Association of the Length of Service in the 24/48 Shift of Firefighters of the State Fire Service in Wroclaw on Selected Serum Biochemical Parameters of Nutritional Status
Abstract
:1. Introduction
2. Material and Methods
2.1. Participants of the Study
2.2. Method of Data Collection and Research Methods Used
2.3. Biochemical Analysis of Blood Serum
3. Statistical Analysis
4. Results
4.1. Characteristics
4.2. Analysis of Covariance (ANCOVA)
4.3. Ordinal Multinomial Logistic Regression
4.4. Lipid Ratios, Advanced Glycation Endproducts (AGE)
5. Discussion
6. Limitations of the Study
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khosravipour, M.; Khanlari, P.; Khazaie, S.; Khosravipour, H.; Khazaie, H. A Systematic Review and Meta-Analysis of the Association between Shift Work and Metabolic Syndrome: The Roles of Sleep, Gender, and Type of Shift Work. Sleep Med. Rev. 2021, 57, 101427. [Google Scholar] [CrossRef] [PubMed]
- International Agency for Research on Cancer. Working Group on the Identification of Carcinogenic Hazards to Humans Night Shift Work; International Agency for Research on Cancer: Lyon, France, 2020; Volume 124, ISBN 9789283201625. [Google Scholar]
- International Agency for Research on Cancer. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans Painting, Firefighting, and Shiftwork; IARC Monogr Eval Carcinog Risks Hum; International Agency for Research on Cancer: Lyon, France, 2010; Volume 98, pp. 9–764. [Google Scholar]
- Hunt, A.P.; Stewart, I.B.; Billing, D.C. Indices of Physiological Strain for Firefighters of the Australian Defence Forces. J. Occup. Environ. Hyg. 2019, 16, 727–734. [Google Scholar] [CrossRef] [PubMed]
- Wagner, S.L.; White, N.; Buys, N.; Carey, M.G.; Corneil, W.; Fyfe, T.; Matthews, L.R.; Randall, C.; Regehr, C.; White, M.; et al. Systematic Review of Mental Health Symptoms in Firefighters Exposed to Routine Duty-Related Critical Incidents. Traumatology 2021, 27, 285–302. [Google Scholar] [CrossRef]
- Nazari, G.; MacDermid, J.; Cramm, H. Prevalence of Musculoskeletal Disorders among Canadian Firefighters: A Systematic Review and Meta-Analysis. J. Mil. Veteran Fam. Health 2020, 6, 83–97. [Google Scholar] [CrossRef]
- Al-Malki, A.L.; Rezq, A.M.; Al-Saedy, M.H. Effect of Fire Smoke on Some Biochemical Parameters in Firefighters of Saudi Arabia. J. Occup. Med. Toxicol. 2008, 3, 33. [Google Scholar] [CrossRef] [PubMed]
- Makara-Studzińska, M.; Wajda, Z.; Lizińczyk, S. Years of Service, Self-Efficacy, Stress and Burnout among Polish Firefighters. Int. J. Occup. Med. Environ. Health 2020, 33, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Igboanugo, S.; Bigelow, P.L.; Mielke, J.G. Health Outcomes of Psychosocial Stress within Firefighters: A Systematic Review of the Research Landscape. J. Occup. Health 2021, 63, e12219. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.W.; Gann, J.; Lee, J.M.; Heffernan, K.S.; Kim, J.Y.; Jung, H.C. Potential Impact of Metabolic Syndrome on Cognitive Function in US Firefighters. Front. Public Health 2023, 11, 1150121. [Google Scholar] [CrossRef] [PubMed]
