The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin
Abstract
:1. Introduction
2. Adipose Tissue
2.1. Adipose Tissue Growth
2.2. Metabolic Pathways in WAT
2.3. Metabolic Pathways in BAT
2.4. Inflammation in AT
3. Adiponectin
3.1. Structure and Receptors
3.1.1. Functions of Adiponectin in Different Organs of the Body
3.1.2. Functions of Adiponectin in the Liver
3.1.3. Functions of Adiponectin in Kidneys
3.1.4. Functions of Adiponectin in Skeletal Muscle
3.1.5. Functions of Adiponectin in Cardiovascular System
3.1.6. Functions of Adiponectin in the Central Nervous System
3.1.7. Functions of Adiponectin in the Bones
3.2. Role in Diseases
3.2.1. Cardiovascular Disease
3.2.2. Type 2 Diabetes and Obesity
3.2.3. Nonalcoholic Fatty Liver Disease (NAFLD)
3.2.4. Alzheimer’s Disease
3.2.5. Cancer
4. Influence of Diet on Adiponectin
4.1. Influence of Energy Restriction on Adiponectin Blood Levels
4.2. Mediterranean Diet
Author | Year | n | Study Design | Population | Duration | Adiponectin | Other Outcomes | Ref. |
---|---|---|---|---|---|---|---|---|
Pischon | 2005 | 532 | Cross-sectional | General population | N/A | ↑ | ↓ glycemic index foods, omega-3, olive oil | [134] |
Bédard | 2014 | 70 | Controlled intervention study | General population | 4 weeks | ↑ | [130] | |
Spadafranca | 2018 | 99 | Cohort study | Pregnant women | During pregnancy | ↓ | ↑ LDL cholesterol, or ↑ total cholesterol/HDL ratio | [139] |
Sureda | 2018 | 608 | Cross-sectional | General population | N/A | ↑ | ↓ leptin, ↓ TNF-α, ↓ PAI-1, ↑ hs-CRP | [129] |
Gomez-Huelgas | 2019 | 115 | RCT | Obese women (35–55 years) | 12 months | ↓ | ↓ hsCRP, IL-6, ↓ TNF | [138] |
Luisi | 2019 | 18 | RCT | Overweight/obese subjects | 3 months | ↑ | ↓ proinflammatory cytokines, ↑ IL-10 | [136] |
de Luis | 2020 | 135 | Interventional controlled trial | Obese patients with ADIPOQ gene polymorphism | 12 weeks | ↑ | ↑ lipid profiles, ↑ CRP | [133] |
Bozzetto | 2021 | 45 | RCT | Type 1 diabetic patients | 8 weeks | ↑ | ↑ MUFA,↑ PUFA, ↓ SFA | [131] |
Cobos-Palacios | 2022 | 166 | Interventional study | Metabolically healthy obese subjects | 12 months | ↑ | ↓ resistin, ↓ waist circumference, ↓ physical activity | [141] |
Gioxari | 2022 | 11 | Pilot uncontrolled intervention trial | Overweight/obese men and women | N/A | ↑ | ↑ body fat, ↑ waist circumference, ↑ leptin levels, | [137] |
Sood | 2022 | 65 | Cross-sectional | Overweight and obese subjects | N/A | ↑ | ↑ insulin, ↓ NF-κB, ↑ adipsin | [140] |
de Luis | 2023 | 133 | Single-group, pre–post intervention design | General population | 3–9 months | ↑ | ↑ serum lipid profile | [135] |
Scoditti | 2023 | N/A | Preclinical study | Human Simpson–Golabi–Behmel syndrome (SGBS) adipocytes and murine 3T3-L1 adipocytes | N/A | ↑ | ↑ PPARγ expression and activity, ↓ JNK-mediated suppression, ↓ leptin-to-adiponectin ratio | [132] |
4.3. The DASH Diet
4.4. Vegetarian Diet
Author | Year | n | Study Design | Population | Duration | Adiponectin | Other Outcomes | Ref. |
---|---|---|---|---|---|---|---|---|
Kahleova | 2011 | 72 | RCT | Patients with type 2 diabetes | 24 weeks | ↑ | ↑ insulin sensitivity, ↑ oxidative stress markers, ↓ leptin, ↓ visceral fat | [152] |
Ganie | 2019 | 464 | Observational case–control study | Women with PCOS | N/A | ↓ | ↑ proinflammatory markers, ↓ anti-inflammatory markers | [151] |
Baden | 2019 | 831 | Cross-sectional | South Asians in USA | N/A | ↑ | ↓ glycated hemoglobin | [154] |
Dinu | 2020 | 118 | RCT, crossover | General population (Clinically healthy subjects) | 3 months | ↑ | ↓ leptin, ↑ anthropometric parameters | [153] |
Menzel | 2020 | 72 | Cross-sectional | Vegans vs. omnivores | N/A | = | Variation in inflammatory biomarkers | [147] |
Vučić Lovrenčić | 2020 | 76 | Case–control | Healthy, non-obese adults | N/A | ↑ (females) | ↑ beta-cell function in vegetarians, = in men | [145] |
Ambroszkiewicz | 2021 | 105 | Cross-sectional | Prepubertal children | N/A | ↑ | leptin ratio, ↑ omentin- leptin ratio | [149] |
Lederer | 2022 | 53 | RCT | Healthy women | 4 weeks | ↑ | [150] | |
Kharaty | 2023 | 1986 | Cross-sectional | Middle age vs. elderly adults | N/A | ↑ | ↓ CRP, ↓ IL-6, ↓ WBC, ↓ neutrophils, ↓ monocytes, ↓ leptin | [146] |
García-Maldonado | 2023 | 90 | Cross-sectional | Vegetarians vs. non-vegetarians | N/A | = | [148] |
4.5. Ketogenic Diet
4.6. Specific Factors Affecting Adiponectin Levels
4.6.1. Effects of Omega-3 Fatty Acids, Probiotics, and Alcohol on Adiponectin Levels in Preclinical Studies
Author | Year | n | Population | Duration | Treatment | Adiponectin | Other Outcomes | Ref. |
---|---|---|---|---|---|---|---|---|
Kim | 2012 | 7–8 mice per group | Rats | 13 weeks | Lactobacillus rhamnosus GG (LGG) | ↑ | ↑ insulin sensitivity, ↓ adiposity, ↑ AMPK activation, ↑ fatty acid oxidation in liver and muscle, ↓ gluconeogenesis in liver, ↑ GLUT4 expression in muscle | [167] |
Thomas | 2020 | 40 | Rats | 16 weeks | ω-3-FA | ↑ | ↓ obesity markers, ↓ inflammation, ↑ gut health | [164] |
Refaat | 2022 | 40 | Rats with metabolic dysfunction-associated fatty liver disease (MAFLD) | 4 weeks | ω-3-FA and/or vitamin D3 | ↑ (Partial) | ↑ metabolic profile | [165] |
Younes | 2022 | N/A | 3T3-L1 adipocytes | N/A | DHA | ↑ | ↓ proinflammatory markers (IL-6, MCP-1) and leptin | [166] |
Tang | 2023 | N/A | Mice fed a high-fat diet | 12 weeks | L. acidophilus NX2-6 | ↑ | Improved lipid profile, ↓ fasting blood glucose levels, ↑ insulin sensitivity, ↑ fatty acid oxidation, ↓ de novo lipogenesis, ↑ insulin signaling, ↓ gluconeogenesis, ↓ proinflammatory cytokines, ↑ glycolysis and gluconeogenesis, ↑ fat browning, ↑ mitochondrial biogenesis, ↑ energy expenditure | [169] |
Kwon | 2024 | 24 | Adult Wistar rats | N/A | Moderate ethanol exposure | = | ↓ CRP levels, trends towards decreased HMGB-1, TNF-a, and 8-oxo-dG levels; upregulated Sod gene expression in colon | [170] |
Su | 2024 | 55 | Male C57BL/6J mice | 11 weeks | Lactobacillus paracasei JY062 | ↑ | ↓ TC, TG, LDL-C, leptin, insulin, and FFA; ↑ HDL-C and GLP-1; improved gut microbiota balance | [168] |
4.6.2. Effects of Omega-3 Fatty Acids, Probiotics, and Alcohol on Adiponectin Levels in Human Studies
Author | Year | n | Study Design | Population | Duration | Treatment | Adiponectin | Other Outcomes | Ref. |
---|---|---|---|---|---|---|---|---|---|
Pischon | 2005 | 532 | Cross-sectional | Male participants of HPFS | N/A | Dietary factors | ↑ Alcohol intake | [134] | |
Kadooka | 2010 | 87 | RCT | Adults | 12 weeks | Lactobacillus gasseri SBT2055 | ↑ | ↓ abdominal fat, ↓ BMI, ↓ waist, ↓ hip circumference | [177] |
Torres-Castillo | 2018 | 170 | Cross-sectional | Individuals with a BMI ≥ 18.5 kg/m2 | N/A | Dietary ω-6:ω-3 FA ratio | ↓ | ↑ excessive adiposity, ↑ waist circumference, ↓ metabolic profile (insulin and HOMA-IR) | [175] |
Fabian | 2021 | 46 | RCT | Peri/postmenopausal women at increased risk for breast cancer | 6–12 months | ω-3-FA (+ weight loss) | ↑ | ↓ body weight, ↓ leptin, ↓ proinflammatory markers | [172] |
Pauls | 2021 | 30 | RCT | Women with obesity | 4 weeks | ω-3-FA | ↑ | = inflammatory markers, altered monocyte bioenergetics | [174] |
Rausch | 2021 | 32 | RCT | Older adults with obesity | 8 weeks | EPA+DHA | = | ↓ reduction in leptin-to-adiponectin ratio; associations with IL-1β and TNF-α | [173] |
Musazadeh | 2022 | 46 | RCT | NAFLD patients | 12 weeks | PUFA | ↑ | ↓ BMI, ↓ waist circumference, ↓ triglycerides, ↓ TC, ↓ LDL-c,↓ ALT | [171] |
Zhang | 2023 | 86 | RCT | Diabetic hemodialysis patients | 12 weeks | L. acidophilus, L. casei, Bifidobacterium | ↓ | ↑ serum ghrelin, ↑ nutrient intake, ↓ serum creatinine, ↓ fasting blood glucose, ↓ HOMA-IR, ↓ inflammatory markers | [176] |
4.6.3. Summary of Reviews on Adiponectin and Various Factors
4.7. How Diet and Exercise Affect Adiponectin Levels
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Zwick, R.K.; Guerrero-Juarez, C.F.; Horsley, V.; Plikus, M.V. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab. 2018, 27, 68–83. [Google Scholar]
