcohol Res. Health 2000, 24, 201–208. [Google Scholar] [PubMed]
- Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.-T.; Corrà, U.; Cosyns, B.; Deaton, C.; et al. 2016 European Guidelines on Cardiovascular Disease Prevention in Clinical Practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (Constituted by Representatives of 10 Societies and by Invited Experts)Developed with the Special Contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J. 2016, 37, 2315–2381. [Google Scholar] [CrossRef]
- De Simone, G.; Mancusi, C.; Hanssen, H.; Genovesi, S.; Lurbe, E.; Parati, G.; Sendzikaite, S.; Valerio, G.; Di Bonito, P.; Di Salvo, G.; et al. Hypertension in Children and Adolescents. Eur. Heart J. 2022, 43, 3290–3301. [Google Scholar] [CrossRef] [PubMed]
- Kit, B.K.; Kuklina, E.; Carroll, M.D.; Ostchega, Y.; Freedman, D.S.; Ogden, C.L. Prevalence of and Trends in Dyslipidemia and Blood Pressure among US Children and Adolescents, 1999–2012. JAMA Pediatr. 2015, 169, 272–279. [Google Scholar] [CrossRef] [PubMed]
- Brzeziński, M.; Metelska, P.; Myśliwiec, M.; Szlagatys-Sidorkiewicz, A. Lipid Disorders in Children Living with Overweight and Obesity- Large Cohort Study from Poland. Lipids Health Dis. 2020, 19, 47. [Google Scholar] [CrossRef] [PubMed]
- Giussani, M.; Antolini, L.; De’ Angelis, M.; Guardamagna, O.; Dozzi, M.; Genovesi, S. Lipid Profile Assessed in the Family Pediatrician’s Office: The COLIBRI’- SIMPeF Study. Eur. J. Pediatr. 2021, 180, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Austin, M.A.; King, M.C.; Vranizan, K.M.; Krauss, R.M. Atherogenic Lipoprotein Phenotype. A Proposed Genetic Marker for Coronary Heart Disease Risk. Circulation 1990, 82, 495–506. [Google Scholar] [CrossRef]
- Gujral, J.; Gupta, J. Pediatric Dyslipidemia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Committee on Practice and Ambulatory Medicine; Bright Futures Periodicity Schedule Workgroup. 2014 Recommendations for Pediatric Preventive Health Care. Pediatrics 2014, 133, 568–570. [Google Scholar] [CrossRef]
- Koskinen, J.S.; Kytö, V.; Juonala, M.; Viikari, J.S.A.; Nevalainen, J.; Kähönen, M.; Lehtimäki, T.; Hutri-Kähönen, N.; Laitinen, T.P.; Tossavainen, P.; et al. Childhood Dyslipidemia and Carotid Atherosclerotic Plaque in Adulthood: The Cardiovascular Risk in Young Finns Study. J. Am. Heart Assoc. 2023, 12, e027586. [Google Scholar] [CrossRef]
- Schefelker, J.M.; Peterson, A.L. Screening and Management of Dyslipidemia in Children and Adolescents. J. Clin. Med. 2022, 11, 6479. [Google Scholar] [CrossRef]
- Capra, M.E.; Biasucci, G.; Crivellaro, E.; Banderali, G.; Pederiva, C. Dietary Intervention for Children and Adolescents with Familial Hypercholesterolaemia. Ital. J. Pediatr. 2023, 49, 77. [Google Scholar] [CrossRef] [PubMed]
- Williams, L.A.; Wilson, D.P. Nutritional Management of Pediatric Dyslipidemia. In Endotext; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Capra, M.E.; Biasucci, G.; Banderali, G.; Pederiva, C. Nutritional Treatment of Hypertriglyceridemia in Childhood: From Healthy-Heart Counselling to Life-Saving Diet. Nutrients 2023, 15, 1088. [Google Scholar] [CrossRef]
