Effects of Oral Nutritional Supplement with β-Hydroxy-β-methylbutyrate (HMB) on Biochemical and Hematological Indices in Community-Dwelling Older Adults at Risk of Malnutrition: Findings from the SHIELD Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Study Procedures
2.4. Data Analysis
3. Results
3.1. Baseline Characteristics
3.2. Product Compliance
3.3. Body Weight and Composition, Physical Activity Level
3.4. Biochemical Indices
3.5. Hematological Indices
4. Discussion
4.1. Biochemical Indices
4.1.1. Prealbumin
4.1.2. Urea and Urea to Creatinine Ratio
4.1.3. C-Reactive Protein
4.1.4. Vitamin B12
4.1.5. Globulin
4.2. Hematological Indices
4.2.1. Reticulocytes
4.2.2. Monocytes
4.2.3. Mean Platelet Volume
4.3. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. United Nations Decade of Healthy Ageing (2021–2030). Available online: https://www.who.int/initiatives/decade-of-healthy-ageing(accessed on 15 May 2024).
- Amuthavalli Thiyagarajan, J.; Mikton, C.; Harwood, R.H.; Gichu, M.; Gaigbe-Togbe, V.; Jhamba, T.; Pokorna, D.; Stoevska, V.; Hada, R.; Steffan, G.S.; et al. The UN Decade of healthy ageing: Strengthening measurement for monitoring health and wellbeing of older people. Age Ageing 2022, 51, afac147. [Google Scholar] [CrossRef]
- United Nations. World Population Ageing 2019: Highlights; Department of Economic and Social Affairs, Population Division: New York, NY, USA, 2019. [Google Scholar]
- Halaweh, H.; Dahlin-Ivanoff, S.; Svantesson, U.; Willén, C. Perspectives of older adults on aging well: A focus group study. J. Aging Res. 2018, 2018, 9858252. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M.H.; Salleh, R.; Siew Man, C.; Pardi, M.; Che Abdul Rahim, N.; Shahril, N.; Abdul Mutalib, M.H.; Shahar, S.; Ahmad, N.A. Malnutrition among the elderly in Malaysia and its associated factors: Findings from the National Health and Morbidity Survey 2018. J. Nutr. Metab. 2021, 2021, 6639935. [Google Scholar] [CrossRef]
- Borkent, J.W.; Keller, H.; Wham, C.; Wijers, F.; de van der Schueren, M.A.E. Cross-country differences and similarities in undernutrition prevalence and risk as measured by SCREEN II in community-dwelling older adults. Healthcare 2020, 8, 151. [Google Scholar] [CrossRef]
- Chuansangeam, M.; Wuthikraikun, C.; Supapueng, O.; Muangpaisan, W. Prevalence and risk for malnutrition in older Thai people: A systematic review and meta-analysis. Asia Pac. J. Clin. Nutr. 2022, 31, 128–141. [Google Scholar] [CrossRef] [PubMed]
- Higashiguchi, T.; Arai, H.; Claytor, L.H.; Kuzuya, M.; Kotani, J.; Lee, S.-D.; Michel, J.-P.; Nogami, T.; Peng, N. Taking action against malnutrition in Asian healthcare settings: An initiative of a Northeast Asia Study Group. Asia Pac. J. Clin. Nutr. 2017, 26, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Huynh, N.T.H.; Nguyen, T.T.T.; Pham, H.K.T.; Huynh, N.T.H.; Nguyen, N.T.; Cao, N.T.; Dung, D.V. Malnutrition, frailty, and health-related quality of life among rural older adults in Vietnam: A cross-sectional study. Clin. Interv. Aging 2023, 18, 677–688. [Google Scholar] [CrossRef]
- Kushwaha, S.; Khanna, P.; Srivastava, R.; Jain, R.; Singh, T.; Kiran, T. Estimates of malnutrition and risk of malnutrition among the elderly (≥60 years) in India: A systematic review and meta-analysis. Ageing Res. Rev. 2020, 63, 101137. [Google Scholar] [CrossRef]
- Wong, A.; Huang, Y.; Sowa, P.M.; Banks, M.D.; Bauer, J.D. Adult malnutrition, nutritional interventions and outcomes in Singapore: A scoping review of local studies for the past 20 years. Proc. Singap. Healthc. 2021, 30, 225–241. [Google Scholar] [CrossRef]
- Wong, M.M.H.; So, W.K.W.; Choi, K.C.; Cheung, R.; Chan, H.Y.L.; Sit, J.W.H.; Ho, B.; Li, F.; Lee, T.Y.; Chair, S.Y. Malnutrition risks and their associated factors among home-living older Chinese adults in Hong Kong: Hidden problems in an affluent Chinese community. BMC Geriatr. 2019, 19, 138. [Google Scholar] [CrossRef]
- Noe, M.T.N.; Saw, Y.M.; Saw, T.N.; Kyaw, Y.P.; Zin, P.E.; Cho, S.M.; Kariya, T.; Yamamoto, E.; Win, H.H.; Wann, T.; et al. Assessment of nutritional status and risk factors for malnutrition among the elderly in Loikaw, Myanmar. Nutrition 2020, 79–80, 110933. [Google Scholar] [CrossRef] [PubMed]