- Rosen, E.D.; Spiegelman, B.M. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006, 444, 847–853. [Google Scholar] [CrossRef] [PubMed]
- Chait, A.; den Hartigh, L.J. Adipose Tissue Distribution, Inflammation and Its Metabolic Consequences, Including Diabetes and Cardiovascular Disease. Front. Cardiovasc. Med. 2020, 7, 22. [Google Scholar]
- Nguyen, T.M.D. Adiponectin: Role in Physiology and Pathophysiology. Int. J. Prev. Med. 2020, 11, 136. [Google Scholar] [PubMed]
- Moseti, D.; Regassa, A.; Kim, W.K. Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules. Int. J. Mol. Sci. 2016, 17, 124. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Shou, P.; Zheng, C.; Jiang, M.; Cao, G.; Yang, Q.; Cao, J.; Xie, N.; Velletri, T.; Zhang, X.; et al. Fate decision of mesenchymal stem cells: Adipocytes or osteoblasts? Cell Death Differ. 2016, 23, 1128–1139. [Google Scholar] [CrossRef] [PubMed]
- Lefterova, M.I.; Lazar, M.A. New developments in adipogenesis. Trends Endocrinol. Metab. 2009, 20, 107–114. [Google Scholar] [CrossRef]
- Lee, J.E.; Schmidt, H.; Lai, B.; Ge, K. Transcriptional and Epigenomic Regulation of Adipogenesis. Mol. Cell Biol. 2019, 39, e00601-18. [Google Scholar] [CrossRef] [PubMed]
- Jakab, J.; Miskic, B.; Miksic, S.; Juranic, B.; Cosic, V.; Schwarz, D.; Vcev, A. Adipogenesis as a Potential Anti-Obesity Target: A Review of Pharmacological Treatment and Natural Products. Diabetes Metab. Syndr. Obes. 2021, 14, 67–83. [Google Scholar] [CrossRef]
- Gregoire, F.M.; Smas, C.M.; Sul, H.S. Understanding adipocyte differentiation. Physiol. Rev. 1998, 78, 783–809. [Google Scholar] [CrossRef]
- Corvera, S.; Solivan-Rivera, J.; Yang Loureiro, Z. Angiogenesis in adipose tissue and obesity. Angiogenesis 2022, 25, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Rudnicki, M.; Abdifarkosh, G.; Nwadozi, E.; Ramos, S.V.; Makki, A.; Sepa-Kishi, D.M.; Ceddia, R.B.; Perry, C.G.; Roudier, E.; Haas, T.L. Endothelial-specific FoxO1 depletion prevents obesity-related disorders by increasing vascular metabolism and growth. Elife 2018, 7, e39780. [Google Scholar] [CrossRef] [PubMed]
- Nugroho, D.B.; Ikeda, K.; Kajimoto, K.; Hirata, K.I.; Emoto, N. Activation of neuregulin-4 in adipocytes improves metabolic health by enhancing adipose tissue angiogenesis. Biochem. Biophys. Res. Commun. 2018, 504, 427–433. [Google Scholar] [CrossRef]
- Church, C.; Horowitz, M.; Rodeheffer, M. WAT is a functional adipocyte? Adipocyte 2012, 1, 38–45. [Google Scholar] [CrossRef]
- Sanchez-Gurmaches, J.; Hung, C.M.; Guertin, D.A. Emerging Complexities in Adipocyte Origins and Identity. Trends Cell Biol. 2016, 26, 313–326. [Google Scholar] [CrossRef]
- Karastergiou, K.; Fried, S.K. Cellular Mechanisms Driving Sex Differences in Adipose Tissue Biology and Body Shape in Humans and Mouse Models. Adv. Exp. Med. Biol. 2017, 1043, 29–51. [Google Scholar] [CrossRef] [PubMed]
- Nedergaard, J.; Bengtsson, T.; Cannon, B. Unexpected evidence for active brown adipose tissue in adult humans. Am. J. Physiol. Endocrinol. Metab. 2007, 293, E444–E452. [Google Scholar] [CrossRef]
- Cannon, B.; Nedergaard, J. Brown adipose tissue: Function and physiological significance. Physiol. Rev. 2004, 84, 277–359. [Google Scholar] [CrossRef]
- Townsend, K.; Tseng, Y.H. Brown adipose tissue: Recent insights into development, metabolic function and therapeutic potential. Adipocyte 2012, 1, 13–24. [Google Scholar] [CrossRef]
- Wang, S.; Pan, M.H.; Hung, W.L.; Tung, Y.C.; Ho, C.T. Correction: From white to beige adipocytes: Therapeutic potential of dietary molecules against obesity and their molecular mechanisms. Food Funct. 2019, 10, 1767. [Google Scholar] [CrossRef]
- Mika, A.; Macaluso, F.; Barone, R.; Di Felice, V.; Sledzinski, T. Effect of Exercise on Fatty Acid Metabolism and Adipokine Secretion in Adipose Tissue. Front. Physiol. 2019, 10, 26. [Google Scholar] [CrossRef]
- Kaisanlahti, A.; Glumoff, T. Browning of white fat: Agents and implications for beige adipose tissue to type 2 diabetes. J. Physiol. Biochem. 2019, 75, 1–10. [Google Scholar] [CrossRef]
- Cinti, S. Pink Adipocytes. Trends Endocrinol. Metab. 2018, 29, 651–666. [Google Scholar] [CrossRef]
- Cawthorn, W.P.; Scheller, E.L.; Parlee, S.D.; Pham, H.A.; Learman, B.S.; Redshaw, C.M.; Sulston, R.J.; Burr, A.A.; Das, A.K.; Simon, B.R.; et al. Expansion of Bone Marrow Adipose Tissue during Caloric Restriction Is Associated with Increased Circulating Glucocorticoids and Not with Hypoleptinemia. Endocrinology 2016, 157, 508–521. [Google Scholar] [CrossRef] [PubMed]
- Peirce, V.; Carobbio, S.; Vidal-Puig, A. The different shades of fat. Nature 2014, 510, 76–83. [Google Scholar] [CrossRef]
- Saponaro, C.; Gaggini, M.; Carli, F.; Gastaldelli, A. The Subtle Balance between Lipolysis and Lipogenesis: A Critical Point in Metabolic Homeostasis. Nutrients 2015, 7, 9453–9474. [Google Scholar] [CrossRef]
- Song, Z.; Xiaoli, A.M.; Yang, F. Regulation and Metabolic Significance of De Novo Lipogenesis in Adipose Tissues. Nutrients 2018, 10, 1383. [Google Scholar] [CrossRef] [PubMed]
- Merkel, M.; Eckel, R.H.; Goldberg, I.J. Lipoprotein lipase: Genetics, lipid uptake, and regulation. J. Lipid Res. 2002, 43, 1997–2006. [Google Scholar] [CrossRef] [PubMed]
- Merkel, M.; Loeffler, B.; Kluger, M.; Fabig, N.; Geppert, G.; Pennacchio, L.A.; Laatsch, A.; Heeren, J. Apolipoprotein AV accelerates plasma hydrolysis of triglyceride-rich lipoproteins by interaction with proteoglycan-bound lipoprotein lipase. J. Biol. Chem. 2005, 280, 21553–21560. [Google Scholar] [CrossRef]
- Endemann, G.; Stanton, L.W.; Madden, K.S.; Bryant, C.M.; White, R.T.; Protter, A.A. CD36 is a receptor for oxidized low density lipoprotein. J. Biol. Chem. 1993, 268, 11811–11816. [Google Scholar] [CrossRef]
- Wu, Q.; Ortegon, A.M.; Tsang, B.; Doege, H.; Feingold, K.R.; Stahl, A. FATP1 is an insulin-sensitive fatty acid transporter involved in diet-induced obesity. Mol. Cell Biol. 2006, 26, 3455–3467. [Google Scholar] [CrossRef]
- Chitraju, C.; Walther, T.C.; Farese, R.V., Jr. The triglyceride synthesis enzymes DGAT1 and DGAT2 have distinct and overlapping functions in adipocytes. J. Lipid Res. 2019, 60, 1112–1120. [Google Scholar] [CrossRef]
- Iizuka, K.; Takao, K.; Yabe, D. ChREBP-Mediated Regulation of Lipid Metabolism: Involvement of the Gut Microbiota, Liver, and Adipose Tissue. Front. Endocrinol. 2020, 11, 587189. [Google Scholar] [CrossRef]
- Kim, J.B.; Spiegelman, B.M. ADD1/SREBP1 promotes adipocyte differentiation and gene expression linked to fatty acid metabolism. Genes Dev. 1996, 10, 1096–1107. [Google Scholar] [CrossRef]
- Kugimiya, A.; Takagi, J.; Uesugi, M. Role of LXRs in control of lipogenesis. Tanpakushitsu Kakusan Koso 2007, 52, 1814–1815. [Google Scholar]
- Batchuluun, B.; Pinkosky, S.L.; Steinberg, G.R. Lipogenesis inhibitors: Therapeutic opportunities and challenges. Nat. Rev. Drug Discov. 2022, 21, 283–305. [Google Scholar] [CrossRef]
- Grabner, G.F.; Xie, H.; Schweiger, M.; Zechner, R. Lipolysis: Cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 2021, 3, 1445–1465. [Google Scholar] [CrossRef]
- Cohade, C.; Osman, M.; Pannu, H.K.; Wahl, R.L. Uptake in supraclavicular area fat (“USA-Fat”): Description on 18F-FDG PET/CT. J. Nucl. Med. 2003, 44, 170–176. [Google Scholar]
- Yeung, H.W.; Grewal, R.K.; Gonen, M.; Schoder, H.; Larson, S.M. Patterns of (18)F-FDG uptake in adipose tissue and muscle: A potential source of false-positives for PET. J. Nucl. Med. 2003, 44, 1789–1796. [Google Scholar]
- Saito, M.; Matsushita, M.; Yoneshiro, T.; Okamatsu-Ogura, Y. Brown Adipose Tissue, Diet-Induced Thermogenesis, and Thermogenic Food Ingredients: From Mice to Men. Front. Endocrinol. 2020, 11, 222. [Google Scholar] [CrossRef]
- Chen, K.Y.; Brychta, R.J.; Linderman, J.D.; Smith, S.; Courville, A.; Dieckmann, W.; Herscovitch, P.; Millo, C.M.; Remaley, A.; Lee, P.; et al. Brown fat activation mediates cold-induced thermogenesis in adult humans in response to a mild decrease in ambient temperature. J. Clin. Endocrinol. Metab. 2013, 98, E1218–E1223. [Google Scholar] [CrossRef]