- Rask-Nissilä, L.; Jokinen, E.; Terho, P.; Tammi, A.; Hakanen, M.; Rönnemaa, T.; Viikari, J.; Seppänen, R.; Välimäki, I.; Helenius, H.; et al. Effects of Diet on the Neurologic Development of Children at 5 Years of Age: The STRIP Project. J. Pediatr. 2002, 140, 328–333. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Borjabad, C.; Narveud, I.; Christensen, J.J.; Ulven, S.M.; Malo, A.I.; Ibarretxe, D.; Girona, J.; Torvik, K.; Bogsrud, M.P.; Retterstøl, K.; et al. Dietary Intake and Lipid Levels in Norwegian and Spanish Children with Familial Hypercholesterolemia. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 1299–1307. [Google Scholar] [CrossRef] [PubMed]
- Capra, M.E.; Biasucci, G.; Banderali, G.; Vania, A.; Pederiva, C. Diet and Lipid-Lowering Nutraceuticals in Pediatric Patients with Familial Hypercholesterolemia. Children 2024, 11, 250. [Google Scholar] [CrossRef] [PubMed]
- EFSA Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on the Risks for Public and Animal Health Related to the Presence of Citrinin in Food and Feed. EFSA J. 2012, 10, 2605. [Google Scholar] [CrossRef]
- Guarino, G.; Strollo, F.; Malfertheiner, P.; Della Corte, T.; Stagi, S.; Masarone, M.; Gentile, S. Efficacy and Safety of a Polysaccharide-Based Natural Substance Complex in the Treatment of Obesity and Other Metabolic Syndrome Components: A Systematic Review. Front. Drug Saf. Regul. 2022, 2, 844256. [Google Scholar] [CrossRef]
- Greco, C.M.; Garetto, S.; Montellier, E.; Liu, Y.; Chen, S.; Baldi, P.; Sassone-Corsi, P.; Lucci, J. A Non-Pharmacological Therapeutic Approach in the Gut Triggers Distal Metabolic Rewiring Capable of Ameliorating Diet-Induced Dysfunctions Encompassed by Metabolic Syndrome. Sci. Rep. 2020, 10, 12915. [Google Scholar] [CrossRef]
- Anagnostis, P.; Vaitsi, K.; Kleitsioti, P.; Mantsiou, C.; Pavlogiannis, K.; Athyros, V.G.; Mikhailidis, D.P.; Goulis, D.G. Efficacy and Safety of Statin Use in Children and Adolescents with Familial Hypercholesterolaemia: A Systematic Review and Meta-Analysis of Randomized-Controlled Trials. Endocrine 2020, 69, 249–261. [Google Scholar] [CrossRef] [PubMed]
- Shashaj, B.; Luciano, R.; Contoli, B.; Morino, G.S.; Spreghini, M.R.; Rustico, C.; Sforza, R.W.; Dallapiccola, B.; Manco, M. Reference Ranges of HOMA-IR in Normal-Weight and Obese Young Caucasians. Acta Diabetol. 2016, 53, 251–260. [Google Scholar] [CrossRef]
- Genovesi, S.; Brambilla, P.; Giussani, M.; Galbiati, S.; Mastriani, S.; Pieruzzi, F.; Stella, A.; Valsecchi, M.G.; Antolini, L. Insulin Resistance, Prehypertension, Hypertension and Blood Pressure Values in Paediatric Age. J. Hypertens. 2012, 30, 327–335. [Google Scholar] [CrossRef] [PubMed]
- Tagi, V.M.; Mainieri, F.; Chiarelli, F. Hypertension in Patients with Insulin Resistance: Etiopathogenesis and Management in Children. Int. J. Mol. Sci. 2022, 23, 5814. [Google Scholar] [CrossRef] [PubMed]
- Mayer-Davis, E.J.; Lawrence, J.M.; Dabelea, D.; Divers, J.; Isom, S.; Dolan, L.; Imperatore, G.; Linder, B.; Marcovina, S.; Pettitt, D.J.; et al. Incidence Trends of Type 1 and Type 2 Diabetes among Youths, 2002–2012. N. Engl. J. Med. 2017, 376, 1419–1429. [Google Scholar] [CrossRef] [PubMed]
- Weiss, R. Impaired Glucose Tolerance and Risk Factors for Progression to Type 2 Diabetes in Youth. Pediatr. Diabetes 2007, 8 (Suppl. S9), 70–75. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.; Nadeau, K.J.; Dabelea, D.; Redondo, M.J. Spectrum of Phenotypes and Causes of Type 2 Diabetes in Children. Annu. Rev. Med. 2022, 73, 501–515. [Google Scholar] [CrossRef] [PubMed]