- Norman, K.; Haß, U.; Pirlich, M. Malnutrition in older adults—Recent advances and remaining challenges. Nutrients 2021, 13, 2764. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Calvani, R.; Tosato, M.; Martone, A.; Ortolani, E.; Savera, G.; Sisto, A.; Marzetti, E. Anorexia of aging: Risk factors, consequences, and potential treatments. Nutrients 2016, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Lin, H.Y.; Lin, Y.C.; Chen, L.-K.; Hsiao, F.-Y. Untangling the complex interplay between social isolation, anorexia, sarcopenia, and mortality: Insights from a longitudinal study. J. Nutr. Health Aging 2023, 27, 797–805. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Sánchez, J.L.; Rolland, Y. Social isolation and loneliness: Overlooked therapeutic targets of anorexia of aging? J. Nutr. Health Aging 2023, 27, 794–796. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Morley, J.E.; Cruz-Jentoft, A.J.; Woodhouse, L.; Rodríguez-Mañas, L.; Fried, L.P.; Woo, J.; Aprahamian, I.; Sanford, A.; Lundy, J.; et al. Physical frailty: ICFSR international clinical practice guidelines for identification and management. J. Nutr. Health Aging 2019, 23, 771–787. [Google Scholar] [CrossRef] [PubMed]
- Landi, F.; Camprubi-Robles, M.; Bear, D.E.; Cederholm, T.; Malafarina, V.; Welch, A.A.; Cruz-Jentoft, A.J. Muscle loss: The new malnutrition challenge in clinical practice. Clin. Nutr. 2019, 38, 2113–2120. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.; Granic, A.; Cruz-Jentoft, A.J.; Sayer, A.A. The role of nutrition in the prevention of sarcopenia. Am. J. Clin. Nutr. 2023, 118, 852–864. [Google Scholar] [CrossRef] [PubMed]
- Chung, S.M.; Moon, J.S.; Chang, M.C. Prevalence of sarcopenia and its association with diabetes: A meta-analysis of community-dwelling Asian population. Front. Med. 2021, 8, 681232. [Google Scholar] [CrossRef]
- Powers, S.K.; Lynch, G.S.; Murphy, K.T.; Reid, M.B.; Zijdewind, I. Disease-induced skeletal muscle atrophy and fatigue. Med. Sci. Sports Exerc. 2016, 48, 2307–2319. [Google Scholar] [CrossRef]
- Aragon, A.A.; Tipton, K.D.; Schoenfeld, B.J. Age-related muscle anabolic resistance: Inevitable or preventable? Nutr. Rev. 2022, 81, 441–454. [Google Scholar] [CrossRef] [PubMed]
- Chew, S.T.H.; Kayambu, G.; Lew, C.C.H.; Ng, T.P.; Ong, F.; Tan, J.; Tan, N.C.; Tham, S.-L. Singapore multidisciplinary consensus recommendations on muscle health in older adults: Assessment and multimodal targeted intervention across the continuum of care. BMC Geriatr. 2021, 21, 314. [Google Scholar] [CrossRef] [PubMed]
- Izquierdo, M.; Merchant, R.A.; Morley, J.E.; Anker, S.D.; Aprahamian, I.; Arai, H.; Aubertin-Leheudre, M.; Bernabei, R.; Cadore, E.L.; Cesari, M.; et al. International exercise recommendations in older adults (ICFSR): Expert consensus guidelines. J. Nutr. Health Aging 2021, 25, 824–853. [Google Scholar] [CrossRef]
- Prado, C.M.; Landi, F.; Chew, S.T.H.; Atherton, P.J.; Molinger, J.; Ruck, T.; Gonzalez, M.C. Advances in muscle health and nutrition: A toolkit for healthcare professionals. Clin. Nutr. 2022, 41, 2244–2263. [Google Scholar] [CrossRef] [PubMed]
- Volkert, D.; Beck, A.M.; Cederholm, T.; Cruz-Jentoft, A.; Hooper, L.; Kiesswetter, E.; Maggio, M.; Raynaud-Simon, A.; Sieber, C.; Sobotka, L.; et al. ESPEN practical guideline: Clinical nutrition and hydration in geriatrics. Clin. Nutr. 2022, 41, 958–989. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Bosaeus, I. Malnutrition in adults. N. Engl. J. Med. 2024, 391, 155–165. [Google Scholar] [CrossRef] [PubMed]
- Dent, E.; Wright, O.R.L.; Woo, J.; Hoogendijk, E.O. Malnutrition in older adults. Lancet 2023, 401, 951–966. [Google Scholar] [CrossRef]
- Chew, S.T.H.; Tan, N.C.; Cheong, M.; Oliver, J.; Baggs, G.; Choe, Y.; How, C.H.; Chow, W.L.; Tan, C.Y.L.; Kwan, S.C.; et al. Impact of specialized oral nutritional supplement on clinical, nutritional, and functional outcomes: A randomized, placebo-controlled trial in community-dwelling older adults at risk of malnutrition. Clin. Nutr. 2021, 40, 1879–1892. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Matheson, E.M.; Matarese, L.E.; Luo, M.; Baggs, G.E.; Nelson, J.L.; Hegazi, R.A.; Tappenden, K.A.; Ziegler, T.R. Readmission and mortality in malnourished, older, hospitalized adults treated with a specialized oral nutritional supplement: A randomized clinical trial. Clin. Nutr. 2016, 35, 18–26. [Google Scholar] [CrossRef]
- Schuetz, P.; Fehr, R.; Baechli, V.; Geiser, M.; Deiss, M.; Gomes, F.; Kutz, A.; Tribolet, P.; Bregenzer, T.; Braun, N.; et al. Individualised nutritional support in medical inpatients at nutritional risk: A randomised clinical trial. Lancet 2019, 393, 2312–2321. [Google Scholar] [CrossRef]
- Baldwin, C.; de van der Schueren, M.A.E.; Kruizenga, H.M.; Weekes, C.E. Dietary advice with or without oral nutritional supplements for disease-related malnutrition in adults. Cochrane Database Syst. Rev. 2021. [Google Scholar] [CrossRef] [PubMed]
- Baldwin, C.; Smith, R.; Gibbs, M.; Weekes, C.E.; Emery, P.W. Quality of the evidence supporting the role of oral nutritional supplements in the management of malnutrition: An overview of systematic reviews and meta-analyses. Adv. Nutr. 2021, 12, 503–522. [Google Scholar] [CrossRef]