- Yi, D.; Nguyen, H.P.; Sul, H.S. Epigenetic dynamics of the thermogenic gene program of adipocytes. Biochem. J. 2020, 477, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Tabuchi, C.; Sul, H.S. Corrigendum: Signaling Pathways Regulating Thermogenesis. Front. Endocrinol. 2021, 12, 698619. [Google Scholar] [CrossRef]
- Rosen, E.D.; Spiegelman, B.M. What we talk about when we talk about fat. Cell 2014, 156, 20–44. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, K.; Yamada, T. UCP1 Dependent and Independent Thermogenesis in Brown and Beige Adipocytes. Front. Endocrinol. 2020, 11, 498. [Google Scholar] [CrossRef] [PubMed]
- Gill, J.A.; La Merrill, M.A. An emerging role for epigenetic regulation of Pgc-1alpha expression in environmentally stimulated brown adipose thermogenesis. Environ. Epigenetics 2017, 3, dvx009. [Google Scholar] [CrossRef] [PubMed]
- Lettieri Barbato, D.; Baldelli, S.; Pagliei, B.; Aquilano, K.; Ciriolo, M.R. Caloric Restriction and the Nutrient-Sensing PGC-1alpha in Mitochondrial Homeostasis: New Perspectives in Neurodegeneration. Int. J. Cell Biol. 2012, 2012, 759583. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.; Daniel, K.W.; Robidoux, J.; Puigserver, P.; Medvedev, A.V.; Bai, X.; Floering, L.M.; Spiegelman, B.M.; Collins, S. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell Biol. 2004, 24, 3057–3067. [Google Scholar] [CrossRef] [PubMed]
- Albert, V.; Svensson, K.; Shimobayashi, M.; Colombi, M.; Munoz, S.; Jimenez, V.; Handschin, C.; Bosch, F.; Hall, M.N. mTORC2 sustains thermogenesis via Akt-induced glucose uptake and glycolysis in brown adipose tissue. EMBO Mol. Med. 2016, 8, 232–246. [Google Scholar] [CrossRef]
- Tang, Y.; Wallace, M.; Sanchez-Gurmaches, J.; Hsiao, W.Y.; Li, H.; Lee, P.L.; Vernia, S.; Metallo, C.M.; Guertin, D.A. Adipose tissue mTORC2 regulates ChREBP-driven de novo lipogenesis and hepatic glucose metabolism. Nat. Commun. 2016, 7, 11365. [Google Scholar] [CrossRef]
- Kawai, T.; Autieri, M.V.; Scalia, R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am. J. Physiol. Cell Physiol. 2021, 320, C375–C391. [Google Scholar] [CrossRef] [PubMed]
- Cottam, D.R.; Mattar, S.G.; Barinas-Mitchell, E.; Eid, G.; Kuller, L.; Kelley, D.E.; Schauer, P.R. The chronic inflammatory hypothesis for the morbidity associated with morbid obesity: Implications and effects of weight loss. Obes. Surg. 2004, 14, 589–600. [Google Scholar] [CrossRef] [PubMed]
- Zagotta, I.; Dimova, E.Y.; Debatin, K.M.; Wabitsch, M.; Kietzmann, T.; Fischer-Posovszky, P. Obesity and inflammation: Reduced cytokine expression due to resveratrol in a human in vitro model of inflamed adipose tissue. Front. Pharmacol. 2015, 6, 79. [Google Scholar] [CrossRef]
- Lettieri Barbato, D.; Aquilano, K.; Baldelli, S.; Cannata, S.M.; Bernardini, S.; Rotilio, G.; Ciriolo, M.R. Proline oxidase-adipose triglyceride lipase pathway restrains adipose cell death and tissue inflammation. Cell Death Differ. 2014, 21, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Gual, P.; Le Marchand-Brustel, Y.; Tanti, J.F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie 2005, 87, 99–109. [Google Scholar] [CrossRef] [PubMed]
- Martinon, F.; Burns, K.; Tschopp, J. The inflammasome: A molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol. Cell 2002, 10, 417–426. [Google Scholar] [CrossRef] [PubMed]
- Ballak, D.B.; Stienstra, R.; Tack, C.J.; Dinarello, C.A.; van Diepen, J.A. IL-1 family members in the pathogenesis and treatment of metabolic disease: Focus on adipose tissue inflammation and insulin resistance. Cytokine 2015, 75, 280–290. [Google Scholar] [CrossRef]
- van de Veerdonk, F.L.; Netea, M.G.; Dinarello, C.A.; Joosten, L.A. Inflammasome activation and IL-1beta and IL-18 processing during infection. Trends Immunol. 2011, 32, 110–116. [Google Scholar] [CrossRef]
- Wang, F.; Liu, Y.; Yang, W.; Yuan, J.; Mo, Z. Adiponectin inhibits NLRP3 inflammasome by modulating the AMPK-ROS pathway. Int. J. Clin. Exp. Pathol. 2018, 11, 3338–3347. [Google Scholar]
- Zhang, L.; Yuan, M.; Zhang, L.; Wu, B.; Sun, X. Adiponectin alleviates NLRP3-inflammasome-mediated pyroptosis of aortic endothelial cells by inhibiting FoxO4 in arteriosclerosis. Biochem. Biophys. Res. Commun. 2019, 514, 266–272. [Google Scholar] [CrossRef]
- Fu, S.; Liu, L.; Han, L.; Yu, Y. Leptin promotes IL-18 secretion by activating the NLRP3 inflammasome in RAW 264.7 cells. Mol. Med. Rep. 2017, 16, 9770–9776. [Google Scholar] [CrossRef]
- Wolf, Y.; Boura-Halfon, S.; Cortese, N.; Haimon, Z.; Sar Shalom, H.; Kuperman, Y.; Kalchenko, V.; Brandis, A.; David, E.; Segal-Hayoun, Y.; et al. Brown-adipose-tissue macrophages control tissue innervation and homeostatic energy expenditure. Nat. Immunol. 2017, 18, 665–674. [Google Scholar] [CrossRef]
- Kotzbeck, P.; Giordano, A.; Mondini, E.; Murano, I.; Severi, I.; Venema, W.; Cecchini, M.P.; Kershaw, E.E.; Barbatelli, G.; Haemmerle, G.; et al. Brown adipose tissue whitening leads to brown adipocyte death and adipose tissue inflammation. J. Lipid Res. 2018, 59, 784–794. [Google Scholar] [CrossRef]
- Garcia, M.D.C.; Pazos, P.; Lima, L.; Dieguez, C. Regulation of Energy Expenditure and Brown/Beige Thermogenic Activity by Interleukins: New Roles for Old Actors. Int. J. Mol. Sci. 2018, 19, 2569. [Google Scholar] [CrossRef]
- Fang, H.; Judd, R.L. Adiponectin Regulation and Function. Compr. Physiol. 2018, 8, 1031–1063. [Google Scholar] [CrossRef]
- Brochu-Gaudreau, K.; Rehfeldt, C.; Blouin, R.; Bordignon, V.; Murphy, B.; Palin, M. Adiponectin action from head to toe. Endocrine 2010, 37, 11–32. [Google Scholar] [CrossRef]
- Hui, X.; Gu, P.; Zhang, J.; Nie, T.; Pan, Y.; Wu, D.; Feng, T.; Zhong, C.; Wang, Y.; Lam, K.; et al. Adiponectin Enhances Cold-Induced Browning of Subcutaneous Adipose Tissue via Promoting M2 Macrophage Proliferation. Cell Metab. 2015, 22, 279–290. [Google Scholar] [CrossRef] [PubMed]
- Khoramipour, K.; Chamari, K.; Hekmatikar, A.A.; Ziyaiyan, A.; Taherkhani, S.; Elguindy, N.M.; Bragazzi, N.L. Adiponectin: Structure, Physiological Functions, Role in Diseases, and Effects of Nutrition. Nutrients 2021, 13, 1180. [Google Scholar] [CrossRef] [PubMed]
- Schraw, T.; Wang, Z.; Halberg, N.; Hawkins, M.; Scherer, P. Plasma adiponectin complexes have distinct biochemical characteristics. Endocrinology 2008, 149, 2270–2282. [Google Scholar] [CrossRef] [PubMed]
- Khalafi, M.; Sakhaei, M.H.; Kheradmand, S.; Symonds, M.E.; Rosenkranz, S.K. The impact of exercise and dietary interventions on circulating leptin and adiponectin in individuals who are overweight and those with obesity: A systematic review and meta-analysis. Adv. Nutr. 2023, 14, 128–146. [Google Scholar] [CrossRef]
- Holland, W.; Miller, R.; Wang, Z.; Sun, K.; Barth, B.; Bui, H.; Davis, K.; Bikman, B.; Halberg, N.; Rutkowski, J.; et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 2011, 17, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Gamberi, T.; Magherini, F.; Modesti, A.; Fiaschi, T. Adiponectin Signaling Pathways in Liver Diseases. Biomedicines 2018, 6, 52. [Google Scholar] [CrossRef] [PubMed]
- Esmaili, S.; Hemmati, M.; Karamian, M. Physiological role of adiponectin in different tissues:a review. Arch. Physiol. Biochem. 2020, 126, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Saxena, N.; Lin, S.; Xu, A.; Srinivasan, S.; Anania, F. The roles of leptin and adiponectin: A novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. Am. J. Pathol. 2005, 166, 1655–1669. [Google Scholar] [PubMed]
- Silva, T.; Colombo, G.; Schiavon, L. Adiponectin: A multitasking player in the field of liver diseases. Diabetes Metab. 2014, 40, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Masaki, T.; Chiba, S.; Tatsukawa, H.; Yasuda, T.; Noguchi, H.; Seike, M.; Yoshimatsu, H. Adiponectin protects LPS-induced liver injury through modulation of TNF-α in KK-Ay obese mice. Hepatology 2004, 40, 177–184. [Google Scholar] [CrossRef]