- Valaiyapathi, B.; Gower, B.; Ashraf, A.P. Pathophysiology of Type 2 Diabetes in Children and Adolescents. Curr. Diabetes Rev. 2020, 16, 220–229. [Google Scholar] [CrossRef] [PubMed]
- Crume, T.L.; Ogden, L.G.; Mayer-Davis, E.J.; Hamman, R.F.; Norris, J.M.; Bischoff, K.J.; McDuffie, R.; Dabelea, D. The Impact of Neonatal Breast-Feeding on Growth Trajectories of Youth Exposed and Unexposed to Diabetes in Utero: The EPOCH Study. Int. J. Obes. 2012, 36, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Klingensmith, G.J.; Connor, C.G.; Ruedy, K.J.; Beck, R.W.; Kollman, C.; Haro, H.; Wood, J.R.; Lee, J.M.; Willi, S.M.; Cengiz, E.; et al. Presentation of Youth with Type 2 Diabetes in the Pediatric Diabetes Consortium. Pediatr. Diabetes 2016, 17, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Everhart, J.E.; Pettitt, D.J.; Bennett, P.H.; Knowler, W.C. Duration of Obesity Increases the Incidence of NIDDM. Diabetes 1992, 41, 235–240. [Google Scholar] [CrossRef]
- The TODAY Study Group; Shah, R.D.; Braffett, B.H.; Tryggestad, J.B.; Hughan, K.S.; Dhaliwal, R.; Nadeau, K.J.; Levitt Katz, L.E.; Gidding, S.S. Cardiovascular Risk Factor Progression in Adolescents and Young Adults with Youth-Onset Type 2 Diabetes. J. Diabetes Complicat. 2022, 36, 108123. [Google Scholar] [CrossRef]
- Lawrence, J.M.; Divers, J.; Isom, S.; Saydah, S.; Imperatore, G.; Pihoker, C.; Marcovina, S.M.; Mayer-Davis, E.J.; Hamman, R.F.; Dolan, L.; et al. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001–2017. JAMA 2021, 326, 717–727. [Google Scholar] [CrossRef]
- Liu, J.; Li, Y.; Zhang, D.; Yi, S.S.; Liu, J. Trends in Prediabetes Among Youths in the US From 1999 Through 2018. JAMA Pediatr. 2022, 176, 608–611. [Google Scholar] [CrossRef] [PubMed]
- Pinhas-Hamiel, O.; Zeitler, P. The Global Spread of Type 2 Diabetes Mellitus in Children and Adolescents. J. Pediatr. 2005, 146, 693–700. [Google Scholar] [CrossRef] [PubMed]
- Urakami, T. Treatment Strategy for Children and Adolescents with Type 2 Diabetes-Based on ISPAD Clinical Practice Consensus Guidelines 2022. Clin. Pediatr. Endocrinol. 2023, 32, 125–136. [Google Scholar] [CrossRef] [PubMed]
- Guarino, G.; Strollo, F.; Della-Corte, T.; Satta, E.; Romano, C.; Alfarone, C.; Corigliano, G.; Corigliano, M.; Cozzolino, G.; Brancario, C.; et al. Comparison between Policaptil Gel Retard and Metformin by Testing of Temporal Changes in Patients with Metabolic Syndrome and Type 2 Diabetes. Diabetology 2022, 3, 315–327. [Google Scholar] [CrossRef]
- Virdis, A.; Masi, S.; Casiglia, E.; Tikhonoff, V.; Cicero, A.F.G.; Ungar, A.; Rivasi, G.; Salvetti, M.; Barbagallo, C.M.; Bombelli, M.; et al. Identification of the Uric Acid Thresholds Predicting an Increased Total and Cardiovascular Mortality Over 20 Years. Hypertension 2020, 75, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Feig, D.I.; Johnson, R.J. Hyperuricemia in Childhood Primary Hypertension. Hypertension 2003, 42, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Orlando, A.; Cazzaniga, E.; Giussani, M.; Palestini, P.; Genovesi, S. Hypertension in Children: Role of Obesity, Simple Carbohydrates, and Uric Acid. Front. Public Health 2018, 6, 129. [Google Scholar] [CrossRef]