- Barros, B.; Oliveira, M.; Morais, S. Firefighters’ Occupational Exposure: Contribution from Biomarkers of Effect to Assess Health Risks. Environ. Int. 2021, 156, 106704. [Google Scholar] [CrossRef] [PubMed]
- Ren, Z.; Zhao, A.; Wang, Y.; Meng, L.; Szeto, I.; Li, T.; Gong, H.; Tian, Z.; Zhang, Y.; Wang, P. Association between Dietary Inflammatory Index, C-Reactive Protein and Metabolic Syndrome: A Cross-Sectional Study. Nutrients 2018, 10, 831. [Google Scholar] [CrossRef]
- Salama, K.F.; Bashawri, L.A. Biochemical and Hematological Changes among Saudi Firefighters in the Eastern Province. Int. J. Environ. Health Eng. 2017, 6, 2. [Google Scholar] [CrossRef]
- Montazerifar, F.; Karajibani, M.; Hosseini, R.; Tafazzoli, A.; Bolouri, A. The Prevalence of Metabolic Syndrome in Iranian Firefighters. Ann. Mil. Health Sci. Res. 2020, 18, e101972. [Google Scholar] [CrossRef]
- Smith, D.L.; Graham, E.; Stewart, D.; Mathias, K.C. Cardiovascular Disease Risk Factor Changes over 5 Years among Male and Female US Firefighters. J. Occup. Environ. Med. 2020, 62, 398–402. [Google Scholar] [CrossRef] [PubMed]
- Vatandoost, A.; Azadbakht, L.; Morvaridi, M.; Kabir, A.; Mohammadi Farsani, G. Association between Dietary Inflammatory Index and Risk of Cardiovascular Diseases among Firefighters. Int. J. Prev. Med. 2020, 11, 133. [Google Scholar] [CrossRef] [PubMed]
- Romanidou, M.; Tripsianis, G.; Hershey, M.S.; Sotos-Prieto, M.; Christophi, C.; Moffatt, S.; Constantinidis, T.C.; Kales, S.N. Association of the Modified Mediterranean Diet Score (Mmds) with Anthropometric and Biochemical Indices in Us Career Firefighters. Nutrients 2020, 12, 3693. [Google Scholar] [CrossRef] [PubMed]
- Torre, S.B.D.; Wild, P.; Dorribo, V.; Amati, F.; Danuser, B. Eating Habits of Professional Firefighters: Comparison with National Guidelines and Impact Healthy Eating Promotion Program. J. Occup. Environ. Med. 2019, 61, E183–E190. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolska-Zrałka, K.; Kujawa, K.; Regulska-Ilow, B. Association of the Length of Service of 24/48 Firefighters with the Quality of Their Diet and Selected Anthropometric Parameters. Nutrients 2023, 15, 4029. [Google Scholar] [CrossRef] [PubMed]
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Miller, M.; Stone, N.J.; Ballantyne, C.; Bittner, V.; Criqui, M.H.; Ginsberg, H.N.; Goldberg, A.C.; Howard, W.J.; Jacobson, M.S.; Kris-Etherton, P.M.; et al. Triglycerides and Cardiovascular Disease: A Scientific Statement from the American Heart Association. Circulation 2011, 123, 2292–2333. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.V.; Sarmento, R.A.; de Almeida, J.C.; Canuto, R. The Effect of Shift Work on Eating Habits: A Systematic Review. Scand. J. Work Environ. Health 2019, 45, 7–21. [Google Scholar] [CrossRef]
- Quispe, R.; Elshazly, M.B.; Zhao, D.; Toth, P.P.; Puri, R.; Virani, S.S.; Blumenthal, R.S.; Martin, S.S.; Jones, S.R.; Michos, E.D. Total Cholesterol/HDL-Cholesterol Ratio Discordance with LDL-Cholesterol and Non-HDL-Cholesterol and Incidence of Atherosclerotic Cardiovascular Disease in Primary Prevention: The ARIC Study. Eur. J. Prev. Cardiol. 2020, 27, 1597–1605. [Google Scholar] [CrossRef] [PubMed]