- Sweiss, N.; Sharma, K. Adiponectin effects on the kidney. Best Pract. Res. Clin. Endocrinol. Metab. 2014, 28, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Zha, D.; Wu, X.; Gao, P. Adiponectin and Its Receptors in Diabetic Kidney Disease: Molecular Mechanisms and Clinical Potential. Endocrinology 2017, 158, 2022–2034. [Google Scholar] [CrossRef] [PubMed]
- Christou, G.; Kiortsis, D. The role of adiponectin in renal physiology and development of albuminuria. J. Endocrinol. 2014, 221, R49–R61. [Google Scholar] [CrossRef]
- Cheng, C.; Lian, W.; Chen, S.; Lai, P.; Li, H.; Lan, Y.; Cheng, W.; Lin, H. Protective Effects of Adiponectin against Renal Ischemia-Reperfusion Injury Via Prostacyclin-PPARα-Heme Oxygenase-1 Signaling Pathway. J. Cell. Physiol. 2012, 227, 239–249. [Google Scholar] [CrossRef]
- Ceddia, R.; Somwar, R.; Maida, A.; Fang, X.; Bikopoulos, G.; Sweeney, G. Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 2005, 48, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Palanivel, R.; Rai, E.; Park, M.; Gabor, T.; Scheid, M.; Xu, A.; Sweeney, G. Adiponectin Stimulates Autophagy and Reduces Oxidative Stress to Enhance Insulin Sensitivity during High-Fat Diet Feeding in Mice. Diabetes 2015, 64, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Qiao, L.; Kinney, B.; Yoo, H.; Lee, B.; Schaack, J.; Shao, J. Adiponectin Increases Skeletal Muscle Mitochondrial Biogenesis by Suppressing Mitogen-Activated Protein Kinase Phosphatase-1. Diabetes 2012, 61, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Krause, M.; Liu, Y.; Vu, V.; Chan, L.; Xu, A.; Riddell, M.; Sweeney, G.; Hawke, T. Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function]. Am. J. Physiol.-Cell Physiol. 2008, 295, C203–C212. [Google Scholar] [CrossRef] [PubMed]
- Vaiopoulos, A.G.; Marinou, K.; Christodoulides, C.; Koutsilieris, M. The role of adiponectin in human vascular physiology. Int. J. Cardiol. 2012, 155, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kwak, H.B. Role of adiponectin in metabolic and cardiovascular disease. J. Exerc. Rehabil. 2014, 54, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, J.; Li, R.; Lau, W.; Yuan, Y.; Liang, B.; Li, R.; Gao, E.; Koch, W.; Ma, X.; et al. AdipoRon, the first orally active adiponectin receptor activator, attenuates postischemic myocardial apoptosis through both AMPK-mediated and AMPK-independent signalings. Am. J. Physiol.-Endocrinol. Metab. 2015, 309, E275–E282. [Google Scholar] [CrossRef]
- Thundyil, J.; Pavlovski, D.; Sobey, C.; Arumugam, T. Adiponectin receptor signalling in the brain. Br. J. Pharmacol. 2012, 165, 313–327. [Google Scholar] [CrossRef]
- Wang, B.; Guo, H.; Li, X.; Yue, L.; Liu, H.; Zhao, L.; Bai, H.; Liu, X.; Wu, X.; Qu, Y. Adiponectin Attenuates Oxygen-Glucose Deprivation-Induced Mitochondrial Oxidative Injury and Apoptosis in Hippocampal HT22 Cells via the JAK2/STAT3 Pathway. Cell Transplant. 2018, 27, 1731–1743. [Google Scholar] [CrossRef]
- Deepa, S.; Zhou, L.; Ryu, J.; Wang, C.; Mao, X.; Li, C.; Zhang, N.; Musi, N.; DeFronzo, R.; Liu, F.; et al. APPL1 Mediates Adiponectin-Induced LKB1 Cytosolic Localization through the PP2A-PKCζ Signaling Pathway. Mol. Endocrinol. 2011, 25, 1773–1785. [Google Scholar] [CrossRef]
- Zhang, K.; Guo, Y.; Ge, Z.; Zhang, Z.; Da, Y.; Li, W.; Zhang, Z.; Xue, Z.; Li, Y.; Ren, Y.; et al. Adiponectin Suppresses T Helper 17 Cell Differentiation and Limits Autoimmune CNS Inflammation via the SIRT1/PPARγ/RORγt Pathway. Mol. Neurobiol. 2017, 54, 4908–4920. [Google Scholar] [CrossRef] [PubMed]
- Berner, H.S.; Lyngstadaas, S.P.; Spahr, A.; Monjo, M.; Thommesen, L.; Drevon, C.A.; Syversen, U.; Reseland, J.E. Adiponectin and its receptors are expressed in bone-forming cells. Bone 2004, 35, 842–849. [Google Scholar] [CrossRef] [PubMed]
- Kajimura, D.; Lee, H.; Riley, K.; Arteaga-Solis, E.; Ferron, M.; Zhou, B.; Clarke, C.; Hannun, Y.; DePinho, R.; Guo, E.; et al. Adiponectin Regulates Bone Mass via Opposite Central and Peripheral Mechanisms through FoxO1. Cell Metab. 2013, 17, 901–915. [Google Scholar] [CrossRef]
- Chen, G.; Huang, L.; Wu, X.; Liu, X.; Xu, Q.; Li, F.; Dai, M.; Zhang, B. Adiponectin inhibits osteoclastogenesis by suppressing NF-κB and p38 signaling pathways. Biochem. Biophys. Res. Commun. 2018, 503, 2075–2082. [Google Scholar] [CrossRef] [PubMed]
- Lenchik, L.; Register, T.; Hsu, F.; Lohman, K.; Nicklas, B.; Freedman, B.; Langefeld, C.; Carr, J.; Bowden, D. Adiponectin as a novel determinant of bone mineral density and visceral fat. Bone 2003, 33, 646–651. [Google Scholar] [CrossRef]
- Begum, M.; Choubey, M.; Tirumalasetty, M.B.; Arbee, S.; Mohib, M.M.; Wahiduzzaman, M.; Mamun, M.A.; Uddin, M.B.; Mohiuddin, M.S. Adiponectin: A Promising Target for the Treatment of Diabetes and Its Complications. Life 2023, 13, 2213. [Google Scholar] [CrossRef]
- Choi, H.; Doss, H.; Kim, K. Multifaceted Physiological Roles of Adiponectin in Inflammation and Diseases. Int. J. Mol. Sci. 2020, 21, 1219. [Google Scholar] [CrossRef]
- Pyrzak, B.; Ruminska, M.; Popko, K.; Demkow, U. Adiponectin As a Biomarker of the Metabolic Syndrome in Children and Adolescents. Eur. J. Med. Res. 2010, 15, 147–151. [Google Scholar] [CrossRef] [PubMed]
- Tacke, F.; Wüstefeld, T.; Horn, R.; Luedde, T.; Rao, A.; Manns, M.; Trautwein, C.; Brabant, G. High adiponectin in chronic liver disease and cholestasis suggests biliary route of adiponectin excretion in vivo. J. Hepatol. 2005, 42, 666–673. [Google Scholar] [CrossRef]
- Pagano, C.; Soardo, G.; Esporito, W.; Fallo, F.; Basan, L.; Donnini, D.; Federspil, G.; Sechi, L.; Vettor, R. Plasma adiponectin is decreased in nonalcoholic fatty liver disease. Eur. J. Endocrinol. 2005, 152, 113–118. [Google Scholar] [CrossRef]
- Nigro, E.; Scudiero, O.; Monaco, M.L.; Palmieri, A.; Mazzarella, G.; Costagliola, C.; Bianco, A.; Daniele, A. New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases. Biomed. Res. Int. 2014, 2014, 658913. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.; Prins, J.; Venkatesh, B. Clinical review: Adiponectin biology and its role in inflammation and critical illness. Crit. Care 2011, 15, 221. [Google Scholar] [CrossRef] [PubMed]
- Mantzoros, C.; Petridou, E.; Dessypris, N.; Chavelas, C.; Dalamaga, M.; Alexe, D.; Papadiamantis, Y.; Markopoulos, C.; Spanos, E.; Chrousos, G.; et al. Adiponectin and breast cancer risk. J. Clin. Endocrinol. Metab. 2004, 89, 1102–1107. [Google Scholar] [CrossRef] [PubMed]
- Miyoshi, Y.; Funahashi, T.; Kihara, S.; Taguchi, T.; Tamaki, Y.; Matsuzawa, Y.; Noguchi, S. Association of serum adiponectin levels with breast cancer risk. Clin. Cancer Res. 2003, 9, 5699–5704. [Google Scholar] [PubMed]
- Wei, E.; Giovannucci, E.; Fuchs, C.; Willett, W.; Mantzoros, C. Low plasma adiponectin levels and risk of colorectal cancer in men: A prospective study. JNCI-J. Natl. Cancer Inst. 2005, 97, 1688–1694. [Google Scholar] [CrossRef] [PubMed]
- Aleksandrova, K.; Boeing, H.; Jenab, M.; Bueno-de-Mesquita, H.; Jansen, E.; van Duijnhoven, F.; Fedirko, V.; Rinaldi, S.; Romieu, I.; Riboli, E.; et al. Total and high-molecular weight adiponectin and risk of colorectal cancer: The European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis 2012, 33, 1211–1218. [Google Scholar] [CrossRef]
- Siasos, G.; Tousoulis, D.; Kollia, C.; Oikonomou, E.; Siasou, Z.; Stefanadis, C.; Papavassiliou, A.G. Adiponectin and Cardiovascular Disease: Mechanisms and New Therapeutic Approaches. Curr. Med. Chem. 2012, 19, 1193–1209. [Google Scholar] [CrossRef] [PubMed]
- Antoniades, C.; Antonopoulos, A.; Tousoulis, D.; Stefanadis, C. Adiponectin: From obesity to cardiovascular disease. Obes. Rev. 2009, 10, 269–279. [Google Scholar] [CrossRef] [PubMed]
- Hui, X.; Lam, K.; Vanhoutte, P.; Xu, A. Adiponectin and cardiovascular health: An update. Br. J. Pharmacol. 2012, 165, 574–590. [Google Scholar] [CrossRef]
- Ouchi, N.; Shibata, R.; Walsh, K. Cardioprotection by adiponectin. Trends Cardiovasc. Med. 2006, 16, 141–146. [Google Scholar] [CrossRef]
