Body Composition and Dietary Intake Profiles of Elite Iranian Swimmers and Water Polo Athletes
Abstract
:1. Introduction
2. Methods
2.1. Study Design
2.2. Participants
2.3. Body Composition and Anthropometric Measurements
2.4. Nutrient Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Santos, C.C.; Rama, L.M.; Marinho, D.A.; Barbosa, T.M.; Costa, M.J. Kinetic Analysis of Water Fitness Exercises: Contributions for Strength Development. Int. J. Environ. Res. Public Health 2019, 16, 3784. [Google Scholar] [CrossRef] [PubMed]
- Pyne, D.B.; Sharp, R.L. Physical and energy requirements of competitive swimming events. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Samson, M.; Monnet, T.; Bernard, A.; Lacouture, P.; David, L. Comparative study between fully tethered and free swimming at different paces of swimming in front crawl. Sports Biomech. 2019, 18, 571–586. [Google Scholar] [CrossRef] [PubMed]
- Santos, K.B.; Bento, P.C.; Pereira, G.; Rodacki, A.L. The Relationship Between Propulsive Force in Tethered Swimming and 200-m Front Crawl Performance. J. Strength Cond. Res. 2016, 30, 2500–2507. [Google Scholar] [CrossRef] [PubMed]
- Takagi, H.; Nakashima, M.; Sengoku, Y.; Tsunokawa, T.; Koga, D.; Narita, K.; Kudo, S.; Sanders, R.; Gonjo, T. How do swimmers control their front crawl swimming velocity? Current knowledge and gaps from hydrodynamic perspectives. Sports Biomech. 2023, 22, 1552–1571. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G.; Boyd, K.T.; Burke, L.M.; Koivisto, A. Nutrition for swimming. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Wasse, L.K.; King, J.A.; Stensel, D.J.; Sunderland, C. Effect of ambient temperature during acute aerobic exercise on short-term appetite, energy intake, and plasma acylated ghrelin in recreationally active males. Appl. Physiol. Nutr. Metab. 2013, 38, 905–909. [Google Scholar] [CrossRef] [PubMed]
- Kondrič, M.; Uljević, O.; Gabrilo, G.; Kontić, D.; Sekulić, D. General anthropometric and specific physical fitness profile of high-level junior water polo players. J. Hum. Kinet. 2012, 32, 157–165. [Google Scholar] [CrossRef] [PubMed]
- Sioutis, S.; Zygogiannis, K.; Papakonstantinou, M.E.; Zafeiris, I.; Soucacos, F.; Altsitzioglou, P.; Skouras, A.; Karamintzas, D.; Tsolakis, C.; Koulouvaris, P. The Correlation Between the Strength of the Shoulder and Trunk Muscular Systems in Elite Adolescent Water Polo Athletes. Cureus 2022, 14, e29775. [Google Scholar] [CrossRef]
- Cox, G.R.; Mujika, I.; van den Hoogenband, C.R. Nutritional recommendations for water polo. Int. J. Sport Nutr. Exerc. Metab. 2014, 24, 382–391. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. American College of Sports Medicine Joint Position Statement. Nutrition and Athletic Performance. Med. Sci. Sports Exerc. 2016, 48, 543–568. [Google Scholar] [CrossRef] [PubMed]
- Paschoal, V.C.; Amancio, O.M. Nutritional status of Brazilian elite swimmers. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 81–94. [Google Scholar] [CrossRef] [PubMed]
- Domínguez, R.; Jesús-Sánchez-Oliver, A.; Cuenca, E.; Jodra, P.; Fernandes da Silva, S.; Mata-Ordóñez, F. Nutritional needs in the professional practice of swimming: A review. J. Exerc. Nutrition Biochem. 2017, 21, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Lamb, D.R.; Rinehardt, K.F.; Bartels, R.L.; Sherman, W.M.; Snook, J.T. Dietary carbohydrate and intensity of interval swim training. Am. J. Clin. Nutr. 1990, 52, 1058–1063. [Google Scholar] [CrossRef]