- Kannel, W.B.; Vasan, R.S.; Keyes, M.J.; Sullivan, L.M.; Robins, S.J. Usefulness of the Triglyceride-High-Density Lipoprotein Versus the Cholesterol-High-Density Lipoprotein Ratio for Predicting Insulin Resistance and Cardiometabolic Risk (from the Framingham Offspring Cohort). Am. J. Cardiol. 2008, 101, 497–501. [Google Scholar] [CrossRef] [PubMed]
- Quispe, R.; Manalac, R.J.; Faridi, K.F.; Blaha, M.J.; Toth, P.P.; Kulkarni, K.R.; Nasir, K.; Virani, S.S.; Banach, M.; Blumenthal, R.S.; et al. Relationship of the Triglyceride to High-Density Lipoprotein Cholesterol (TG/HDL-C) Ratio to the Remainder of the Lipid Profile: The Very Large Database of Lipids-4 (VLDL-4) Study. Atherosclerosis 2015, 242, 243–250. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Reaven, G.; Abbasi, F.; Lamendola, C.; Saad, M.; Waters, D.; Simon, J.; Krauss, R.M. Is There a Simple Way to Identify Insulin-Resistant Individuals at Increased Risk of Cardiovascular Disease? Am. J. Cardiol. 2005, 96, 399–404. [Google Scholar] [CrossRef] [PubMed]
- McLaughlin, T.; Abbasi, F.; Cheal, K.; Chu, J.; Lamendola, C.; Reaven, G. Use of Metabolic Markers To Identify Overweight Individuals Who Are Insulin Resistant Background: Insulin Resistance Is More Common in Overweight. Ann. Intern. Med. 2003, 139, 802–809. [Google Scholar] [CrossRef] [PubMed]
- Eliasson, B.; Gudbjörnsdottir, S.; Zethelius, B.; Eeg-Olofsson, K.; Cederholm, J. LDL-Cholesterol versus Non-HDL-to-HDL-Cholesterol Ratio and Risk for Coronary Heart Disease in Type 2 Diabetes. Eur. J. Prev. Cardiol. 2014, 21, 1420–1428. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, I.; Lamarche, B.; Couillard, C.; Pascot, A.; Cantin, B.; Bergeron, J.; Dagenais, G.R.; Després, J.-P. Total Cholesterol/HDL Cholesterol Ratio vs LDL Cholesterol/HDL Cholesterol Ratio as Indices of Ischemic Heart Disease Risk in Men. Arch. Intern. Med. 2001, 161, 2685–2692. [Google Scholar] [CrossRef] [PubMed]
- Zhen, R.; Ban, J.; Jia, Z.; Liu, Y.; Li, Z.; Chen, S. The Relationship between Non-HDL-C /HDL-C Ratio (NHHR) and Vitamin D in Type 2 Diabetes Mellitus. Diabetes Metab. Syndr. Obes. 2023, 16, 2661–2673. [Google Scholar] [CrossRef] [PubMed]
- Sheng, G.; Liu, D.; Kuang, M.; Zhong, Y.; Zhang, S.; Zou, Y. Utility of Non-High-Density Lipoprotein Cholesterol to High-Density Lipoprotein Cholesterol Ratio in Evaluating Incident Diabetes Risk. Diabetes Metab. Syndr. Obes. 2022, 15, 1677–1686. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Jee, J.H.; Kim, H.J.; Jin, S.-M.; Suh, S.; Bae, J.C.; Kim, S.W.; Chung, J.H.; Min, Y.-K.; Lee, M.-S.; et al. Non-HDL-Cholesterol/HDL-Cholesterol Is a Better Predictor of Metabolic Syndrome and Insulin Resistance than Apolipoprotein B/Apolipoprotein A1. Int. J. Cardiol. 2013, 168, 2678–2683. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Z.; Xia, B.; Wang, L.; Zhang, H.; Zhu, Y.; Liu, C.; Song, B. Relationship between the Non-HDLc-to-HDLc Ratio and Carotid Plaques in a High Stroke Risk Population: A Cross-Sectional Study in China. Lipids Health Dis. 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Masson, W.; Epstein, T.; Huerín, M.; Lobo, M.; Molinero, G.; Siniawski, D. Association between Non-HDL-C/HDL-C Ratio and Carotid Atherosclerosis in Postmenopausal Middle-Aged Women. Climacteric 2019, 22, 518–522. [Google Scholar] [CrossRef] [PubMed]