- Cawood, A.L.; Burden, S.T.; Smith, T.; Stratton, R.J. A systematic review and meta-analysis of the effects of community use of oral nutritional supplements on clinical outcomes. Ageing Res. Rev. 2023, 88, 101953. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Zhao, S.; Wu, S.; Yang, X.; Feng, H. Effectiveness of oral nutritional supplements on older people with anorexia: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 835. [Google Scholar] [CrossRef] [PubMed]
- Veronese, N.; Stubbs, B.; Punzi, L.; Soysal, P.; Incalzi, R.A.; Saller, A.; Maggi, S. Effect of nutritional supplementations on physical performance and muscle strength parameters in older people: A systematic review and meta-analysis. Ageing Res. Rev. 2019, 51, 48–54. [Google Scholar] [CrossRef]
- Bear, D.E.; Langan, A.; Dimidi, E.; Wandrag, L.; Harridge, S.D.R.; Hart, N.; Connolly, B.; Whelan, K. β-Hydroxy-β-methylbutyrate and its impact on skeletal muscle mass and physical function in clinical practice: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2019, 109, 1119–1132. [Google Scholar] [CrossRef]
- Oktaviana, J.; Zanker, J.; Vogrin, S.; Duque, G. The effect of beta-hydroxy-beta-methylbutyrate (HMB) on sarcopenia and functional frailty in older persons: A systematic review. J. Nutr. Health Aging 2019, 23, 145–150. [Google Scholar] [CrossRef]
- Holeček, M. Beta-hydroxy-beta-methylbutyrate supplementation and skeletal muscle in healthy and muscle-wasting conditions. J. Cachexia Sarcopenia Muscle 2017, 8, 529–541. [Google Scholar] [CrossRef]
- Baggs, G.E.; Middleton, C.; Nelson, J.L.; Pereira, S.L.; Hegazi, R.M.; Matarese, L.; Matheson, E.; Ziegler, T.R.; Tappenden, K.A.; Deutz, N. Impact of a specialized oral nutritional supplement on quality of life in older adults following hospitalization: Post-hoc analysis of the NOURISH trial. Clin. Nutr. 2023, 42, 2116–2123. [Google Scholar] [CrossRef]
- Berton, L.; Bano, G.; Carraro, S.; Veronese, N.; Pizzato, S.; Bolzetta, F.; De Rui, M.; Valmorbida, E.; De Ronch, I.; Perissinotto, E.; et al. Effect of oral beta-hydroxy-beta-methylbutyrate (HMB) supplementation on physical performance in healthy old women over 65 years: An open label randomized controlled trial. PLoS ONE 2015, 10, e0141757. [Google Scholar] [CrossRef]
- Cornejo-Pareja, I.; Ramirez, M.; Camprubi-Robles, M.; Rueda, R.; Vegas-Aguilar, I.M.; Garcia-Almeida, J.M. Effect on an oral nutritional supplement with beta-hydroxy-beta-methylbutyrate and vitamin D on morphofunctional aspects, body composition, and phase angle in malnourished patients. Nutrients 2021, 13, 4355. [Google Scholar] [CrossRef] [PubMed]
- Cramer, J.T.; Cruz-Jentoft, A.J.; Landi, F.; Hickson, M.; Zamboni, M.; Pereira, S.L.; Hustead, D.S.; Mustad, V.A. Impacts of high-protein oral nutritional supplements among malnourished men and women with sarcopenia: A multicenter, randomized, double-blinded, controlled trial. J. Am. Med. Dir. Assoc. 2016, 17, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Peng, L.N.; Cheng, Y.C.; Yu, P.C.; Lee, W.J.; Lin, M.H.; Chen, L.-K. Oral nutritional supplement with β-hydroxy-β-methylbutyrate (HMB) improves nutrition, physical performance and ameliorates intramuscular adiposity in pre-frail older adults: A randomized controlled trial. J. Nutr. Health Aging 2021, 25, 767–773. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Pereira, S.; Luo, M.; Matheson, E. Evaluation of blood biomarkers associated with risk of malnutrition in older adults: A systematic review and meta-analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef] [PubMed]
- Keller, U. Nutritional laboratory markers in malnutrition. J. Clin. Med. 2019, 8, 775. [Google Scholar] [CrossRef] [PubMed]
- Konecka, M.; Schneider-Matyka, D.; Kamińska, M.; Bikowska, M.; Ustianowski, P.; Grochans, E. Analysis of the laboratory results of the patients enrolled in the Nutritional Therapy Program. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 5144–5153. [Google Scholar] [CrossRef] [PubMed]
- Pereira, S.L.; Shoemaker, M.E.; Gawel, S.; Davis, G.J.; Luo, M.; Mustad, V.A.; Cramer, J.T. Biomarker changes in response to a 12-week supplementation of an oral nutritional supplement enriched with protein, vitamin D and HMB in malnourished community dwelling older adults with sarcopenia. Nutrients 2022, 14, 1196. [Google Scholar] [CrossRef]
- Stratton, R.J.; Hackston, A.; Longmore, D.; Dixon, R.; Price, S.; Stroud, M.; King, C.; Elia, M. Malnutrition in hospital outpatients and inpatients: Prevalence, concurrent validity and ease of use of the ‘Malnutrition Universal Screening Tool’ (‘MUST’) for adults. Br. J. Nutr. 2004, 92, 799–808. [Google Scholar] [CrossRef]
- Shah, S.; Vanclay, F.; Cooper, B. Improving the sensitivity of the Barthel Index for stroke rehabilitation. J. Clin. Epidemiol. 1989, 42, 703–709. [Google Scholar] [CrossRef]