- Burke, L.; Hawley, J.; Wong, S.; Jeukendrup, A. Carbohydrates for training and competition. J. Sports Sci. 2011, 29, 17–27. [Google Scholar] [CrossRef]
- Sagayama, H.; Mimura, K.; Toguchi, M.; Yasukata, J.; Tanaka, H.; Higaki, Y. Total energy expenditure in elite open-water swimmers. Appl. Physiol. Nutr. Metab. 2019, 44, 225–227. [Google Scholar] [CrossRef] [PubMed]
- InBody 720. The Precision Body Composition Analyzer, Instruction Manual, 1996–2008; Biospace Co. Ltd.: Seoul, Republic of Korea, 2008. [Google Scholar]
- González-Ravé, J.M.; Arija, A.; Clemente-Suarez, V. Seasonal changes in jump performance and body composition in women volleyball players. J. Strength Cond. Res. 2011, 25, 1492–1501. [Google Scholar] [CrossRef]
- Galán-Rioja, M.Á.; González-Mohíno, F.; Sanders, D.; Mellado, J.; González-Ravé, J.M. Effects of Body Weight vs. Lean Body Mass on Wingate Anaerobic Test Performance in Endurance Athletes. Int. J. Sports Med. 2020, 41, 545–551. [Google Scholar] [CrossRef]
- Gibson, A.L.; Holmes, J.C.; Desautels, R.L.; Edmonds, L.B.; Nuudi, L. Ability of new octapolar bioimpedance spectroscopy analyzers to predict 4-component-model percentage body fat in Hispanic, black, and white adults. Am. J. Clin. Nutr. 2008, 87, 332–338. [Google Scholar] [CrossRef]
- Esfahani, F.H.; Asghari, G.; Mirmiran, P.; Azizi, F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J. Epidemiol. 2010, 20, 150–158. [Google Scholar] [CrossRef]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive statistics for studies in sports medicine and exercise science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Lozovina, V.; Pavicić, L. Anthropometric changes in elite male water polo players: Survey in 1980 and 1995. Croat. Med. J. 2004, 45, 202–205. [Google Scholar] [PubMed]
- Avlonitou, E.; Ceorgiou, E.; Douskas, G.; Louizil, A. Estimation of Body Composition in Competitive Swimmers by Means of Three Different Techniques. Int. J. Sports Med. 1997, 18, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Dopsaj, M.; Zuoziene, I.J.; Milić, R.; Cherepov, E.; Erlikh, V.; Masiulis, N.; di Nino, A.; Vodičar, J. Body Composition in International Sprint Swimmers: Are There Any Relations with Performance? Int. J. Environ. Res. Public Health. 2020, 17, 9464. [Google Scholar] [CrossRef]
- Siders, W.A.; Lukaski, H.C.; Bolonchuk, W.W. Relationships among swimming performance, body composition and somatotype in competitive collegiate swimmers. J. Sports Med. Phys. Fitness 1993, 33, 166–171. [Google Scholar]
- Melchiorri, G.; Viero, V.; Sorge, R.; Triossi, T.; Campagna, A.; Volpe, S.L.; Lecis, D.; Tancredi, V.; Andreoli, A. Body composition analysis to study long-term training effects in elite male water polo athletes. J. Sports Med. Phys. Fitness 2018, 58, 1269–1274. [Google Scholar] [CrossRef] [PubMed]
- Andreoli, A.; Melchiorri, G.; Volpe, S.L.; Sardella, F.; Lacopino, L.; De Lorenzo, A. Multicompartment model to assess body composition in professional water polo players. J. Sports Med. Phys. Fitness 2004, 44, 38–43. [Google Scholar]