- Ruan, H.; Dong, L. Adiponectin signaling and function in insulin target tissues. J. Mol. Cell Biol. 2016, 8, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Achari, A.; Jain, S. Adiponectin, a Therapeutic Target for Obesity, Diabetes, and Endothelial Dysfunction. Int. J. Mol. Sci. 2017, 18, 1321. [Google Scholar] [CrossRef] [PubMed]
- Stumvoll, M.; Tschritter, O.; Fritsche, A.; Staiger, H.; Renn, W.; Weisser, M.; Machicao, F.; Häring, H. Association of the T-G polymorphism in adiponectin (exon 2) with obesity and insulin sensitivity: Interaction with family history of type 2 diabetes. Diabetes 2002, 51, 37–41. [Google Scholar] [CrossRef]
- Hotta, K.; Funahashi, T.; Bodkin, N.; Ortmeyer, H.; Arita, Y.; Hansen, B.; Matsuzawa, Y. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes 2001, 50, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shin, H.; Ding, E.; van Dam, R. Adiponectin Levels and Risk of Type 2 Diabetes A Systematic Review and Meta-analysis. JAMA-J. Am. Med. Assoc. 2009, 302, 179–188. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Huenchullán, S.; Fox, S.; Tam, C.; Maharjan, B.; Olaya-Agudo, L.; Ehrenfeld, P.; Williams, P.; Mclennan, S.; Twigg, S. Constant-moderate versus high-intensity interval training on heart adiponectin levels in high-fat fed mice: A preventive and treatment approach. Arch. Physiol. Biochem. 2023, 129, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Waragai, M.; Adame, A.; Trinh, I.; Sekiyama, K.; Takamatsu, Y.; Une, K.; Masliah, E.; Hashimoto, M. Possible Involvement of Adiponectin, the Anti-Diabetes Molecule, in the Pathogenesis of Alzheimer’s Disease. J. Alzheimers Dis. 2016, 52, 1453–1459. [Google Scholar] [CrossRef] [PubMed]
- Ng, R.; Cheng, O.; Jian, M.; Kwan, J.; Ho, P.; Cheng, K.; Yeung, P.; Zhou, L.; Hoo, R.; Chung, S.; et al. Chronic adiponectin deficiency leads to Alzheimer’s disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol. Neurodegener. 2016, 11, 71. [Google Scholar] [CrossRef]
- Yu, Z.; Li, W.; Hou, D.; Zhou, L.; Deng, Y.; Tian, M.; Feng, X. Relationship between Adiponectin Gene Polymorphisms and Late-Onset Alzheimer’s Disease. PLoS ONE 2015, 10, e0125186. [Google Scholar] [CrossRef]
- Izadi, V.; Azadbakht, L. Specific dietary patterns and concentrations of adiponectin. J. Res. Med. Sci. 2015, 20, 178–184. [Google Scholar] [PubMed] [PubMed Central]
- Li, G.; Zhong, L.; Han, L.; Wang, Y.; Li, B.; Wang, D.; Zhao, Y.; Li, Y.; Zhang, Q.; Qi, L.; et al. Genetic variations in adiponectin levels and dietary patterns on metabolic health among children with normal weight versus obesity: The BCAMS study. Int. J. Obes. 2022, 46, 325–332. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sánchez-Rosales, A.I.; Guadarrama-López, A.L.; Gaona-Valle, L.S.; Martínez-Carrillo, B.E.; Valdés-Ramos, R. The Effect of Dietary Patterns on Inflammatory Biomarkers in Adults with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2022, 14, 4577. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yannakoulia, M.; Yiannakouris, N.; Melistas, L.; Kontogianni, M.D.; Malagaris, I.; Mantzoros, C.S. A dietary pattern characterized by high consumption of whole-grain cereals and low-fat dairy products and low consumption of refined cereals is positively associated with plasma adiponectin levels in healthy women. Metabolism 2008, 57, 824–830. [Google Scholar] [CrossRef] [PubMed]
- Janiszewska, J.; Ostrowska, J.; Szostak-Węgierek, D. The influence of nutrition on adiponectin—A narrative review. Nutrients 2021, 13, 1394. [Google Scholar] [CrossRef] [PubMed]
- Salehi-Abargouei, A.; Izadi, V.; Azadbakht, L. The effect of low calorie diet on adiponectin concentration: A systematic review and meta-analysis. Horm. Metab. Res. 2015, 47, 549–555. [Google Scholar] [CrossRef] [PubMed]
- Bouchonville, M.; Armamento-Villareal, R.; Shah, K.; Napoli, N.; Sinacore, D.R.; Qualls, C.; Villareal, D.T. Weight loss, exercise or both and cardiometabolic risk factors in obese older adults: Results of a randomized controlled trial. Int. J. Obes. 2014, 38, 423–431. [Google Scholar] [CrossRef]
- Foula, W.H.; Emara, R.H.; Eldeeb, M.K.; Mokhtar, S.A.; El-Sahn, F.A. Effect of a weight loss program on serum adiponectin and insulin resistance among overweight and obese premenopausal females. J. Egypt. Public Health Assoc. 2020, 95, 32. [Google Scholar] [CrossRef]
- Acharya, S.D.; Brooks, M.M.; Evans, R.W.; Linkov, F.; Burke, L.E. Weight loss is more important than the diet type in improving adiponectin levels among overweight/obese adults. J. Am. Coll. Nutr. 2013, 32, 264–271. [Google Scholar] [CrossRef] [PubMed]
- Sureda, A.; Bibiloni, M.D.M.; Julibert, A.; Bouzas, C.; Argelich, E.; Llompart, I.; Pons, A.; Tur, J.A. Adherence to the Mediterranean Diet and Inflammatory Markers. Nutrients 2018, 10, 62. [Google Scholar] [CrossRef]
- Bédard, A.; Tchernof, A.; Lamarche, B.; Corneau, L.; Dodin, S.; Lemieux, S. Effects of the traditional Mediterranean diet on adiponectin and leptin concentrations in men and premenopausal women: Do sex differences exist? Eur. J. Clin. Nutr. 2014, 68, 561–566. [Google Scholar] [CrossRef]
- Bozzetto, L.; Polito, R.; Nigro, E.; Prinster, A.; Della Pepa, G.; Costabile, G.; Vetrani, C.; Vitale, M.; Daniele, A.; Rivellese, A.A.; et al. Dietary influence on adiponectin in patients with type 2 diabetes. Eur. J. Clin. Investig. 2021, 51, e13548. [Google Scholar] [CrossRef] [PubMed]
- Scoditti, E.; Massaro, M.; Carluccio, M.A.; Pellegrino, M.; Wabitsch, M.; Calabriso, N.; Storelli, C.; De Caterina, R. Additive regulation of adiponectin expression by the mediterranean diet olive oil components oleic Acid and hydroxytyrosol in human adipocytes. PLoS ONE 2015, 10, e0128218. [Google Scholar] [CrossRef]
- de Luis, D.A.; Primo, D.; Izaola, O.; Lopez-Gomez, J. Interaction of the variant in the adiponectin gene rs3774261 with serum lipid profile and adiponectin levels after 9 months with a high monounsaturated fat hypocaloric diet with Mediterranean pattern. Eur. Rev. Med. Pharmacol. Sci. 2023, 27, 7597–7606. [Google Scholar] [PubMed]
- Pischon, T.; Girman, C.J.; Rifai, N.; Hotamisligil, G.S.; Rimm, E.B. Association between dietary factors and plasma adiponectin concentrations in men. Am. J. Clin. Nutr. 2005, 81, 780–786. [Google Scholar] [CrossRef] [PubMed]
- de Luis, D.A.; Primo, D.; Izaola, O.; Gómez, E.; Bachiller, R. Serum Lipid and Adiponectin Improvements after a Mediterranean Dietary Pattern in Non-G-Allele Carriers of the Variant rs3774261. Lifestyle Genom. 2020, 13, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Luisi, M.L.E.; Lucarini, L.; Biffi, B.; Rafanelli, E.; Pietramellara, G.; Durante, M.; Vidali, S.; Provensi, G.; Madiai, S.; Gheri, C.F.; et al. Effect of Mediterranean Diet Enriched in High Quality Extra Virgin Olive Oil on Oxidative Stress, Inflammation and Gut Microbiota in Obese and Normal Weight Adult Subjects. Front. Pharmacol. 2019, 10, 1366. [Google Scholar] [CrossRef]
- Gioxari, A.; Grammatikopoulou, M.G.; Katsarou, C.; Panagiotakos, D.B.; Toutouza, M.; Kavouras, S.A.; Sidossis, L.S.; Maraki, M.I. A Modified Mediterranean Diet Improves Fasting and Postprandial Glucoregulation in Adults with Overweight and Obesity: A Pilot Study. Int. J. Environ. Res. Public Health 2022, 19, 15347. [Google Scholar] [CrossRef] [PubMed]
- Gomez-Huelgas, R.; Ruiz-Nava, J.; Santamaria-Fernandez, S.; Vargas-Candela, A.; Alarcon-Martin, A.V.; Tinahones, F.J.; Bernal-Lopez, M.R. Impact of Intensive Lifestyle Modification on Levels of Adipokines and Inflammatory Biomarkers in Metabolically Healthy Obese Women. Mediat. Inflamm. 2019, 2019, 4165260. [Google Scholar] [CrossRef] [PubMed]
- Spadafranca, A.; Piuri, G.; Bulfoni, C.; Liguori, I.; Battezzati, A.; Bertoli, S.; Speciani, A.F.; Ferrazzi, E. Adherence to the Mediterranean Diet and Serum Adiponectin Levels in Pregnancy: Results from a Cohort Study in Normal Weight Caucasian Women. Nutrients 2018, 10, 928. [Google Scholar] [CrossRef]