- Charlson, M.E.; Pompei, P.; Ales, K.L.; MacKenzie, C.R. A new method of classifying prognostic comorbidity in longitudinal studies: Development and validation. J. Chronic Dis. 1987, 40, 373–383. [Google Scholar] [CrossRef]
- Washburn, R.A.; Smith, K.W.; Jette, A.M.; Janney, C.A. The Physical Activity Scale for the Elderly (PASE): Development and evaluation. J. Clin. Epidemiol. 1993, 46, 153–162. [Google Scholar] [CrossRef]
- Washburn, R.A.; McAuley, E.; Katula, J.; Mihalko, S.L.; Boileau, R.A. The Physical Activity Scale for the Elderly (PASE): Evidence for validity. J. Clin. Epidemiol. 1999, 52, 643–651. [Google Scholar] [CrossRef]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef]
- Ingenbleek, Y. Plasma transthyretin as a biomarker of sarcopenia in elderly subjects. Nutrients 2019, 11, 895. [Google Scholar] [CrossRef] [PubMed]
- Ranasinghe, R.N.; Biswas, M.; Vincent, R.P. Prealbumin: The clinical utility and analytical methodologies. Ann. Clin. Biochem. 2022, 59, 7–14. [Google Scholar] [CrossRef]
- Evans, D.C.; Corkins, M.R.; Malone, A.; Miller, S.; Mogensen, K.M.; Guenter, P.; Jensen, G.L.; Committee, A.M. The Use of Visceral Proteins as Nutrition Markers: An ASPEN Position Paper. Nutr. Clin. Pract. 2021, 36, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Malafarina, V.; Uriz-Otano, F.; Malafarina, C.; Martinez, J.A.; Zulet, M.A. Effectiveness of nutritional supplementation on sarcopenia and recovery in hip fracture patients. A multi-centre randomized trial. Maturitas 2017, 101, 42–50. [Google Scholar] [CrossRef] [PubMed]
- Huynh, D.T.T.; Devitt, A.A.; Paule, C.L.; Reddy, B.R.; Marathe, P.; Hegazi, R.A.; Rosales, F.J. Effects of oral nutritional supplementation in the management of malnutrition in hospital and post-hospital discharged patients in India: A randomised, open-label, controlled trial. J. Hum. Nutr. Diet. 2015, 28, 331–343. [Google Scholar] [CrossRef]
- Woo, J.; Ho, S.C.; Mak, Y.T.; Law, L.K.; Cheung, A. Nutritional status of elderly patients during recovery from chest infection and the role of nutritional supplementation assessed by a prospective randomized single-blind trial. Age Ageing 1994, 23, 40–48. [Google Scholar] [CrossRef]
- Chew, S.T.H.; Tey, S.L.; Yalawar, M.; Liu, Z.; Baggs, G.; How, C.H.; Cheong, M.; Chow, W.L.; Low, Y.L.; Huynh, D.T.T.; et al. Prevalence and associated factors of sarcopenia in community-dwelling older adults at risk of malnutrition. BMC Geriatr. 2022, 22, 997. [Google Scholar] [CrossRef]
- Chen, L.-K.; Woo, J.; Assantachai, P.; Auyeung, T.-W.; Chou, M.-Y.; Iijima, K.; Jang, H.C.; Kang, L.; Kim, M.; Kim, S.; et al. Asian Working Group for Sarcopenia: 2019 Consensus update on sarcopenia diagnosis and treatment. J. Am. Med. Dir. Assoc. 2020, 21, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Deutz, N.E.; Ziegler, T.R.; Matheson, E.M.; Matarese, L.E.; Tappenden, K.A.; Baggs, G.E.; Nelson, J.L.; Luo, M.; Hegazi, R.; Jonnalagadda, S.S. Reduced mortality risk in malnourished hospitalized older adult patients with COPD treated with a specialized oral nutritional supplement: Sub-group analysis of the NOURISH study. Clin. Nutr. 2021, 40, 1388–1395. [Google Scholar] [CrossRef]
- Espina, S.; Sanz-Paris, A.; Gonzalez-Irazabal, Y.; Pérez-Matute, P.; Andrade, F.; Garcia-Rodriguez, B.; Carpéné, C.; Zakaroff, A.; Bernal-Monterde, V.; Fuentes-Olmo, J.; et al. Randomized clinical trial: Effects of beta-hydroxy-beta-methylbutyrate (HMB)-enriched vs. HMB-free oral nutritional supplementation in malnourished cirrhotic patients. Nutrients 2022, 14, 2344. [Google Scholar] [CrossRef]
- Hirsch, S.; de la Maza, M.P.; Gattás, V.; Barrera, G.; Petermann, M.; Gotteland, M.; Muñoz, C.; Lopez, M.; Bunout, D. Nutritional support in alcoholic cirrhotic patients improves host defenses. J. Am. Coll. Nutr. 1999, 18, 434–441. [Google Scholar] [CrossRef]
- Neumann, M.; Friedmann, J.; Roy, M.-A.; Jensen, G.L. Provision of high-protein supplement for patients recovering from hip fracture. Nutrition 2004, 20, 415–419. [Google Scholar] [CrossRef]
- Simmons, W.K. Urinary urea nitrogen-creatinine ratio as indicator of recent protein intake in field studies. Am. J. Clin. Nutr. 1972, 25, 539–542. [Google Scholar] [CrossRef] [PubMed]
- Clark, R.V.; Walker, A.C.; O’Connor-Semmes, R.L.; Leonard, M.S.; Miller, R.R.; Stimpson, S.A.; Turner, S.M.; Ravussin, E.; Cefalu, W.T.; Hellerstein, M.K.; et al. Total body skeletal muscle mass: Estimation by creatine (methyl-d3) dilution in humans. J. Appl. Physiol. 2014, 116, 1605–1613. [Google Scholar] [CrossRef] [PubMed]
- Kopple, J.D.; Coburn, J.W. Evaluation of chronic uremia: Importance of serum urea nitrogen, serum creatinine, and their ratio. JAMA 1974, 227, 41–44. [Google Scholar] [CrossRef]
- Singapore Health Promotion Board. National Nutrition Health Survey 2022; Singapore Health Promotion Board: Singapore, 2023.