- Lozovina, M.; Durović, N.; Katić, R. Position specific morphological characteristics of elite water polo players. Coll. Antropol. 2009, 33, 781–789. [Google Scholar]
- Fritz, P.; Fritz, R.; Mayer, L.; Németh, B.; Ressinka, J.; Ács, P.; Oláh, C. Hungarian male water polo players’ body composition can predict specific playing positions and highlight different nutritional needs for optimal sports performance. BMC Sports Sci. Med. Rehabil. 2022, 14, 165. [Google Scholar] [CrossRef]
- Tumilty, D.; Logan, P.; Clews, W.; Cameron, D. Protocols for the physiological assessment of elite water polo players. In Physiological Tests for Elite Players; Gore, C.J., Ed.; Human Kinetics: Champaign, IL, USA, 2000. [Google Scholar]
- Noland, R.C.; Baker, J.T.; Boudreau, S.R.; Kobe, R.W.; Tanner, C.J.; Hickner, R.C.; McCammon, M.R.; Houmard, J.A. Effect of intense training on plasma leptin in male and female swimmers. Med. Sci. Sports Exerc. 2001, 33, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Martínez, S.; Pasquarelli, B.N.; Romaguera, D.; Arasa, C.; Tauler, P.; Aguiló, A. Anthropometric characteristics and nutritional profile of young amateur swimmers. J. Strength Cond. Res. 2011, 25, 1126–1133. [Google Scholar] [CrossRef] [PubMed]
- Barr, S.I.; Costill, D.L. Effect of increased training volume on nutrient intake of male collegiate swimmers. Int. J. Sports Med. 1992, 13, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Kabasakalis, A.; Kalitsis, K.; Tsalis, G.; Mougios, V. Imbalanced nutrition of top-level swimmers. Int. J. Sports Med. 2007, 28, 780–786. [Google Scholar] [CrossRef] [PubMed]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the Female Athlete Triad—Relative Energy Deficiency in Sport (RED-S). Br. J. Sports Med. 2014, 48, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Farajian, P.; Kavouras, S.A.; Yannakoulia, M.; Sidossis, L.S. Dietary intake and nutritional practices of elite Greek aquatic athletes. Int. J. Sport Nutr. Exerc. Metab. 2004, 14, 574–585. [Google Scholar] [CrossRef] [PubMed]
- Ivy, J.L. Regulation of muscle glycogen repletion, muscle protein synthesis and repair following exercise. J. Sports Sci. Med. 2004, 3, 131–138. [Google Scholar] [PubMed]
- Wirth, J.; Hillesheim, E.; Brennan, L. The Role of Protein Intake and its Timing on Body Composition and Muscle Function in Healthy Adults: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. J. Nutr. 2020, 150, 1443–1460. [Google Scholar] [CrossRef]
- Stokes, T.; Hector, A.J.; Morton, R.W.; McGlory, C.; Phillips, S.M. Recent Perspectives Regarding the Role of Dietary Protein for the Promotion of Muscle Hypertrophy with Resistance Exercise Training. Nutrients. 2018, 10, 180. [Google Scholar] [CrossRef]
- Vitale, K.; Getzin, A. Nutrition and Supplement Update for the Endurance Athlete: Review and Recommendations. Nutrients 2019, 11, 1289. [Google Scholar] [CrossRef]
- Reilly, T.; Woodbridge, V. Effects of moderate dietary manipulations on swim performance and on blood lactate-swimming velocity curves. Int. J. Sports Med. 1999, 20, 93–97. [Google Scholar] [CrossRef] [PubMed]