- Sood, S.; Feehan, J.; Itsiopoulos, C.; Wilson, K.; Plebanski, M.; Scott, D.; Hebert, J.R.; Shivappa, N.; Mousa, A.; George, E.S.; et al. Higher Adherence to a Mediterranean Diet Is Associated with Improved Insulin Sensitivity and Selected Markers of Inflammation in Individuals Who Are Overweight and Obese without Diabetes. Nutrients 2022, 14, 4437. [Google Scholar] [CrossRef]
- Cobos-Palacios, L.; Ruiz-Moreno, M.I.; Vilches-Perez, A.; Vargas-Candela, A.; Muñoz-Úbeda, M.; Benítez Porres, J.; Navarro-Sanz, A.; Lopez-Carmona, M.D.; Sanz-Canovas, J.; Perez-Belmonte, L.M.; et al. Metabolically healthy obesity: Inflammatory biomarkers and adipokines in elderly population. PLoS ONE 2022, 17, e0265362. [Google Scholar] [CrossRef] [PubMed]
- Saneei, P.; Hashemipour, M.; Kelishadi, R.; Esmaillzadeh, A. The Dietary Approaches to Stop Hypertension (DASH) diet affects inflammation in childhood metabolic syndrome: A randomized cross-over clinical trial. Ann. Nutr. Metab. 2014, 64, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Soltani, S.; Chitsazi, M.J.; Salehi-Abargouei, A. The effect of dietary approaches to stop hypertension (DASH) on serum inflammatory markers: A systematic review and meta-analysis of randomized trials. Clin. Nutr. 2018, 37, 542–550. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Levin, S.; Barnard, N. Cardio-Metabolic Benefits of Plant-Based Diets. Nutrients 2017, 9, 848. [Google Scholar] [CrossRef] [PubMed]
- Vučić Lovrenčić, M.; Gerić, M.; Košuta, I.; Dragičević, M.; Garaj-Vrhovac, V.; Gajski, G. Sex-specific effects of vegetarian diet on adiponectin levels and insulin sensitivity in healthy non-obese individuals. Nutrition 2020, 79–80, 110862. [Google Scholar] [CrossRef] [PubMed]
- Kharaty, S.; Harrington, J.M.; Millar, S.R.; Perry, I.J.; Phillips, C.M. Plant-based dietary indices and biomarkers of chronic low-grade inflammation: A cross-sectional analysis of adults in Ireland. Eur. J. Nutr. 2023, 62, 3397–3410. [Google Scholar] [CrossRef] [PubMed]
- Menzel, J.; Jabakhanji, A.; Biemann, R.; Mai, K.; Abraham, K.; Weikert, C. Systematic review and meta-analysis of the associations of vegan and vegetarian diets with inflammatory biomarkers. Sci. Rep. 2020, 10, 21736. [Google Scholar] [CrossRef] [PubMed]
- García-Maldonado, E.; Zapatera, B.; Alcorta, A.; Vaquero, M.P. Metabolic and nutritional biomarkers in adults consuming lacto-ovo vegetarian, vegan and omnivorous diets in Spain. A cross-sectional study. Food Funct. 2023, 14, 1608–1616. [Google Scholar] [CrossRef] [PubMed]
- Ambroszkiewicz, J.; Gajewska, J.; Mazur, J.; Klemarczyk, W.; Rowicka, G.; Ołtarzewski, M.; Strucińska, M.; Chełchowska, M. Does a Vegetarian Diet Affect Levels Myokine Adipokine in Prepubertal Children? J. Clin. Med. 2021, 10, 3995. [Google Scholar] [CrossRef]
- Lederer, A.K.; Storz, M.A.; Huber, R.; Hannibal, L.; Neumann, E. Plasma Leptin and Adiponectin after a 4-Week Vegan Diet: A Randomized-Controlled Pilot Trial in Healthy Participants. Int. J. Environ. Res. Public Health 2022, 19, 11370. [Google Scholar] [CrossRef]
- Ganie, M.A.; Sahar, T.; Rashid, A.; Wani, I.A.; Nisar, S.; Sathyapalan, T.; Vishnubhatla, S.; Ramakrishnan, L.; Parvez, T.; Geer, I. Comparative Evaluation of Biomarkers of Inflammation among Indian Women with Polycystic Ovary Syndrome (PCOS) Consuming Vegetarian vs. Non-Vegetarian Diet. Front. Endocrinol. 2019, 10, 699. [Google Scholar] [CrossRef]
- Kahleova, H.; Matoulek, M.; Malinska, H.; Oliyarnik, O.; Kazdova, L.; Neskudla, T.; Skoch, A.; Hajek, M.; Hill, M.; Kahle, M.; et al. Vegetarian diet improves insulin resistance and oxidative stress markers more than conventional diet in subjects with Type 2 diabetes. Diabet. Med. 2011, 28, 549–559. [Google Scholar] [CrossRef] [PubMed]
- Dinu, M.; Colombini, B.; Pagliai, G.; Cesari, F.; Gori, A.; Giusti, B.; Marcucci, R.; Sofi, F. Effects of a dietary intervention with Mediterranean and vegetarian diets on hormones that influence energy balance: Results from the CARDIVEG study. Int. J. Food Sci. Nutr. 2020, 71, 362–369. [Google Scholar] [CrossRef]
- Baden, M.Y.; Satija, A.; Hu, F.B.; Huang, T. Change in Plant-Based Diet Quality Is Associated with Changes in Plasma Adiposity-Associated Biomarker Concentrations in Women. J. Nutr. 2019, 149, 676–686. [Google Scholar] [CrossRef] [PubMed]
- Daria Gołąbek, K.; Regulska-Ilow, B. Possible Nonneurological Health Benefits of Ketogenic Diet: Review of Scientific Reports over the Past Decade. J. Obes. 2022, 2022, 7531518. [Google Scholar] [CrossRef]
- Cipryan, L.; Dostal, T.; Plews, D.J.; Hofmann, P.; Laursen, P.B. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr. Res. 2021, 87, 22–30. [Google Scholar] [CrossRef]
- Widiatmaja, D.M.; Lutvyani, A.; Sari, D.R.; Kurniasari, H.; Meiliana, I.D.; Fasitasari, M.; Yamaoka, Y.; Rejeki, P.S. The effect of long-term ketogenic diet on serum adiponectin and insulin-like growth factor-1 levels in mice. J. Basic. Clin. Physiol. Pharmacol. 2021, 33, 611–618. [Google Scholar] [CrossRef] [PubMed]
- Chyra, M.; Roczniak, W.; Świętochowska, E.; Dudzińska, M.; Oświęcimska, J. The Effect of the Ketogenic Diet on Adiponectin, Omentin and Vaspin in Children with Drug-Resistant Epilepsy. Nutrients 2022, 14, 479. [Google Scholar] [CrossRef]
- Monda, V.; Polito, R.; Lovino, A.; Finaldi, A.; Valenzano, A.; Nigro, E.; Corso, G.; Sessa, F.; Asmundo, A.; Nunno, N.D.; et al. Short-Term Physiological Effects of a Very Low-Calorie Ketogenic Diet: Effects on Adiponectin Levels and Inflammatory States. Int. J. Mol. Sci. 2020, 21, 3228. [Google Scholar] [CrossRef]
- Mohorko, N.; Černelič-Bizjak, M.; Poklar-Vatovec, T.; Grom, G.; Kenig, S.; Petelin, A.; Jenko-Pražnikar, Z. Weight loss, improved physical performance, cognitive function, eating behavior, and metabolic profile in a 12-week ketogenic diet in obese adults. Nutr. Res. 2019, 62, 64–77. [Google Scholar] [CrossRef]
- Hu, T.; Yao, L.; Reynolds, K.; Whelton, P.K.; Niu, T.; Li, S.; He, J.; Bazzano, L.A. The Effects of a Low-Carbohydrate Diet vs. a Low-Fat Diet on Novel Cardiovascular Risk Factors: A Randomized Controlled Trial. Nutrients 2015, 7, 7978–7994. [Google Scholar] [CrossRef] [PubMed]
- Partsalaki, I.; Karvela, A.; Spiliotis, B.E. Metabolic impact of a ketogenic diet compared to a hypocaloric diet in obese children and adolescents. J. Pediatr. Endocrinol. Metab. 2012, 25, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Bertoli, S.; Neri, I.G.; Trentani, C.; Ferraris, C.; De Amicis, R.; Battezzati, A.; Veggiotti, P.; De Giorgis, V.; Tagliabue, A. Short-term effects of ketogenic diet on anthropometric parameters, body fat distribution, and inflammatory cytokine production in GLUT1 deficiency syndrome. Nutrition 2015, 31, 981–987. [Google Scholar] [CrossRef]
- Thomas, S.S.; Cha, Y.S.; Kim, K.A. Effect of vegetable oils with different fatty acid composition on high-fat diet-induced obesity and colon inflammation. Nutr. Res. Pract. 2020, 14, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Refaat, B.; Abdelghany, A.H.; Ahmad, J.; Abdalla, O.M.; Elshopakey, G.E.; Idris, S.; El-Boshy, M. Vitamin D3 enhances the effects of omega-3 oils against metabolic dysfunction-associated fatty liver disease in rat. Biofactors 2022, 48, 498–513. [Google Scholar] [CrossRef] [PubMed]
- Younes, N.B.; Mohamed, O.A.; Rizk, N.M. Docosahexaenoic Acid Counteracts the Hypoxic-Induced Inflammatory and Metabolic Alterations in 3T3-L1 Adipocytes. Nutrients 2022, 14, 4600. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.W.; Park, K.Y.; Kim, B.; Kim, E.; Hyun, C.K. Lactobacillus rhamnosus GG improves insulin sensitivity and reduces adiposity in high-fat diet-fed mice through enhancement of adiponectin production. Biochem. Biophys. Res. Commun. 2013, 431, 258–263. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Ren, J.; Zhang, J.; Zheng, J.; Zhang, Q.; Tian, Y.; Zhang, Y.; Jiang, Y.; Zhang, W. Lactobacillus paracasei JY062 Alleviates Glucolipid Metabolism Disorders via the Adipoinsular Axis and Gut Microbiota. Nutrients 2024, 16, 267. [Google Scholar] [CrossRef]