- Nehring, S.M.; Goyal, A.; Patel, B.C. C Reactive Protein. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2023. [Google Scholar]
- Wunderle, C.; Stumpf, F.; Schuetz, P. Inflammation and response to nutrition interventions. J. Parenter. Enter. Nutr. 2024, 48, 27–36. [Google Scholar] [CrossRef]
- Pourhassan, M.; Cederholm, T.; Trampisch, U.; Volkert, D.; Wirth, R. Inflammation as a diagnostic criterion in the GLIM definition of malnutrition—What CRP-threshold relates to reduced food intake in older patients with acute disease? Eur. J. Clin. Nutr. 2022, 76, 397–400. [Google Scholar] [CrossRef]
- Merker, M.; Felder, M.; Gueissaz, L.; Bolliger, R.; Tribolet, P.; Kägi-Braun, N.; Gomes, F.; Hoess, C.; Pavlicek, V.; Bilz, S.; et al. Association of Baseline Inflammation With Effectiveness of Nutritional Support Among Patients With Disease-Related Malnutrition: A Secondary Analysis of a Randomized Clinical Trial. JAMA Netw. Open 2020, 3, e200663. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine. Dietary Reference Intakes: The Essential Guide to Nutrient Requirements; The National Academies Press: Washington, DC, USA, 2006. [Google Scholar]
- Green, R.; Allen, L.H.; Bjorke-Monsen, A.L.; Brito, A.; Gueant, J.L.; Miller, J.W.; Molloy, A.M.; Nexo, E.; Stabler, S.; Toh, B.H.; et al. Vitamin B12 deficiency. Nat. Rev. Dis. Primers 2017, 3, 17040. [Google Scholar] [CrossRef] [PubMed]
- Hunt, A.; Harrington, D.; Robinson, S. Vitamin B12 deficiency. BMJ Br. Med. J. 2014, 349, g5226. [Google Scholar] [CrossRef]
- Busher, J.T. Serum albumin and globulin. In Clinical Methods: The History, Physical, and Laboratory Examinations, 3rd ed.; Walker, H.K., Hall, W.D., Hurst, J.W., Eds.; Butterworths: Boston, MA, USA, 1990. [Google Scholar]
- Duvall, L.E.; Shipman, A.R.; Shipman, K.E. Investigative algorithms for disorders affecting plasma proteins with a focus on albumin and the calculated globulin fraction: A narrative review. J. Lab. Precis. Med. 2023, 8, 19. [Google Scholar] [CrossRef]
- Rai, D.; Wilson, A.M.; Moosavi, L. Histology, Reticulocytes. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2024. [Google Scholar]
- Buttarello, M. Laboratory diagnosis of anemia: Are the old and new red cell parameters useful in classification and treatment, how? Int. J. Lab. Hematol. 2016, 38, 123–132. [Google Scholar] [CrossRef]
- Alt, H.L. The relation of growth and nutrition to the reticulocyte level in the young rat: Three figures. J. Nutr. 1938, 16, 597–602. [Google Scholar] [CrossRef]
- Carter, C.M. 12.11—Alterations in blood components. In Comprehensive Toxicology, 3rd ed.; McQueen, C.A., Ed.; Elsevier: Oxford, UK, 2018; pp. 249–293. [Google Scholar] [CrossRef]
- Crowe, M.J.; O’Connor, D.M.; Lukins, J.E. The effects of beta-hydroxy-beta-methylbutyrate (HMB) and HMB/creatine supplementation on indices of health in highly trained athletes. Int. J. Sport Nutr. Exerc. Metab. 2003, 13, 184–197. [Google Scholar] [CrossRef]
- Tong, M.; Seth, P.; Penington, D.G. Proplatelets and stress platelets. Blood 1987, 69, 522–528. [Google Scholar] [CrossRef] [PubMed]
- van der Loo, B.; Martin, J.F. A role for changes in platelet production in the cause of acute coronary syndromes. Arterioscler. Thromb. Vasc. Biol. 1999, 19, 672–679. [Google Scholar] [CrossRef]
Total | Intervention | Placebo | p-Value | |
---|---|---|---|---|
(n = 805) | (n = 401) | (n = 404) | ||
Biochemical indices | ||||
Sodium (mmol/L) | 141.2 ± 0.1 | 141.1 ± 0.2 | 141.3 ± 0.2 | 0.308 |
Potassium (mmol/L) | 4.5 ± 0.02 | 4.5 ± 0.02 | 4.5 ± 0.02 | 0.957 |
Chloride (mmol/L) | 101.8 ± 0.1 | 101.7 ± 0.2 | 101.8 ± 0.2 | 0.527 |
Urea (mmol/L) | 5.2 ± 0.1 | 5.2 ± 0.1 | 5.1 ± 0.1 | 0.678 |