- Bussau, V.A.; Fairchild, T.J.; Rao, A.; Steele, P.; Fournier, P.A. Carbohydrate loading in human muscle: An improved 1 day protocol. Eur. J. Appl. Physiol. 2002, 87, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Mujika, I.; Chaouachi, A.; Chamari, K. Precompetition taper and nutritional strategies: Special reference to training during Ramadan intermittent fast. Br. J. Sports Med. 2010, 44, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Kerksick, C.M.; Arent, S.; Schoenfeld, B.J.; Stout, J.R.; Campbell, B.; Wilborn, C.D.; Taylor, L.; Kalman, D.; Smith-Ryan, A.E.; Kreider, R.B.; et al. International society of sports nutrition position stand: Nutrient timing. J. Int. Soc. Sports Nutr. 2017, 14, 33. [Google Scholar] [CrossRef] [PubMed]
- Cermak, N.M.; van Loon, L.J. The use of carbohydrates during exercise as an ergogenic aid. Sports Med. 2013, 43, 1139–1155. [Google Scholar] [CrossRef] [PubMed]
- Ousley-Pahnke, L.; Black, D.R.; Gretebeck, R.J. Dietary intake and energy expenditure of female collegiate swimmers during decreased training prior to competition. J. Am. Diet. Assoc. 2001, 101, 351–354. [Google Scholar] [CrossRef] [PubMed]
- Domaradzki, J. Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach. Nutrients 2023, 15, 608. [Google Scholar] [CrossRef] [PubMed]
- Pellegrini, M.; Ponzo, V.; Rosato, R.; Scumaci, E.; Goitre, I.; Benso, A.; Belcastro, S.; Crespi, C.; De Michieli, F.; Ghigo, E.; et al. Changes in Weight and Nutritional Habits in Adults with Obesity during the “Lockdown” Period Caused by the COVID-19 Virus Emergency. Nutrients 2020, 12, 2016. [Google Scholar] [CrossRef]
- Domaradzki, J. The Discriminant Power of Specific Physical Activity and Dietary Behaviors to Distinguish between Lean, Normal and Excessive Fat Groups in Late Adolescents. Nutrients 2023, 15, 1230. [Google Scholar] [CrossRef]
- Godala, M.; Krzyżak, M.; Maślach, D.; Gaszyńska, E. Relationship between Dietary Behaviors and Physical Activity and the Components of Metabolic Syndrome: A Case-Control Study. Int. J. Environ. Res. Public Health 2022, 19, 6562. [Google Scholar] [CrossRef]
- Lake, A.A.; Mathers, J.C.; Rugg-Gunn, A.J.; Adamson, A.J. Longitudinal change in food habits between adolescence (11–12 years) and adulthood (32–33 years): The ASH30 Study. J. Public Health 2006, 28, 10–16. [Google Scholar] [CrossRef]
Swimmers n = 10 | WP Athletes n = 13 | Comparison t; p | Effect Size (Hedges’ g) | 95% Confidence Interval | ||
---|---|---|---|---|---|---|
Age (years) | 22.1 ± 2.2 [21.0 to 24.3] | 24.4 ± 1.8 [23.6 to 26.2] | −2.77; 0.29 | 1.12 Moderate | 0.25 | 1.97 |
Height (cm) | 186.5 ± 2.0 [185.0 to 188.0] | 189.4 ± 2.9 [187.7 to 191.2] | −2.70; 0.013 | 1.13 Moderate | 0.22 | 1.94 |
Body weight (kg) | 76.7 ± 2.2 [75.1 to 78.4] | 86.9 ± 6.9 [82.7 to 91.1] | −4.98; <0.001 | 1.88 Large | 0.83 | 2.76 |
BMI (kg∙m−2) | 22.1 ± 0.55 [21.8 to 22.6] | 24.3 ± 1.4 [23.4 to 25.1] | −4.8; <0.001 | 1.96 Large | 0.82 | 2.73 |
Body fat (%) | 11.3 ± 0.43 [11.0 to 11.6] | 7.8 ± 0.63 [7.4 to 8.2] | 15.0; <0.001 | 6.32 EL | 4.08 | 8.06 |
Fat mass (kg) | 8.7 ± 0.4 [8.4 to 9.0] | 6.8 ± 0.4 [6.5 to 7.1] | 10.3; <0.001 | 4.75 EL | 2.69 | 5.68 |
SMM (kg) | 43.9 ± 1.65 [42.7 to 45.1] | 47.1 ± 1.32 [46.3 to 47.9] | −5.22; <0.001 | 2.17 Very large | 1.09 | 3.13 |
Fat-free mass (kg) | 61.1 ± 1.38 [60.1 to 62.1] | 62.9 ± 1.4 [62.0 to 63.7] | −2.90; 0.008 | 1.29 Large | 0.31 | 2.06 |