- Genovesi, S.; Montelisciani, L.; Viazzi, F.; Giussani, M.; Lieti, G.; Patti, I.; Orlando, A.; Antolini, L.; Salvi, P.; Parati, G. Uric Acid and Arterial Stiffness in Children and Adolescents: Role of Insulin Resistance and Blood Pressure. Front. Cardiovasc. Med. 2022, 9, 978366. [Google Scholar] [CrossRef]
- Viazzi, F.; Rebora, P.; Giussani, M.; Orlando, A.; Stella, A.; Antolini, L.; Valsecchi, M.G.; Pontremoli, R.; Genovesi, S. Increased Serum Uric Acid Levels Blunt the Antihypertensive Efficacy of Lifestyle Modifications in Children at Cardiovascular Risk. Hypertension 2016, 67, 934–940. [Google Scholar] [CrossRef]
- Zeng, J.; Lawrence, W.R.; Yang, J.; Tian, J.; Li, C.; Lian, W.; He, J.; Qu, H.; Wang, X.; Liu, H.; et al. Association between Serum Uric Acid and Obesity in Chinese Adults: A 9-Year Longitudinal Data Analysis. BMJ Open 2021, 11, e041919. [Google Scholar] [CrossRef]
- Jørgensen, R.M.; Bøttger, B.; Vestergaard, E.T.; Kremke, B.; Bahnsen, R.F.; Nielsen, B.W.; Bruun, J.M. Uric Acid Is Elevated in Children with Obesity and Decreases After Weight Loss. Front. Pediatr. 2022, 9, 814166. [Google Scholar] [CrossRef]
- Johnson, R.J.; Nakagawa, T.; Sanchez-Lozada, L.G.; Shafiu, M.; Sundaram, S.; Le, M.; Ishimoto, T.; Sautin, Y.Y.; Lanaspa, M.A. Sugar, Uric Acid, and the Etiology of Diabetes and Obesity. Diabetes 2013, 62, 3307–3315. [Google Scholar] [CrossRef] [PubMed]
- Giussani, M.; Lieti, G.; Orlando, A.; Parati, G.; Genovesi, S. Fructose Intake, Hypertension and Cardiometabolic Risk Factors in Children and Adolescents: From Pathophysiology to Clinical Aspects. A Narrative Review. Front. Med. 2022, 9, 792949. [Google Scholar] [CrossRef] [PubMed]
- Marcus, C.L.; Brooks, L.J.; Draper, K.A.; Gozal, D.; Halbower, A.C.; Jones, J.; Schechter, M.S.; Sheldon, S.H.; Spruyt, K.; Ward, S.D.; et al. Diagnosis and Management of Childhood Obstructive Sleep Apnea Syndrome. Pediatrics 2012, 130, 576–584. [Google Scholar] [CrossRef] [PubMed]
- Arens, R.; Marcus, C.L. Pathophysiology of Upper Airway Obstruction: A Developmental Perspective. Sleep 2004, 27, 997–1019. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Kheirandish-Gozal, L.; Pillar, G.; Gozal, D. Cardiovascular Complications of Obstructive Sleep Apnea Syndrome: Evidence from Children. Prog. Cardiovasc. Dis. 2009, 51, 416–433. [Google Scholar] [CrossRef]
- Yuan, H.; Schwab, R.J.; Kim, C.; He, J.; Shults, J.; Bradford, R.; Huang, J.; Marcus, C.L. Relationship between Body Fat Distribution and Upper Airway Dynamic Function during Sleep in Adolescents. Sleep 2013, 36, 1199–1207. [Google Scholar] [CrossRef]
- Durbin, C.; Egan, R.; Gervasi, K.; Nadeau, N.; Neal, E.; Reich, S.; Gregory, T. The Effects of Obesity on Pulmonary Function in Children. JAAPA 2017, 30, 30–33. [Google Scholar] [CrossRef]
- Redline, S.; Tishler, P.V.; Schluchter, M.; Aylor, J.; Clark, K.; Graham, G. Risk Factors for Sleep-Disordered Breathing in Children. Associations with Obesity, Race, and Respiratory Problems. Am. J. Respir. Crit. Care Med. 1999, 159, 1527–1532. [Google Scholar] [CrossRef]
- Chay, O.M.; Goh, A.; Abisheganaden, J.; Tang, J.; Lim, W.H.; Chan, Y.H.; Wee, M.K.; Johan, A.; John, A.B.; Cheng, H.K.; et al. Obstructive Sleep Apnea Syndrome in Obese Singapore Children. Pediatr. Pulmonol. 2000, 29, 284–290. [Google Scholar] [CrossRef]