Creatinine (µmol/L) | 73.7 ± 0.8 | 73.7 ± 1.0 | 73.6 ± 1.1 | 0.970 |
Urea to creatinine ratio ^ | 4.25 ± 0.01 | 4.25 ± 0.01 | 4.24 ± 0.01 | 0.632 |
Glucose (mmol/L) | 5.4 ± 0.03 | 5.4 ± 0.04 | 5.4 ± 0.05 | 0.703 |
eGFR (mL/min/1.73 m2) | 78.0 ± 0.6 | 78.1 ± 0.8 | 78.0 ± 0.8 | 0.937 |
CRP (mg/L) | 4.5 ± 0.4 | 5.2 ± 0.8 | 3.8 ± 0.4 | 0.130 |
(n = 470) | (n = 227) | (n = 243) | ||
Ferritin (µg/L) | 234.7 ± 9.9 | 255.3 ± 18.0 | 214.3 ± 8.2 | 0.038 |
Prealbumin (mg/dL) | 23.8 ± 0.2 | 23.7 ± 0.2 | 23.9 ± 0.2 | 0.470 |
Corrected calcium (mmol/L) | 2.23 ± 0.003 | 2.22 ± 0.010 | 2.23 ± 0.004 | 0.232 |
Vitamin B12 (pmol/L) | 469.7 ± 8.3 | 460.1 ± 11.8 | 479.3 ± 11.8 | 0.250 |
(n = 790) | (n = 395) | (n = 395) | ||
Zinc (µg/L) | 817.0 ± 4.7 | 820.2 ± 7.0 | 813.9 ± 6.2 | 0.498 |
(n = 544) | (n = 272) | (n = 272) | ||
Total bilirubin (µmol/L) | 10.9 ± 0.4 | 11.5 ± 0.7 | 10.3 ± 0.2 | 0.114 |
(n = 803) | (n = 399) | |||
ALP (U/L) | 71.1 ± 1.0 | 72.4 ± 1.7 | 69.9 ± 1.1 | 0.232 |
ALT (U/L) | 18.4 ± 0.5 | 18.4 ± 0.8 | 18.4 ± 0.5 | 0.920 |
(n = 804) | (n = 403) | |||
AST (U/L) | 24.8 ± 0.5 | 25.1 ± 0.9 | 24.4 ± 0.4 | 0.420 |
Total protein (g/L) | 71.5 ± 0.2 | 71.5 ± 0.2 | 71.5 ± 0.2 | 0.972 |
Albumin (g/L) | 45.2 ± 0.1 | 45.1 ± 0.1 | 45.3 ± 0.2 | 0.524 |
Globulin (g/L) | 26.4 ± 0.2 | 26.5 ± 0.2 | 26.3 ± 0.2 | 0.672 |
Hematological indices | ||||
Hemoglobin (g/dL) | 13.1 ± 0.1 | 13.1 ± 0.1 | 13.0 ± 0.1 | 0.141 |
Hematocrit (%) | 39.7 ± 0.1 | 39.9 ± 0.2 | 39.5 ± 0.2 | 0.233 |
MCV (fL) | 90.3 ± 0.3 | 90.5 ± 0.4 | 90.1 ± 0.4 | 0.446 |
MCH (pg) | 29.7 ± 0.1 | 29.8 ± 0.2 | 29.6 ± 0.1 | 0.312 |
MCHC (g/dL) | 32.9 ± 0.04 | 32.9 ± 0.05 | 32.8 ± 0.05 | 0.243 |
RDW (%) | 13.49 ± 0.05 | 13.42 ± 0.07 | 13.55 ± 0.08 | 0.184 |
Platelet count (103/µL) | 231.6 ± 2.3 | 230.0 ± 3.2 | 233.1 ± 3.3 | 0.504 |
MPV (fL) | 9.9 ± 0.03 | 9.9 ± 0.04 | 9.9 ± 0.04 | 0.686 |
(n = 793) | (n = 394) | (n = 399) | ||
WBC count (103/µL) | 5.6 ± 0.1 | 5.5 ± 0.1 | 5.7 ± 0.1 | 0.176 |
Neutrophils (absolute) (103/µL) | 3.4 ± 0.1 | 3.3 ± 0.1 | 3.4 ± 0.1 | 0.161 |
Lymphocytes (absolute) (103/µL) | 1.6 ± 0.02 | 1.6 ± 0.03 | 1.6 ± 0.03 | 0.556 |
Monocytes (absolute) (103/µL) | 0.46 ± 0.01 | 0.45 ± 0.01 | 0.47 ± 0.01 | 0.187 |
Eosinophils (absolute) (103/µL) | 0.20 ± 0.01 | 0.20 ± 0.01 | 0.19 ± 0.01 | 0.434 |
Basophils (absolute) (103/µL) | 0.04 ± 0.002 | 0.04 ± 0.003 | 0.04 ± 0.003 | 0.258 |
Neutrophils (%) | 58.6 ± 0.3 | 58.5 ± 0.5 | 58.7 ± 0.5 | 0.739 |
Lymphocytes (%) | 29.1 ± 0.3 | 29.1 ± 0.4 | 29.1 ± 0.4 | 0.928 |
Monocytes (%) | 8.2 ± 0.1 | 8.1 ± 0.1 | 8.2 ± 0.1 | 0.590 |
Eosinophils (%) | 3.3 ± 0.1 | 3.4 ± 0.2 | 3.2 ± 0.1 | 0.412 |
Basophils (%) | 0.80 ± 0.01 | 0.84 ± 0.02 | 0.77 ± 0.02 | 0.020 |
RBC count (106/µL) | 4.4 ± 0.02 | 4.4 ± 0.03 | 4.4 ± 0.03 | 0.678 |
Reticulocytes (absolute) (103/µL) | 56.1 ± 0.6 | 57.0 ± 0.9 | 55.2 ± 0.8 | 0.129 |
Reticulocytes (%) | 1.3 ± 0.01 | 1.3 ± 0.02 | 1.3 ± 0.02 | 0.301 |
Biochemical Indices | Overall | Day 90 | Day 180 | ||||||
---|---|---|---|---|---|---|---|---|---|
Intervention | Placebo | p-Value | Intervention | Placebo | p-Value | Intervention | Placebo | p-Value | |
(n = 627) | (n = 610) | (n = 317) | (n = 313) | (n = 310) | (n = 297) | ||||
Sodium (mmol/L) | 140.8 ± 0.1 | 141.0 ± 0.1 | 0.253 | 140.8 ± 0.2 | 140.9 ± 0.2 | 0.647 | 140.9 ± 0.2 | 141.2 ± 0.2 | 0.139 |
Potassium (mmol/L) | 4.6 ± 0.02 | 4.5 ± 0.02 | 0.001 | 4.6 ± 0.03 | 4.5 ± 0.03 | 0.004 | 4.6 ± 0.03 | 4.5 ± 0.03 | 0.010 |
(n = 626) | (n = 609) | (n = 316) | (n = 296) | ||||||
Chloride (mmol/L) | 101.7 ± 0.2 | 102.0 ± 0.2 | 0.036 | 101.5 ± 0.2 | 101.8 ± 0.2 | 0.055 | 101.9 ± 0.2 | 102.2 ± 0.2 | 0.095 |