- Tang, C.; Zhao, H.; Kong, L.; Meng, F.; Zhou, L.; Lu, Z.; Lu, Y. Probiotic Yogurt Alleviates High-Fat Diet-Induced Lipid Accumulation and Insulin Resistance in Mice via the Adiponectin Pathway. J. Agric. Food Chem. 2023, 71, 1464–1476. [Google Scholar] [CrossRef]
- Kwon, A.J.; Morales, L.; Chatagnier, L.; Quigley, J.; Pascua, J.; Pinkowski, N.; Brasser, S.M.; Hong, M.Y. Effects of moderate ethanol exposure on risk factors for cardiovascular disease and colorectal cancer in adult Wistar rats. Alcohol 2024, 117, 55–63. [Google Scholar] [CrossRef]
- Musazadeh, V.; Dehghan, P.; Khoshbaten, M. Efficacy of omega-3-rich Camelina sativa on the metabolic and clinical markers in nonalcoholic fatty liver disease: A randomized, controlled trial. Eur. J. Gastroenterol. Hepatol. 2022, 34, 537–545. [Google Scholar] [CrossRef] [PubMed]
- Fabian, C.J.; Befort, C.A.; Phillips, T.A.; Nydegger, J.L.; Kreutzjans, A.L.; Powers, K.R.; Metheny, T.; Klemp, J.R.; Carlson, S.E.; Sullivan, D.K.; et al. Change in Blood and Benign Breast Biomarkers in Women Undergoing a Weight-Loss Intervention Randomized to High-Dose ω-3 Fatty Acids versus Placebo. Cancer Prev. Res. 2021, 14, 893–904. [Google Scholar] [CrossRef]
- Rausch, J.A.; Gillespie, S.; Orchard, T.; Tan, A.; McDaniel, J.C. Secondary data analysis investigating effects of marine omega-3 fatty acids on circulating levels of leptin and adiponectin in older adults. Prostaglandins Leukot. Essent. Fat. Acids. 2021, 170, 102302. [Google Scholar] [CrossRef]
- Pauls:, S.D.; Rodway, L.R.; Sidhu, K.K.; Winter, T.; Sidhu, N.; Aukema, H.M.; Zahradka, P.; Taylor, C.G. Oils Rich in α-Linolenic Acid or Docosahexaenoic Acid Have Distinct Effects on Plasma Oxylipin and Adiponectin Concentrations and on Monocyte Bioenergetics in Women with Obesity. J. Nutr. 2021, 151, 3053–3066. [Google Scholar] [CrossRef]
- Torres-Castillo, N.; Silva-Gómez, J.A.; Campos-Perez, W.; Barron-Cabrera, E.; Hernandez-Cañaveral, I.; Garcia-Cazarin, M.; Marquez-Sandoval, Y.; Gonzalez-Becerra, K.; Barron-Gallardo, C.; Martinez-Lopez, E. High Dietary ω-6:ω-3 PUFA Ratio Is Positively Associated with Excessive Adiposity and Waist Circumference. Obes. Facts 2018, 11, 344–353. [Google Scholar] [CrossRef] [PubMed Central]
- Zhang, Y.; Meng, X.; Ma, Z.; Sun, Z.; Wang, Z. Effects of Probiotic Supplementation on Nutrient Intake, Ghrelin, and Adiponectin Concentrations in Diabetic Hemodialysis Patients. Altern. Ther. Health Med. 2023, 29, 36–42. [Google Scholar]
- Kadooka, Y.; Sato, M.; Imaizumi, K.; Ogawa, A.; Ikuyama, K.; Akai, Y.; Okano, M.; Kagoshima, M.; Tsuchida, T. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 2010, 64, 636–643. [Google Scholar] [CrossRef]
- Nagao, K.; Yanagita, T. Functional Lipids in Metabolic Syndrome. J. Nutr. Sci. Vitaminol. 2015, 61, S159–S161. [Google Scholar] [CrossRef]
- Sepidarkish, M.; Rezamand, G.; Qorbani, M.; Heydari, H.; Estêvão, M.D.; Omran, D.; Morvaridzadeh, M.; Roffey, D.M.; Farsi, F.; Ebrahimi, S.; et al. Effect of omega-3 fatty acids supplementation on adipokines: A systematic review and meta-analysis of randomized controlled trials. Crit. Rev. Food Sci. Nutr. 2022, 62, 7561–7575. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, Q.; Liao, X.; Elbelt, U.; Weylandt, K.H. The effects of omega-3 fatty acids in type 2 diabetes: A systematic review and meta-analysis. Prostaglandins Leukot. Essent. Fat. Acids 2022, 182, 102456. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, F.; Feng, Q.; Ou, Y.; Zhang, J.; Wan, H.; Cao, H.; Ning, P. Comparison of the efficacy of fish oil and probiotic supplementation on glucose and lipid metabolism in patients with type 2 diabetes: A systematic review and network meta-analysis. Diabetol. Metab. Syndr. 2024, 16, 25. [Google Scholar] [CrossRef] [PubMed]
- Noormohammadi, M.; Ghorbani, Z.; Löber, U.; Mahdavi-Roshan, M.; Bartolomaeus, T.U.P.; Kazemi, A.; Shoaibinobarian, N.; Forslund, S.K. The effect of probiotic and synbiotic supplementation on appetite-regulating hormones and desire to eat: A systematic review and meta-analysis of clinical trials. Pharmacol. Res. 2023, 187, 106614. [Google Scholar] [CrossRef] [PubMed]
- Naseri, K.; Saadati, S.; Ghaemi, F.; Ashtary-Larky, D.; Asbaghi, O.; Sadeghi, A.; Afrisham, R.; de Courten, B. The effects of probiotic and synbiotic supplementation on inflammation, oxidative stress, and circulating adiponectin and leptin concentration in subjects with prediabetes and type 2 diabetes mellitus: A GRADE-assessed systematic review, meta-analysis, and meta-regression of randomized clinical trials. Eur. J. Nutr. 2023, 62, 543–561. [Google Scholar] [PubMed]
- Zaidi, H.; Byrkjeland, R.; Njerve, I.U.; Åkra, S.; Solheim, S.; Arnesen, H.; Seljeflot, I.; Opstad, T.B. Adiponectin in relation to exercise and physical performance in patients with type 2 diabetes and coronary artery disease. Adipocyte 2021, 10, 612–620. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Huenchullan, S.F.; Tam, C.S.; Ban, L.A.; Ehrenfeld-Slater, P.; Mclennan, S.V.; Twigg, S.M. Skeletal muscle adiponectin induction in obesity and exercise. Metab. Clin. Exp. 2020, 102, 154008. [Google Scholar] [CrossRef]
- Zeinabi, A.; Ghaedi, H.; Hosseini, S.A. Soluble Fiber Effect on Human Serum Leptin and Adiponectin: A Systematic Review and Dose-Response Meta-Analysis. Clin. Nutr. Res. 2023, 12, 320–335. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Tan, L.; Yan, W.; Yang, W.; Kamionka, A.; Lipowski, M.; Zhao, Z.; Zhao, G. Effect of exercise on inflammatory markers in postmenopausal women with overweight and obesity: A systematic review and meta-analysis. Exp. Gerontol. 2023, 183, 112310. [Google Scholar] [CrossRef] [PubMed]
- Memelink, R.G.; Njemini, R.; de Bos Kuil, M.J.J.; Wopereis, S.; de Vogel-van den Bosch, J.; Schoufour, J.D.; Tieland, M.; Weijs, P.J.M.; Bautmans, I. The effect of a combined lifestyle intervention with and without protein drink on inflammation in older adults with obesity and type 2 diabetes. Exp. Gerontol. 2024, 190, 112410. [Google Scholar] [CrossRef]
- Enríquez-Schmidt, J.; Mautner Molina, C.; Kalazich Rosales, M.; Muñoz, M.; Ruiz-Uribe, M.; Fuentes Leal, F.; Monrroy Uarac, M.; Cárcamo Ibaceta, C.; Fazakerley, D.J.; Larance, M.; et al. Moderate-intensity constant or high-intensity interval training? Metabolic effects on candidates to undergo bariatric surgery. Nutr. Metab. Cardiovasc. Dis. 2024, 34, 1681–1691. [Google Scholar] [CrossRef]
- Sasimontonkul, S.; Sirivarasai, J. The 40-min HIIT acutely induced bone formation which was likely through the increases in muscle derived interleukin 6 and adiponectin activation: The 16 weeks of HIIT intervention, longitudinal randomized controlled trial. Bone 2024, 184, 117105. [Google Scholar] [CrossRef]
- Silva, D.; Moreira, R.; Beltrão, M.; Sokhatska, O.; Montanha, T.; Pizarro, A.; Garcia-Larsen, V.; Villegas, R.; Delgado, L.; Moreira, P.; et al. What is the effect of a Mediterranean compared with a Fast Food meal on the exercise induced adipokine changes? A randomized cross-over clinical trial. PLoS ONE 2019, 14, e0215475. [Google Scholar] [CrossRef]
- Kraemer, R.R.; Aboudehen, K.S.; Carruth, A.K.; Durand, R.T.; Acevedo, E.O.; Hebert, E.P.; Johnson, L.G.; Castracane, V.D. Adiponectin responses to continuous and progressively intense intermittent exercise. Med. Sci. Sports Exerc. 2003, 35, 1320–1325. [Google Scholar] [CrossRef] [PubMed]
- Bouassida, A.; Chamari, K.; Zaouali, M.; Feki, Y.; Zbidi, A.; Tabka, Z. Review on leptin and adiponectin responses and adaptations to acute and chronic exercise. Br. J. Sports Med. 2010, 44, 620–630. [Google Scholar] [CrossRef] [PubMed]
- Keawtep, P.; Sungkarat, S.; Boripuntakul, S.; Sa-Nguanmoo, P.; Wichayanrat, W.; Chattipakorn, S.C.; Worakul, P. Effects of combined dietary intervention and physical-cognitive exercise on cognitive function and cardiometabolic health of postmenopausal women with obesity: A randomized controlled trial. Int. J. Behav. Nutr. Phys. Act. 2024, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Barroso, L.S.S.; Faria, M.H.S.; Souza-Gomes, A.F.; Barros, J.L.V.M.; Kakehasi, A.M.; Vieira, E.L.M.; Simões E Silva, A.C.; Nunes-Silva, A. Acute and Chronic Effects of Strength Training on Plasma Levels of Adipokines in Man. Int. J. Sports Med. 2023, 44, 751–758. [Google Scholar] [CrossRef] [PubMed]