- Sniderman, A.; Williams, K.; Cobbaert, C. ApoB versus Non-HDL-C: What to Do When They Disagree. Curr. Atheroscler. Rep. 2009, 11, 358–363. [Google Scholar] [CrossRef] [PubMed]
- Zhang, N.; Hu, X.; Zhang, Q.; Bai, P.; Cai, M.; Zeng, T.S.; Zhang, J.; Tian, S.; Min, J.; Huang, H.; et al. Non-high-density Lipoprotein Cholesterol: High-density Lipoprotein Cholesterol Ratio Is an Independent Risk Factor for Diabetes Mellitus: Results from a Population-based Cohort Study. J. Diabetes 2018, 10, 708–714. [Google Scholar] [CrossRef] [PubMed]
- Lin, D.; Qi, Y.; Huang, C.; Wu, M.; Wang, C.; Li, F.; Yang, C.; Yan, L.; Ren, M.; Sun, K. Associations of Lipid Parameters with Insulin Resistance and Diabetes: A Population-Based Study. Clin. Nutr. 2018, 37, 1423–1429. [Google Scholar] [CrossRef] [PubMed]
- Du, T.; Yuan, G.; Zhang, M.; Zhou, X.; Sun, X.; Yu, X. Clinical Usefulness of Lipid Ratios, Visceral Adiposity Indicators, and the Triglycerides and Glucose Index as Risk Markers of Insulin Resistance. Cardiovasc. Diabetol. 2014, 13, 146. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Luo, S.; Li, W.; Liu, J.; Zhou, T.; Yang, F.; Zhou, D.; Liu, Y.; Huang, W.; Feng, Y.; et al. Association between the Non-HDL-Cholesterol to HDL-Cholesterol Ratio and Abdominal Aortic Aneurysm from a Chinese Screening Program. Lipids Health Dis. 2023, 22, 187. [Google Scholar] [CrossRef] [PubMed]
- Ras, J.; Kengne, A.P.; Smith, D.L.; Soteriades, E.S.; Leach, L. Association between Cardiovascular Disease Risk Factors and Cardiorespiratory Fitness in Firefighters: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 2816. [Google Scholar] [CrossRef] [PubMed]
- Parto, P.; Lavie, C.J.; Swift, D.; Sui, X. The Role of Cardiorespiratory Fitness on Plasma Lipid Levels. Expert Rev. Cardiovasc. Ther. 2015, 13, 1177–1183. [Google Scholar] [CrossRef] [PubMed]
- Vega, G.L.; Grundy, S.M.; Barlow, C.E.; Leonard, D.; Willis, B.L.; DeFina, L.F.; Farrell, S.W. Association of Triglyceride-to-High Density Lipoprotein Cholesterol Ratio to Cardiorespiratory Fitness in Men. J. Clin. Lipidol. 2016, 10, 1414–1422.e1. [Google Scholar] [CrossRef] [PubMed]
- Rumora, A.E.; Lentz, S.I.; Hinder, L.M.; Jackson, S.W.; Valesano, A.; Levinson, G.E.; Feldman, E.L. Dyslipidemia Impairs Mitochondrial Trafficking and Function in Sensory Neurons. FASEB J. 2018, 32, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Atzeni, I.M.; van de Zande, S.C.; Westra, J.; Zwerver, J.; Smit, A.J.; Mulder, D.J. The AGE Reader: A Non-Invasive Method to Assess Long-Term Tissue Damage. Methods 2022, 203, 533–541. [Google Scholar] [CrossRef] [PubMed]