Urea (mmol/L) | 6.0 ± 0.1 | 5.4 ± 0.1 | <0.001 | 6.1 ± 0.1 | 5.4 ± 0.1 | <0.001 | 5.9 ± 0.1 | 5.4 ± 0.1 | <0.001 |
Creatinine (µmol/L) | 73.3 ± 0.7 | 74.2 ± 0.7 | 0.198 | 73.7 ± 0.7 | 74.5 ± 0.7 | 0.241 | 72.9 ± 0.7 | 73.8 ± 0.8 | 0.279 |
Urea– to creatinine ratio ^ | 4.39 ± 0.01 | 4.26 ± 0.02 | <0.001 | 4.40 ± 0.02 | 4.25 ± 0.02 | <0.001 | 4.37 ± 0.02 | 4.26 ± 0.02 | <0.001 |
Glucose (mmol/L) | 5.5 ± 0.1 | 5.4 ± 0.1 | 0.116 | 5.4 ± 0.1 | 5.3 ± 0.1 | 0.167 | 5.5 ± 0.1 | 5.4 ± 0.1 | 0.162 |
eGFR (mL/min/1.73 m2) | 78.7 ± 0.5 | 78.2 ± 0.5 | 0.367 | 78.4 ± 0.6 | 77.8 ± 0.6 | 0.354 | 79.0 ± 0.6 | 78.6 ± 0.6 | 0.511 |
CRP (mg/L) | 5.3 ± 0.8 | 5.7 ± 0.8 | 0.627 | 5.8 ± 1.0 | 5.7 ± 1.0 | 0.933 | 4.8 ± 0.9 | 5.7 ± 0.9 | 0.313 |
(n = 286) | (n = 277) | (n = 143) | (n = 146) | (n = 143) | (n = 131) | ||||
Ferritin (µg/L) | 200.1 ± 5.0 | 204.8 ± 5.0 | 0.327 | 196.7 ± 5.2 | 205.4 ± 5.2 | 0.104 | 203.4 ± 5.3 | 204.2 ± 5.4 | 0.884 |
Prealbumin * (mg/dL) | 24.9 ± 0.2 | 24.0 ± 0.2 | <0.001 | 25.2 ± 0.2 | 24.1 ± 0.2 | <0.001 | 24.5 ± 0.2 | 23.8 ± 0.2 | 0.003 |
Corrected calcium (mmol/L) | 2.24 ± 0.004 | 2.23 ± 0.005 | 0.022 | 2.24 ± 0.005 | 2.23 ± 0.005 | 0.026 | 2.24 ± 0.005 | 2.23 ± 0.005 | 0.139 |
Vitamin B12 (pmol/L) | 480.0 ± 8.9 | 420.1 ± 9.0 | <0.001 | 471.6 ± 8.9 | 418.9 ± 9.0 | <0.001 | 488.5 ± 9.7 | 421.2 ± 9.8 | <0.001 |
(n = 615) | (n = 596) | (n = 312) | (n = 304) | (n = 303) | (n = 292) | ||||
Zinc (µg/L) | 819.5 ± 9.8 | 825.0 ± 9.8 | 0.469 | 821.5 ± 10.4 | 824.3 ± 10.5 | 0.759 | 817.4 ± 10.6 | 825.8 ± 10.4 | 0.370 |
(n =397) | (n = 410) | (n = 202) | (n = 204) | (n = 195) | (n = 206) | ||||
Total bilirubin (µmol/L) | 10.8 ± 0.2 | 11.0 ± 0.2 | 0.334 | 10.7 ± 0.3 | 10.8 ± 0.3 | 0.697 | 10.9 ± 0.3 | 11.3 ± 0.3 | 0.199 |
(n = 624) | (n = 315) | (n = 309) | |||||||
ALP (U/L) | 63.9 ± 0.9 | 64.8 ± 0.9 | 0.290 | 64.2 ± 0.9 | 64.8 ± 0.9 | 0.535 | 63.5 ± 1.0 | 64.8 ± 1.0 | 0.240 |
ALT (U/L) | 18.0 ± 0.8 | 16.5 ± 0.8 | 0.074 | 18.3 ± 0.7 | 17.0 ± 0.7 | 0.059 | 17.8 ± 1.1 | 16.0 ± 1.1 | 0.225 |
(n = 609) | (n = 296) | ||||||||
AST (U/L) | 24.1 ± 0.7 | 23.0 ± 0.7 | 0.125 | 24.3 ± 0.7 | 23.5 ± 0.7 | 0.231 | 24.0 ± 0.9 | 22.6 ± 0.9 | 0.200 |
Total protein (g/L) | 71.7 ± 0.2 | 71.3 ± 0.2 | 0.075 | 71.7 ± 0.2 | 71.1 ± 0.2 | 0.017 | 71.8 ± 0.3 | 71.6 ± 0.3 | 0.450 |
Albumin * (g/L) | 44.8 ± 0.1 | 44.8 ± 0.1 | 0.879 | 44.8 ± 0.2 | 44.9 ± 0.2 | 0.600 | 44.8 ± 0.2 | 44.8 ± 0.2 | 0.811 |
Globulin (g/L) | 26.8 ± 0.2 | 26.5 ± 0.2 | 0.032 | 26.8 ± 0.2 | 26.2 ± 0.2 | 0.004 | 26.9 ± 0.2 | 26.8 ± 0.2 | 0.374 |
Hematological Indices | Overall | Day 90 | Day 180 | ||||||
---|---|---|---|---|---|---|---|---|---|
Intervention | Placebo | p-Value | Intervention | Placebo | p-Value | Intervention | Placebo | p-Value | |
(n = 624) | (n = 611) | (n = 316) | (n = 314) | (n = 308) | (n = 297) | ||||
Hemoglobin (g/dL) | 13.2 ± 0.05 | 13.1 ± 0.05 | 0.149 | 13.3 ± 0.1 | 13.2 ± 0.1 | 0.064 | 13.2 ± 0.1 | 13.1 ± 0.1 | 0.428 |
Hematocrit (%) | 39.9 ± 0.2 | 39.7 ± 0.2 | 0.143 | 40.1 ± 0.2 | 39.7 ± 0.2 | 0.045 | 39.7 ± 0.2 | 39.6 ± 0.2 | 0.483 |
MCV * (fL) | 90.3 ± 0.2 | 90.0 ± 0.2 | 0.071 | 90.2 ± 0.2 | 89.9 ± 0.2 | 0.123 | 90.3 ± 0.2 | 90.0 ± 0.2 | 0.077 |
MCH * (pg) | 29.9 ± 0.1 | 29.9 ± 0.1 | 0.268 | 29.9 ± 0.1 | 29.9 ± 0.1 | 0.504 | 30.0 ± 0.1 | 29.9 ± 0.1 | 0.200 |
MCHC (g/dL) | 33.2 ± 0.1 | 33.2 ± 0.1 | 0.950 | 33.2 ± 0.1 | 33.2 ± 0.1 | 0.716 | 33.2 ± 0.1 | 33.2 ± 0.1 | 0.845 |
RDW (%) | 13.25 ± 0.05 | 13.28 ± 0.05 | 0.504 | 13.24 ± 0.05 | 13.25 ± 0.05 | 0.855 | 13.26 ± 0.05 | 13.31 ± 0.05 | 0.326 |
Platelet count (103/µL) | 213.9 ± 2.9 | 217.6 ± 2.9 | 0.184 | 213.9 ± 3.0 | 217.7 ± 3.0 | 0.210 | 213.9 ± 3.1 | 217.5 ± 3.1 | 0.262 |
MPV (fL) | 10.0 ± 0.03 | 9.9 ± 0.03 | 0.003 | 10.1 ± 0.04 | 9.9 ± 0.04 | <0.001 | 10.0 ± 0.04 | 9.9 ± 0.04 | 0.080 |