- Alonso-Álvarez, M.L.; Cordero-Guevara, J.A.; Terán-Santos, J.; Gonzalez-Martinez, M.; Jurado-Luque, M.J.; Corral-Peñafiel, J.; Duran-Cantolla, J.; Kheirandish-Gozal, L.; Gozal, D. Obstructive Sleep Apnea in Obese Community-Dwelling Children: The NANOS Study. Sleep 2014, 37, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Verhulst, S.L.; Franckx, H.; Van Gaal, L.; De Backer, W.; Desager, K. The Effect of Weight Loss on Sleep-Disordered Breathing in Obese Teenagers. Obesity 2009, 17, 1178–1183. [Google Scholar] [CrossRef]
- Tauman, R.; Gozal, D. Obesity and Obstructive Sleep Apnea in Children. Paediatr. Respir. Rev. 2006, 7, 247–259. [Google Scholar] [CrossRef] [PubMed]
- Phillips, S.; Edlbeck, A.; Kirby, M.; Goday, P. Ideal Body Weight in Children. Nutr. Clin. Pract. 2007, 22, 240–245. [Google Scholar] [CrossRef]
- Harris, J.A.; Benedict, F.G. A Biometric Study of Human Basal Metabolism. Proc. Natl. Acad. Sci. USA 1918, 4, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Schofield, W.N. Predicting Basal Metabolic Rate, New Standards and Review of Previous Work. Hum. Nutr. Clin. Nutr. 1985, 39 (Suppl. S1), 5–41. [Google Scholar]
- Pellett, P.L. Food Energy Requirements in Humans. Am. J. Clin. Nutr. 1990, 51, 711–722. [Google Scholar] [CrossRef]
- LARN Livelli Di Assunzione Raccomandata per La Popolazione Italiana. Available online: https://sinu.it/tabelle-larn-2014/ (accessed on 10 July 2024).
- Edwards, C.A.; Xie, C.; Garcia, A.L. Dietary Fibre and Health in Children and Adolescents. Proc. Nutr. Soc. 2015, 74, 292–302. [Google Scholar] [CrossRef]
- Nutrient Recommendations and Databases. Available online: https://ods.od.nih.gov/HealthInformation/nutrientrecommendations.aspx (accessed on 10 July 2024).
- Ward, Z.J.; Long, M.W.; Resch, S.C.; Giles, C.M.; Cradock, A.L.; Gortmaker, S.L. Simulation of Growth Trajectories of Childhood Obesity into Adulthood. N. Engl. J. Med. 2017, 377, 2145–2153. [Google Scholar] [CrossRef]
- Genovesi, S.; Giussani, M.; Orlando, A.; Battaglino, M.G.; Nava, E.; Parati, G. Prevention of Cardiovascular Diseases in Children and Adolescents. High Blood Press. Cardiovasc. Prev. 2019, 26, 191–197. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Genovesi, S.; Vania, A.; Caroli, M.; Orlando, A.; Lieti, G.; Parati, G.; Giussani, M. Non-Pharmacological Treatment for Cardiovascular Risk Prevention in Children and Adolescents with Obesity. Nutrients 2024, 16, 2497. https://doi.org/10.3390/nu16152497
Genovesi S, Vania A, Caroli M, Orlando A, Lieti G, Parati G, Giussani M. Non-Pharmacological Treatment for Cardiovascular Risk Prevention in Children and Adolescents with Obesity. Nutrients. 2024; 16(15):2497. https://doi.org/10.3390/nu16152497
Chicago/Turabian StyleGenovesi, Simonetta, Andrea Vania, Margherita Caroli, Antonina Orlando, Giulia Lieti, Gianfranco Parati, and Marco Giussani. 2024. "Non-Pharmacological Treatment for Cardiovascular Risk Prevention in Children and Adolescents with Obesity" Nutrients 16, no. 15: 2497. https://doi.org/10.3390/nu16152497
APA StyleGenovesi, S., Vania, A., Caroli, M., Orlando, A., Lieti, G., Parati, G., & Giussani, M. (2024). Non-Pharmacological Treatment for Cardiovascular Risk Prevention in Children and Adolescents with Obesity. Nutrients, 16(15), 2497. https://doi.org/10.3390/nu16152497