- Noordzij, M.J.; Lefrandt, J.D.; Graaff, R.; Smit, A.J. Skin Autofluorescence and Glycemic Variability. Diabetes Technol. Ther. 2010, 12, 581–585. [Google Scholar] [CrossRef] [PubMed]
- Lutgers, H.L.; Graaff, R.; Links, T.P.; Ubink-Veltmaat, L.J.; Bilo, H.J.; Gans, R.O.; Smit, A.J. Skin Autofluorescence as a Noninvasive Marker of Vascular Damage in Patients with Type 2 Diabetes. Diabetes Care 2006, 29, 2654–2659. [Google Scholar] [CrossRef] [PubMed]
- Monnier, V.M.; Sun, W.; Gao, X.; Sell, D.R.; Cleary, P.A.; Lachin, J.M.; Genuth, S. Skin Collagen Advanced Glycation Endproducts (AGEs) and the Long-Term Progression of Sub-Clinical Cardiovascular Disease in Type 1 Diabetes. Cardiovasc. Diabetol. 2015, 14, 118. [Google Scholar] [CrossRef] [PubMed]
- Kralev, S.; Zimmerer, E.; Brueckmann, M.; Lang, S.; Kälsch, T.; Rippert, A.; Lin, J.; Borggrefe, M.; Hammes, H.-P.; Süselbeck, T. Elevation of the Glycoxidation Product Nε-(Carboxymethyl)Lysine in Patients Presenting with Acute Myocardial Infarction. Clin. Chem. Lab. Med. 2009, 47, 446–451. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, T.; Maruyama, K.; Ito, N.; Utagawa, A.; Nagane, M.; Shiokawa, Y. Serum Pentosidine, An Advanced Glycation End Product, Indicates Poor Outcomes After Acute Ischemic Stroke. J. Stroke Cerebrovasc. Dis. 2012, 21, 386–390. [Google Scholar] [CrossRef] [PubMed]
- McIntyre, N.J.; Chesterton, L.J.; John, S.G.; Jefferies, H.J.; Burton, J.O.; Taal, M.W.; Fluck, R.J.; McIntyre, C.W. Tissue-Advanced Glycation End Product Concentration in Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2010, 5, 51–55. [Google Scholar] [CrossRef] [PubMed]
- Davies, C.A.; Herrick, A.L.; Cordingley, L.; Freemont, A.J.; Jeziorska, M. Expression of Advanced Glycation End Products and Their Receptor in Skin from Patients with Systemic Sclerosis with and without Calcinosis. Rheumatology 2009, 48, 876–882. [Google Scholar] [CrossRef] [PubMed]
- de Groot, L.; Hinkema, H.; Westra, J.; Smit, A.J.; Kallenberg, C.G.; Bijl, M.; Posthumus, M.D. Advanced Glycation Endproducts Are Increased in Rheumatoid Arthritis Patients with Controlled Disease. Arthritis Res. Ther. 2011, 13, R205. [Google Scholar] [CrossRef] [PubMed]
- Sharafi, M.; Amiri, Z.; Pezeshki, B.; Mohsenpour, M.A.; Eftekhari, M.H.; Afrashteh, S.; Haghjoo, E.; Farhadi, A.; Khaleghi, M.; Mastaneh, Z. Predictive Value of Triglycerides to High-Density Lipoprotein Cholesterol and Triglyceride Glycemic Index for Diabetes Incidence in Pre-Diabetes Patients: A Prospective Cohort Study. J. Health Popul. Nutr. 2023, 42, 67. [Google Scholar] [CrossRef] [PubMed]
- Moffatt, S.M.; Stewart, D.F.; Jack, K.; Dudar, M.D.; Bode, E.D.; Mathias, K.C.; Smith, D.L. Cardiometabolic Health among United States Firefighters by Age. Prev. Med. Rep. 2021, 23, 101492. [Google Scholar] [CrossRef]
Parameters | ± SD/Me (Q1–Q3) | U | z/w/t | df | r/d | p z/w/t | |
---|---|---|---|---|---|---|---|
LS ≤ 10 Years | LS > 10 Years | ||||||
Age [years] | 62, 29.00 (26.00–33.00) | 71, 40.49 (41.00–37.00) | 268.50 | −8.73 z | - | 0.12 r | <0.001 z |