(n = 610) | (n = 603) | (n = 309) | (n = 310) | (n = 301) | (n = 293) | ||||
WBC count (103/µL) | 5.8 ± 0.1 | 5.7 ± 0.1 | 0.750 | 5.8 ± 0.1 | 5.8 ± 0.1 | 0.482 | 5.7 ± 0.1 | 5.7 ± 0.1 | 0.779 |
(n = 610) | (n = 313) | ||||||||
Neutrophils (absolute) (103/µL) | 3.4 ± 0.1 | 3.4 ± 0.1 | 0.750 | 3.5 ± 0.1 | 3.4 ± 0.1 | 0.520 | 3.3 ± 0.1 | 3.4 ± 0.1 | 0.797 |
Lymphocytes (absolute) (103/µL) | 1.6 ± 0.03 | 1.7 ± 0.03 | 0.319 | 1.6 ± 0.03 | 1.7 ± 0.03 | 0.267 | 1.7 ± 0.03 | 1.7 ± 0.03 | 0.518 |
Monocytes (absolute) * (103/µL) | 0.49 ± 0.01 | 0.47 ± 0.01 | 0.095 | 0.50 ± 0.01 | 0.47 ± 0.01 | 0.009 | 0.48 ± 0.01 | 0.48 ± 0.01 | 0.855 |
Eosinophils (absolute) (103/µL) | 0.21 ± 0.01 | 0.20 ± 0.01 | 0.110 | 0.22 ± 0.01 | 0.20 ± 0.01 | 0.141 | 0.21 ± 0.01 | 0.19 ± 0.01 | 0.205 |
Basophils (absolute) (103/µL) | 0.04 ± 0.003 | 0.04 ± 0.003 | 0.715 | 0.04 ± 0.003 | 0.04 ± 0.003 | 0.631 | 0.04 ± 0.003 | 0.04 ± 0.003 | 0.894 |
Neutrophils (%) | 58.1 ± 0.5 | 57.8 ± 0.5 | 0.435 | 58.4 ± 0.5 | 57.8 ± 0.5 | 0.258 | 57.8 ± 0.5 | 57.7 ± 0.5 | 0.831 |
Lymphocytes (%) | 28.9 ± 0.4 | 29.7 ± 0.4 | 0.044 | 28.6 ± 0.5 | 29.7 ± 0.5 | 0.015 | 29.2 ±0.4 | 29.7 ± 0.5 | 0.294 |
Monocytes (%) | 8.6 ± 0.1 | 8.4 ± 0.1 | 0.061 | 8.6 ± 0.1 | 8.4 ± 0.1 | 0.033 | 8.6 ± 0.1 | 8.5 ± 0.1 | 0.242 |
Eosinophils * (%) | 3.5 ± 0.1 | 3.3 ± 0.1 | 0.101 | 3.5 ± 0.2 | 3.3 ± 0.2 | 0.328 | 3.5 ± 0.1 | 3.2 ± 0.2 | 0.059 |
Basophils (%) | 0.77 ± 0.02 | 0.78 ± 0.02 | 0.872 | 0.78 ± 0.02 | 0.77 ± 0.02 | 0.692 | 0.77 ± 0.02 | 0.78 ± 0.02 | 0.474 |
RBC count (106/µL) | 4.5 ± 0.02 | 4.5 ± 0.02 | 0.579 | 4.5 ± 0.02 | 4.5 ± 0.02 | 0.190 | 4.4 ± 0.02 | 4.4 ± 0.02 | 0.862 |
Reticulocytes (absolute) (103/µL) | 62.0 ± 0.8 | 58.2 ± 0.9 | <0.001 | 61.5 ± 0.9 | 57.3 ± 0.9 | <0.001 | 62.6 ± 0.9 | 59.1 ± 0.9 | <0.001 |
Reticulocytes (%) | 1.4 ± 0.02 | 1.3 ± 0.02 | <0.001 | 1.4 ± 0.02 | 1.3 ± 0.02 | <0.001 | 1.4 ± 0.02 | 1.3 ± 0.02 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tey, S.L.; Huynh, D.T.T.; Kong, S.T.; Oliver, J.; Baggs, G.; Low, Y.L.; How, C.H.; Cheong, M.; Chow, W.L.; Tan, N.C.; et al. Effects of Oral Nutritional Supplement with β-Hydroxy-β-methylbutyrate (HMB) on Biochemical and Hematological Indices in Community-Dwelling Older Adults at Risk of Malnutrition: Findings from the SHIELD Study. Nutrients 2024, 16, 2495. https://doi.org/10.3390/nu16152495
Tey SL, Huynh DTT, Kong ST, Oliver J, Baggs G, Low YL, How CH, Cheong M, Chow WL, Tan NC, et al. Effects of Oral Nutritional Supplement with β-Hydroxy-β-methylbutyrate (HMB) on Biochemical and Hematological Indices in Community-Dwelling Older Adults at Risk of Malnutrition: Findings from the SHIELD Study. Nutrients. 2024; 16(15):2495. https://doi.org/10.3390/nu16152495
Chicago/Turabian StyleTey, Siew Ling, Dieu Thi Thu Huynh, Sing Teang Kong, Jeffery Oliver, Geraldine Baggs, Yen Ling Low, Choon How How, Magdalin Cheong, Wai Leng Chow, Ngiap Chuan Tan, and et al. 2024. "Effects of Oral Nutritional Supplement with β-Hydroxy-β-methylbutyrate (HMB) on Biochemical and Hematological Indices in Community-Dwelling Older Adults at Risk of Malnutrition: Findings from the SHIELD Study" Nutrients 16, no. 15: 2495. https://doi.org/10.3390/nu16152495
APA StyleTey, S. L., Huynh, D. T. T., Kong, S. T., Oliver, J., Baggs, G., Low, Y. L., How, C. H., Cheong, M., Chow, W. L., Tan, N. C., Aw, T. C., & Chew, S. T. H. (2024). Effects of Oral Nutritional Supplement with β-Hydroxy-β-methylbutyrate (HMB) on Biochemical and Hematological Indices in Community-Dwelling Older Adults at Risk of Malnutrition: Findings from the SHIELD Study. Nutrients, 16(15), 2495. https://doi.org/10.3390/nu16152495