- Makiel, K.; Suder, A.; Targosz, A.; Maciejczyk, M.; Haim, A. Exercise-Induced Alternations of Adiponectin, Interleukin-8 and Indicators of Carbohydrate Metabolism in Males with Metabolic Syndrome. Biomolecules 2023, 13, 852. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Yan, W.; Zhang, B.; Zhao, Z.; Lipowski, M.; Ossowski, Z. Comparative efficacy of different exercise types on inflammatory markers in women with overweight and obesity: A systematic review and network meta-analysis of randomized controlled trials. J. Sci. Med. Sport 2024, 27, 458–465. [Google Scholar] [CrossRef]
- Holmen, M.; Giskeødegård, G.F.; Moholdt, T. High-intensity exercise increases breast milk adiponectin concentrations: A randomised cross-over study. Front. Nutr. 2023, 10, 1275508. [Google Scholar] [CrossRef]
- Gao, K.; Su, Z.; Meng, J.; Yao, Y.; Li, L.; Su, Y.; Mohammad Rahimi, G.R. Effect of Exercise Training on Some Anti-Inflammatory Adipokines, High Sensitivity C-Reactive Protein, and Clinical Outcomes in Sedentary Adults with Metabolic Syndrome. Biol. Res. Nurs. 2024, 26, 125–138. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Y.; Fei, X.; Li, Y.; Li, Y.; Yan, X. Effects of Aerobic Exercise on Serum Adiponectin Concentrations in Children and Adolescents with Obesity: A Systematic Review and Meta-Analysis. Life 2023, 13, 1772. [Google Scholar] [CrossRef]
- Wang, X.; You, T.; Murphy, K.; Lyles, M.F.; Nicklas, B.J. Addition of Exercise Increases Plasma Adiponectin and Release from Adipose Tissue. Med. Sci. Sports Exerc. 2015, 47, 2450–2455. [Google Scholar] [CrossRef]
- Jurczewska, J.; Ostrowska, J.; Chełchowska, M.; Panczyk, M.; Rudnicka, E.; Kucharski, M.; Smolarczyk, R.; Szostak-Węgierek, D. Physical Activity, Rather Than Diet, Is Linked to Lower Insulin Resistance in PCOS Women—A Case-Control Study. Nutrients 2023, 15, 2111. [Google Scholar] [CrossRef] [PubMed]
- Al-Eisa, E.; Gabr, S.A.; Alghadir, A.H. Effects of supervised aerobic training on the levels of anti-Mullerian hormone and adiposity measures in women with normo-ovulatory and polycystic ovary syndrome. JPMA J. Pak. Med. Assoc. 2017, 67, 499–507. [Google Scholar] [PubMed]
- Franzoni, L.T.; da Motta, S.B.; Carvalho, G.; Costa, R.R.; Ahner, M.M.; Saffi, M.A.L.; Pereira, A.A.; Pereira, A.H.; da Silveira, A.D.; Stein, R. Pro- and Anti-inflammatory Biomarkers Responses after Aerobic Training in Heart Transplant Recipients: A Systematic Review and Meta-analysis. Curr. Cardiol. Rev. 2024. [Google Scholar] [CrossRef] [PubMed]
- Lara-Castro, C.; Luo, N.; Wallace, P.; Klein, R.L.; Garvey, W.T. Adiponectin multimeric complexes and the metabolic syndrome trait cluster. Diabetes 2006, 55, 249–259. [Google Scholar] [CrossRef] [PubMed]
- Lara-Castro, C.; Doud, E.C.; Tapia, P.C.; Munoz, A.J.; Fernandez, J.R.; Hunter, G.R.; Gower, B.A.; Garvey, W.T. Adiponectin multimers and metabolic syndrome traits: Relative adiponectin resistance in African Americans. Obesity 2008, 16, 2616–2623. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Hadley, J.T.; Ryu, J.; Dong, L.Q. Adiponectin and adiponectin signaling. In Cellular Endocrinology in Health and Disease; Dong, L.Q., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 245–262. [Google Scholar]
- Ye, R.; Wang, M.; Wang, Q.A.; Scherer, P.E. Adiponectin-mediated antilipotoxic effects in regenerating pancreatic islets. Endocrinology 2015, 156, 2019–2028. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kadowaki, T.; Yamauchi, T. Adiponectin and adiponectin receptors. Endocr. Rev. 2005, 26, 439–451. [Google Scholar] [CrossRef] [PubMed]
- Ouchi, N.; Parker, J.L.; Lugus, J.J.; Walsh, K. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 2011, 11, 85–97. [Google Scholar] [CrossRef]
- Ebrahimi-Mameghani, M.; Jamali, H.; Mahdavi, R.; Kakaei, F.; Abedi, R.; Kabir-Mamdooh, B. Conjugated linoleic acid improves glycemic response, lipid profile, and oxidative stress in obese patients with non-alcoholic fatty liver disease: A randomized controlled clinical trial. Croat. Med. J. 2016, 57, 331–342. [Google Scholar] [CrossRef]
Disease | Role of Adiponectin | Mechanisms of Action | References |
---|---|---|---|
Cardiovascular diseases | Inversely correlated with coronary heart disease risk; lower levels linked to hypertension and cardiomyopathy; elevated in heart failure | Enhances NO synthesis, attenuates endothelial adhesion molecules | [60,96,97] |
Diabetes and insulin resistance | Negatively correlated with type 2 diabetes prevalence | Improves insulin sensitivity and glucose tolerance, reduces TG in adipose tissue, activates PPAR-α receptor, AMPK cascade | [68] |
Metabolic syndrome | Low levels linked to increased risk of metabolic syndrome; inversely related to waist circumference, visceral fat, and triglycerides | Improves lipid metabolism, anti-inflammatory effects | [98] |
Chronic liver disease and NAFLD | Elevated in chronic liver disease; reduced in NAFLD; associated with liver inflammation and damage | Activates AMPK, reduces hepatic glucose production, enhances fatty acid oxidation | [99,100] |
Alzheimer’s disease | Lower levels may accelerate progression and cognitive decline; protective neuroprotective effects | Enhances insulin signaling, reduces amyloid-beta deposition and tau hyperphosphorylation | [101,102] |
Cancer | Lower levels associated with higher risk of breast, colorectal, and other cancers; influences cell proliferation and apoptosis | Suppresses cell proliferation, promotes apoptosis via AMPK and other pathways | [103,104,105,106] |
Author | Year | n | Study Design | Population | Duration | Adiponectin | Other Outcomes | Ref. |
---|---|---|---|---|---|---|---|---|
Partsalaki | 2012 | 58 | RCT | Obese children and adolescents | 6 months | ↑ | ↓ weight, ↓ fat mass, ↓ waist circumference, ↑ insulin | [162] |
Bertoli | 2015 | 10 | Longitudinal study | Children with GLUT1 deficiency syndrome | 12 weeks | = | ↓ insulin, ↓ HOMA-IR, ↑ QUICKI | [163] |
Hu, T | 2015 | 148 | RCT | Participants without T2D or CVD complications | 12 months | ↑ | ↓ intercellular adhesion molecule-1 (ICAM-1) | [161] |
Mohorko | 2019 | 35 | Uncontrolled intervention | General population—sedentary obese | 12 weeks | ↑ | ↓ insulin, ↓ leptin, ↑ NPY | [160] |
Monda, V | 2020 | 20 | RCT | General population—Obese subjects | 8 weeks | ↑ | ↓ weight loss, ↓ pro-inflammatory cytokines | [159] |
Cipryan | 2021 | 24 | Non-randomized, parallel design. | Healthy young individuals | 12 weeks | ↑ | ↑ leptin, ↑ body weight, ↑ fat mass | [156] |
Widiatmaja | 2021 | N/A | Preclinical study | Rats | Long-term | ↑ | [157] | |
Chyra | 2022 | 72 | Cross-sectional | Children with drug-resistant epilepsy | >3 months for keto group | ↑ | ↑ omentin-1, ↓ vaspin | [158] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baldelli, S.; Aiello, G.; Mansilla Di Martino, E.; Campaci, D.; Muthanna, F.M.S.; Lombardo, M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients 2024, 16, 2436. https://doi.org/10.3390/nu16152436
Baldelli S, Aiello G, Mansilla Di Martino E, Campaci D, Muthanna FMS, Lombardo M. The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients. 2024; 16(15):2436. https://doi.org/10.3390/nu16152436
Chicago/Turabian StyleBaldelli, Sara, Gilda Aiello, Eliana Mansilla Di Martino, Diego Campaci, Fares M. S. Muthanna, and Mauro Lombardo. 2024. "The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin" Nutrients 16, no. 15: 2436. https://doi.org/10.3390/nu16152436
APA StyleBaldelli, S., Aiello, G., Mansilla Di Martino, E., Campaci, D., Muthanna, F. M. S., & Lombardo, M. (2024). The Role of Adipose Tissue and Nutrition in the Regulation of Adiponectin. Nutrients, 16(15), 2436. https://doi.org/10.3390/nu16152436