H [cm] | 62, 180.6 ± 5.4 | 71, 179.2 ± 6.8 | - | −1.33 w | 131 | 0.23 d | 0.187 w |
BMI [kg/m2] | 62, 25.40 (23.80–26.80) | 71, 28.10 (25.90–30.00) | 1091.50 | −5.00 z | - | 0.50 r | <0.001 z |
WC [cm] | 62, 89.00 (82.00–93.00) | 71, 96.50 (89.00–103.00) | 1175.00 | −4.23 z | - | 0.53 r | <0.001 z |
WHR | 62, 0.84 (0.81–0.86) | 71, 0.92 (0.89–0.96) | 442.50 | −7.93 z | - | 0.20 r | <0.001 z |
DBP [mm/Hg] | 62, 79.00 (73.00–89.00) | 69, 83.00 (77.00–89.00) | 1775.00 | −1.68 z | - | 0.55 r | 0.094 z |
SBP [mm/Hg] | 62, 134.4 ± 14.4 | 69, 139.5 ± 14.3 | - | −2.03 t | 129 | 0.36 d | 0.044 t |
PULSE [bpm] | 61, 71.3 ± 12.8 | 69, 71.2 ± 11.5 | - | 0.02 t | 128 | 0.10 d | 0.983 t |
NRF9.3 | LS ≤ 10 Years | LS > 10 Years | Δ | SE | 95% CI− | 95% CI+ | A | pA |
---|---|---|---|---|---|---|---|---|
Model: 1. GLU ← LS (≤10 years, >10 years) + Age (≤35 years, >35 years) + BMI (18.5–24.9, >24.9, <18.5) + + WHR (<1.0 -> 0, ≥1.0 -> 1) + NRF9.3 | ||||||||
535.087 | 14 | 12 | 0.650 | 3.113 | −9.088 | 10.388 | 0.196 | 0.848 |
631.149 | 32 | 32 | 2.950 | 1.353 | −0.705 | 6.605 | 2.180 | 0.036 |
680.909 | 37 | 34 | 4.006 | 1.177 | 0.833 | 7.179 | 3.404 | 0.002 |
712.631 | 34 | 36 | 4.409 | 1.413 | 0.590 | 8.228 | 3.121 | 0.004 |
801.642 | 13 | 21 | 5.530 | 1.904 | −0.061 | 11.121 | 2.904 | 0.012 |
Model: 2. FIL ← LS (≤10 years, >10 years) + Age (≤35 years, >35 years) + BMI (18.5–24.9, >24.9, <18.5) + + WHR (<1.0 -> 0, ≥1.0 -> 1) + NRF9.3 | ||||||||
535.087 | 14 | 12 | 0.650 | 3.323 | −9.088 | 10.388 | 0.196 | 0.848 |
631.149 | 32. | 32 | 2.950 | 1.353 | −0.705 | 6.605 | 2.180 | 0.036 |
680.909 | 37 | 34 | 4.006 | 1.177 | 0.833 | 7.178 | 3.404 | 0.002 |
712.631 | 34.36 | 4.409 | 1.413 | 1.413 | 0.590 | 8.228 | 3.121 | 0.004 |
801.642 | 13 | 21 | 5.530 | 1.904 | −0.061 | 11.121 | 2.904 | 0.012 |
Model: 3. TSH ← LS (≤10 years, >10 years) + Age (≤35 years, >35 years) + BMI (18.5–24.9, >24.9, <18.5) + + WHR (<1.0 -> 0, ≥ 1.0 -> 1) + NRF9.3 | ||||||||
535.087 | 15 | 12 | −0.209 | 0.295 | −1.114 | 0.695 | 0.711 | 0.493 |
631.149 | 32 | 26 | −0.252 | 0.201 | −0.807 | 0.302 | 1.256 | 0.221 |
680.651 | 37 | 29 | −0.235 | 0.189 | −0.708 | 0.239 | 1.369 | 0.183 |
712.631 | 36 | 30 | −0.202 | 0.189 | −0.730 | 0.323 | 1.070 | 0.296 |
801.642 | 13 | 17 | −0.098 | 0.234 | −0.765 | 0.570 | 0.418 | 0.681 |
Model: 4. TG/HDL ← LS (≤10 years, >10 years) + Age (≤35 years, >35 years) + BMI (18.5–24.9, >24.9, <18.5) + + WHR (<1.0 -> 0, ≥1.0 -> 1) + NRF9.3 | ||||||||
535.087 | 14 | 12 | 0.701 | 0.620 | −1.149 | 2.550 | 1.130 | 0.280 |
631.149 | 32 | 32 | 1.531 | 0.272 | 0.795 | 2.268 | 5.628 | <0.001 |
680.909 | 37 | 34 | 1.274 | 0.525 | 2.024 | 4.654 | 4.654 | <0.001 |
712.631 | 34 | 36 | 1.119 | 0.260 | 0.408 | 1.830 | 4.302 | <0.001 |
801.642 | 13 | 21 | 0.761 | 0.287 | −0.097 | 1.619 | 2.649 | 0.021 |
Model: 5. LDL/HDL ← LS (≤10 years, >10 years) + Age (≤35 years, >35 years) + BMI (18.5–24.9, >24.9, <18.5) + + WHR (<1.0 -> 0, ≥1.0 -> 1) + NRF9.3 | ||||||||
535.087 | 14 | 12 | 0.496 | 0.467 | −0.863 | 1.855 | 1.062 | 0.305 |
631.149 | 32 | 32 | 0.752 | 0.217 | 0.165 | 1.340 | 3.459 | 0.001 |