Swimmers n = 10 | WP Athletes n = 13 | Comparison t; p | Effect Size (Hedges’ g) | 95% Confidence Interval | ||
---|---|---|---|---|---|---|
Vit A (mg/kg) | 24.5 ± 4.6 [21.1 to 27.8] | 17.7 ± 3.7 [15.5 to 20.2] | 3.85; 0.001 | 1.65 Moderate | 0.002 | 1.67 |
Vit B1 (mg/kg) | 0.022 ± 0.002 [0.021 to 0.024] | 0.023 ± 0.007 [0.019 to 0.028] | −0.36; 0.71 | 0.73 Moderate | −0.29 | 1.33 |
Vit B2 (mg/kg) | 0.032 ± 0.007 [0.026 to 0.037] | 0.0314 ± 0.011 [0.024 to 0.038] | 0.15; 0.87 | 0.10 Trivial | −0.53 | 1.07 |
Vit B3 (mg/kg) | 0.039 ± 0.013 [0.030 to 0.048] | 0.129 ± 0.029 [0.111 to 0.147] | −8.93; <0.001 | 3.64 Very large | 2.15 | 4.78 |
Vit B6 (mg/kg) | 0.30 ± 0.03 [0.28 to 0.32] | 0.24 ± 0.03 [0.22 to 0.26] | 4.05; 0.01 | 0.63 Very large | −0.19 | 1.44 |
Vit B9 (mcg/kg) | 2.47 ± 0.40 [2.18 to 2.76] | 2.17 ± 0.36 [1.95 to 2.39] | 1.86; 0.076 | 0.79 Moderate | −0.77 | 0.82 |
Vit B12 (mcg/kg) | 0.10 ± 0.01 [0.09 to 0.11] | 0.13 ± 0.02 [0.11 to 0.14] | −3.11; 0.005 | 1.82 Large | 0.67 | 2.54 |
Vit C (mg/kg) | 1.03 ± 0.11 [0.95 to 1.12] | 0.59 ± 0.16 [0.49 to 0.69] | 7.12; <0.001 | 1.95 Very large | 0.94 | 2.92 |
Fe (mg/kg) | 0.42 ± 0.06 [0.37 to 0.47] | 0.36 ± 0.03 [0.33 to 0.38] | 9.90; 0.008 | 0.25 Large | −0.55 | 1.05 |
Se (mcg/kg) | 0.33 ± 0.04 [0.30 to 0.36] | 0.64 ± 0.04 [0.58 to 0.70] | −9.16; <0.001 | 4.25 EL | 2.85 | 5.94 |
Ca+ (mg/kg) | 17.7 ± 1.9 [16.4 to 19.1] | 14.3 ± 2.4 [12.9 to 15.8] | 3.68; 0.001 | 0.58 Large | −0.24 | 1.39 |
P (mg/kg) | 15.0 ± 2.8 [14.4 to 15.6] | 23.7 ± 2.8 [21.9 to 25.4] | −9.36; <0.001 | 3.98 Very large | 2.29 | 5.01 |
Na+ (mg/kg) | 68.7 ± 6.2 [64.2 to 73.2] | 74.2 ± 8.5 [68.9 to 79.1] | −1.65; 0.12 | 1.95 Very large | 0.95 | 2.92 |
K+ (mg/kg) | 37.1 ± 2.6 [35.2 to 39.0] | 35.0 ± 4.3 [36.3 to 37.6] | 1.39; 0.17 | 0.59 Small | 0.03 | 1.63 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samanipour, M.H.; Mohammadian, S.; Del Coso, J.; Salehian, O.; Jeddi, F.K.; Khosravi, M.; González-Ravé, J.M.; Ceylan, H.İ.; Liu, H.; Abou Sawan, S.; et al. Body Composition and Dietary Intake Profiles of Elite Iranian Swimmers and Water Polo Athletes. Nutrients 2024, 16, 2393. https://doi.org/10.3390/nu16152393
Samanipour MH, Mohammadian S, Del Coso J, Salehian O, Jeddi FK, Khosravi M, González-Ravé JM, Ceylan Hİ, Liu H, Abou Sawan S, et al. Body Composition and Dietary Intake Profiles of Elite Iranian Swimmers and Water Polo Athletes. Nutrients. 2024; 16(15):2393. https://doi.org/10.3390/nu16152393
Chicago/Turabian StyleSamanipour, Mohammad Hossein, Shahzad Mohammadian, Juan Del Coso, Omid Salehian, Fatemeh Khodakhah Jeddi, Mehdi Khosravi, José M. González-Ravé, Halil İbrahim Ceylan, Hongyou Liu, Sidney Abou Sawan, and et al. 2024. "Body Composition and Dietary Intake Profiles of Elite Iranian Swimmers and Water Polo Athletes" Nutrients 16, no. 15: 2393. https://doi.org/10.3390/nu16152393
APA StyleSamanipour, M. H., Mohammadian, S., Del Coso, J., Salehian, O., Jeddi, F. K., Khosravi, M., González-Ravé, J. M., Ceylan, H. İ., Liu, H., Abou Sawan, S., & Jäger, R. (2024). Body Composition and Dietary Intake Profiles of Elite Iranian Swimmers and Water Polo Athletes. Nutrients, 16(15), 2393. https://doi.org/10.3390/nu16152393