680.909 | 37 | 34 | 0.736 | 0.172 | 0.274 | 1.199 | 4.290 | <0.001 |
712.631 | 34 | 36 | 0.903 | 0.174 | 0.432 | 1.373 | 5.185 | <0.001 |
801.642 | 13 | 21 | 1.041 | 0.352 | −0.038 | 2.119 | 2.955 | 0.013 |
Model: 6. TC/HDL ← LS (≤10 years, >10 years) + Age (≤35 years, >35 years) + BMI (18.5–24.9, >24.9, <18.5) + + WHR (<1.0 -> 0, ≥1.0 -> 1) + NRF9.3 | ||||||||
535.087 | 14 | 12 | 0.766 | 0.569 | −0.888 | 2.420 | 1.347 | 0.198 |
631.149 | 32 | 32 | 1.094 | 0.281 | 0.336 | 1.853 | 3.892 | <0.001 |
680.909 | 37 | 34 | 1.054 | 0.217 | 0.467 | 1.641 | 4.867 | <0.001 |
712.631 | 34 | 36 | 1.179 | 0.216 | 0.589 | 1.768 | 5.453 | <0.001 |
801.642 | 13 | 21 | 1.272 | 0.390 | 0.071 | 2.474 | 3.263 | 0.008 |
Model: 7. non-HDL/HDL ← LS (≤ 10 years, >10 years) + Age (≤35 years, >35 years) + BMI (18.5–24.9, >24.9, <18.5) + + WHR (<1.0 -> 0, ≥1.0 -> 1) + NRF9.3 | ||||||||
535.087 | 14 | 12 | 0.766 | 0.569 | −0.888 | 2.420 | 1.367 | 0.198 |
631.149 | 32 | 32 | 1.070 | 0.281 | 0.312 | 1.829 | 3.808 | <0.001 |
680.909 | 37 | 34 | 1.032 | 0.218 | 0.443 | 1.622 | 4.741 | <0.001 |
712.631 | 34 | 36 | 1.157 | 0.220 | 0.559 | 1.755 | 5.264 | <0.001 |
801.642 | 13 | 21 | 1.272 | 0.390 | 0.071 | 2.474 | 33.263 | 0.008 |
Effect | Level Effect | Column | Evaluation | SE | W | 95% CI− | 95% CI+ | p |
---|---|---|---|---|---|---|---|---|
Model: 1. AGE ← LS (≤10 years, >10 years) + NRF9.3 + TG/HDL | ||||||||
absolute term 1 | - | 1 | 1.855 | 1.600 | 1.344 | −0.282 | 4.992 | 0.246 |
absolute term 2 | - | 2 | 4.667 | 1.669 | 7.819 | 1.396 | 7.938 | 0.005 |
NRF9.3 | - | 3 | −0.005 | 0.002 | 4.634 | −0.009 | −<0.001 | 0.031 |
TG/HDL | - | 4 | 0 237 | 0.217 | 1.190 | −0.188 | 0.662 | 0.028 |
LS (≤10 years, >10 years) | 0 | 5 | −0.094 | 0.222 | 0.178 | −0.523 | 0.341 | 0.673 |
scale | - | - | 1.000 | <0.001 | - | 1.000 | 1.000 | - |
Model: 2. AGE ← LS (≤ 10 years, >10 years) + NRF9.3 + LDL/HDL | ||||||||
absolute term 1 | - | 1 | 2.341 | 1.644 | 2.028 | −0.881 | 5.562 | 0.154 |
absolute term 2 | - | 2 | 5.125 | 1.715 | 8.935 | 1.764 | 8.485 | 0.003 |
NRF9.3 | - | 3 | −0.005 | 0.002 | 4.329 | −0.009 | −<0.001 | 0.037 |
LDL/HDL | - | 4 | −0.096 | 0.227 | 0.177 | −0.541 | 0.350 | 0.674 |
LS (≤10 years, >10 years) | 0 | 5 | −0.281 | 0.211 | 1.776 | −0.694 | 0.132 | 0.183 |
scale | - | - | 1.000 | <0.001 | - | 1.000 | 1.000 | - |
Model 3. AGE ← LS (≤10 years, >10 years) + NRF9.3 + TC/HDL | ||||||||
absolute term 1 | - | 1 | 2.393 | 1.753 | 1.863 | −1.043 | 5.829 | 1.172 |
absolute term 2 | - | 2 | 5.177 | 1.820 | 8.090 | 1.610 | 8.743 | 0.004 |
NRF9.3 | - | 3 | −0.005 | 0.002 | 4.302 | −0.009 | −<0.001 | 0.038 |
TC/HDL | - | 4 | −0.073 | 0.190 | 0.146 | −0.445 | 0.300 | 0.702 |
LS (≤10 years, >10 years) | 0 | 5 | −0.281 | 0.213 | 1.747 | −0.698 | 0.136 | 0.186 |
scale | - | - | 1.000 | 0.001 | - | 1.000 | 1.000 | - |
Model 4. AGE ← LS (≤10 years, >10 years) + NRF9.3 + non-HDL/HDL | ||||||||
absolute term 1 | - | 1 | 2.326 | 1.659 | 1.966 | −0.926 | 5.578 | 0.161 |
absolute term 2 | - | 2 | 5.110 | 1.728 | 8.739 | 1.722 | 8.497 | 0.003 |
NRF9.3 | - | 3 | −0.005 | 0.002 | 4.307 | −0.009 | −<0.001 | 0.038 |
non-HDL/HDL | - | 4 | −0.074 | 0.190 | 0.151 | −0.445 | 0.298 | 0.698 |
LS (≤10 years, >10 years) | 0 | 5 | −0.281 | 0.213 | 1.753 | −0.698 | 0.135 | 0.186 |
scale | - | - | 1.000 | <0.001 | - | 1.000 | 1.000 | - |
Parameters | ± SD/Me (Q1–Q3) | U | z | rg | p-adz | |
---|---|---|---|---|---|---|
LS ≤ 10 Years | LS > 10 Years | |||||
TC [mg/dL] | 50, 184.00 (166.00–194.00) | 58, 211.50 (184.00–254.00) | 795.50 | 0.06 | 0.55 | 0.003 |
HDL [mg/dL] | 50, 58.00 (51.70–66.10) | 58, 51.30 (45.60–56.70) | 956.50 | 3.04 | 0.66 | 0.033 |
non-HDL [mg/dL] | 50, 122.00 (106.00–140.00) | 58, 151.70 (132.00–196.70) | 699.50 | −4.62 | 0.48 | 0.004 |
LDL [mg/dL] | 50, 105.18 (90.24–119.00) | 58, 123.75 (108.20–167.90) | 805.00 | −3.97 | 0.56 | 0.005 |
TG [mg/dL] | 50, 78.00 (67.00–103.00) | 58, 118.50 (96.00–158.00) | 689.00 | −4.68 | 0.48 | 0.006 |
TSH [μIU/mL] | 41, 1.35 (0.95–2.04) | 54, 1.12 (0.85–1.45) | 962.00 | 1.09 | 0.87 | 1.000 |
FIL [μIU/mL] | 41, 6.80 (5.27–8.72) | 54, 9.62 (6.06–13.35) | 781.50 | −2.40 | 0.71 | 0.191 |
GLU [mg/dL] | 50, 87.00 (84.00–89.00) | 58, 90.00 (87.00–96.00) | 987.00 | −2.86 | 0.68 | 0.063 |
Lipid Ratio | Me (Q1–Q3) | z | rg | p-adz | ||
---|---|---|---|---|---|---|
LS ≤ 10 Years (n = 50) | LS > 10 Years (n = 58) | U | ||||
TG/HDL | 1.38 (0.97–1.85) | 2.34 (1.69–3.40) | 749.00 | −4.31 | 0.52 | 0.007 |
LDL/HDL | 1.80 (1.41–2.25) | 2.63 (3.39–4.93) | 772.00 | −4.17 | 0.53 | 0.008 |
TC/HDL | 3.04 (2.71–3.55) | 4.18 (3.39–4.93) | 726.00 | −4.46 | 0.50 | 0.009 |
non-HDL/HDL | 2.07 (1.71–2.61) | 3.18 (2.39–3.93) | 734.00 | −4.41 | 0.51 | 0.010 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobrowolska-Zrałka, K.; Janek, Ł.; Pawlik-Sobecka, L.; Smereka, J.; Regulska-Ilow, B. Association of the Length of Service in the 24/48 Shift of Firefighters of the State Fire Service in Wroclaw on Selected Serum Biochemical Parameters of Nutritional Status. Nutrients 2024, 16, 2467. https://doi.org/10.3390/nu16152467
Dobrowolska-Zrałka K, Janek Ł, Pawlik-Sobecka L, Smereka J, Regulska-Ilow B. Association of the Length of Service in the 24/48 Shift of Firefighters of the State Fire Service in Wroclaw on Selected Serum Biochemical Parameters of Nutritional Status. Nutrients. 2024; 16(15):2467. https://doi.org/10.3390/nu16152467
Chicago/Turabian StyleDobrowolska-Zrałka, Karolina, Łucja Janek, Lilla Pawlik-Sobecka, Jacek Smereka, and Bożena Regulska-Ilow. 2024. "Association of the Length of Service in the 24/48 Shift of Firefighters of the State Fire Service in Wroclaw on Selected Serum Biochemical Parameters of Nutritional Status" Nutrients 16, no. 15: 2467. https://doi.org/10.3390/nu16152467
APA StyleDobrowolska-Zrałka, K., Janek, Ł., Pawlik-Sobecka, L., Smereka, J., & Regulska-Ilow, B. (2024). Association of the Length of Service in the 24/48 Shift of Firefighters of the State Fire Service in Wroclaw on Selected Serum Biochemical Parameters of Nutritional Status. Nutrients, 16(15), 2467. https://doi.org/10.3390/nu16152467